# Maximal Contrast Color Visual Secret Sharing Schemes

Sabyasachi Dutta, Avishek Adhikari, Sushmita Ruj **Presented by: Kyle Tilbury** 

# Visual Cryptographic Schemes (VCS)

(k,n)-threshold visual cryptographic scheme

- → First threshold black and white VCS was proposed by Naor and Shamir in 1994
- → Sharing phase:
  - Dealer encodes the secret image into n shares and gives each participant a share
- → Reconstruction phase:
  - If k or more participants come together and stack their shares they will be able to retrieve the secret image visually





Superposition of shares  $1 \mbox{ and } 2$ 



# Visual Cryptographic Schemes (VCS)

- → Loss of contrast in the reconstructed secret image
- → Change in scale of shares and reconstructed secret due to pixel expansion
  - Pixel expansion is the number of subpixels each pixel of the original image is encoded into
  - Pixel expansion is a "goodness" measure for VCS









3

# Colour Visual Cryptographic Schemes

- → Color visual cryptography was first conceptualized by Verheul and Tilborg in 1997
- → Jump from sharing a black & white secret image to a color image is not straight-forward
  - In black and white VCS, superposition of black or white pixels results in a black or a white pixel
  - With a colour image, superposition of two different coloured pixels may give rise to a third colour
  - Thus, need to define how to superimpose colours

## Colour Visual Cryptographic Schemes

- → This paper gives a generic construction method to share a colour image with maximal contrast
  - Maximal contrast means that while trying to recover a pixel of some colour no other false coloured pixel is reconstructed
- → Also gives a construction of visual secret sharing for (k,n)\*-access structure

### Colour VCS: Colour Model

- → A coloured image is an array of pixels which each have one of the c different colours 0, 1, ..., c 1
- → Colour superposition principle:
  - a. Each secret pixel is divided into some number of subpixels of colour 0, 1, ..., c 1



- b. If some subpixels are placed on top of one another and held to light, then a light of color i filters through the stacked subpixels if and only if all the subpixels are color i
- c. Otherwise, no light (black colour) filters through the stacking



Superimpose and shine red light through

The colour black is always distinguishable from the c colours and is denoted by •

#### Colour VCS: Colour Model

→ The "generalized OR"(GOR) denoted by V, of the colours i ∈ {0, 1, ..., c - 1} is defined as follows:

 $(i \lor i) = i$ 

#### and

$$(i \lor \cdot) = \cdot \text{ for all } i = 0, 1, \dots, c - 1$$

and

 $(i \lor j) = \bullet$  for all  $i \neq j$  where  $i, j = 0, 1, \dots, c-1$ 

#### Colour VCS: Colour Model

→ For any *n*-dimensional vector V with entries from the set  $\{0, 1, ..., c - 1\}$ ,

 $z_i(V)$  denotes the number of coordinates in V equal to *i* where *i* = 0, 1, ..., c - 1

#### For example:

$$z_0(V) = z_0($$

$$z_1(V) = z_1(V) = 2$$

 $z_2(V) = 1$ 

### **Colour VCS: Definition**

→ An unconditionally secure (k,n)-threshold visual cryptographic scheme with c colours is denoted by:

(k,n)<sub>c</sub>-CVCS

- → Let  $P = \{1, 2, ..., n\}$  be a set of participants
- →  $A(k,n)_c$ -CVCS on *P* satisfies:
- 1. Any subset of k participants can recover the secret image
- 2. Any subset of participants with size strictly less than k does not have any information about the secret image

A  $(k,n)_c$ -CVCS with pixel expansion m can be implemented by means of c many  $n \times m$  basis matrices  $S^0$ ,  $S^1$ ,...,  $S^{c-1}$ , where  $S^b$  corresponds to the color  $b \in \{0, 1, ..., c-1\}$ , if there exist two non-negative numbers h, l with l < h such that the following two conditions hold:

1. (Contrast condition) If  $X = \{i_1, i_2, ..., i_k\} \subseteq P$ , then for any i = 0, 1, ..., c - 1the "or" V of rows  $i_1, i_2, ..., i_k$  of S<sup>i</sup> satisfies  $z_i(V) \ge h$  and  $z_i(V) \le l$ , for  $j \ne i$ 

2. (Security condition) If X =  $\{i_1, i_2, ..., i_p\} \subseteq P$ , with p < k, then the p × m matrices obtained by restricting  $S^0$ , S<sup>1</sup>,..., S<sup>c-1</sup> to rows  $i_1, i_2, ..., i_p$  are equal up to a column permutation

More simply:

→ (Contrast condition) A pixel will be seen as a pixel of colour *i* if and only if:

Sufficiently many subpixels (at least *h*) are of colour *i* 

and

For any  $j \neq i$ , not too many subpixels (at most *l*) are of colour *j* 

Schemes having *I* = 0 are maximal-contrast schemes

→ (Security condition) With less than the threshold of k participants, the matrices are indistinguishable in the sense that they contain the same matrices with the same frequencies

When k = 2, n = 4, and c = 5, the five basis matrices of a  $(2, 4)_5$ -CVCS are:

$$S^{0} = \begin{bmatrix} 01234\\ 02341\\ 03412\\ 04123 \end{bmatrix} \qquad S^{1} = \begin{bmatrix} 10234\\ 12340\\ 13402\\ 14023 \end{bmatrix} \qquad S^{2} = \begin{bmatrix} 21034\\ 20341\\ 23410\\ 24103 \end{bmatrix}$$
$$S^{3} = \begin{bmatrix} 31204\\ 32041\\ 30412\\ 34120 \end{bmatrix} \qquad S^{4} = \begin{bmatrix} 41230\\ 42301\\ 43012\\ 40123 \end{bmatrix}.$$

In this scheme we have m = pixel expansion = 5, I = 0, and h = 1

Share generation:

- 1. During share generation phase the dealer chooses the matrix  $S^b$  if the secret pixel is colour  $b \in \{0,1,...,c-1\}$
- 2. Then he applies a random column permutation on the matrix S<sup>b</sup> and gives the participant P<sub>i</sub> the *i*<sup>th</sup> row of the resulting matrix as the participant's share for all *i*
- 3. When the dealer wants to share a *c*-coloured image then for each constituent pixel he repeatedly performs the above process till all the pixels are shared

Share generation:

1. During share generation phase the dealer chooses the matrix  $S^b$  if the secret pixel is colour  $b \in \{0,1,...,c-1\}$ 

Suppose our secret pixel colour b = 0 = red

2. Then he applies a random column permutation on the matrix S<sup>b</sup> and gives the participant P<sub>i</sub> the *i*<sup>th</sup> row of the resulting matrix as the participant's share for all *i* 



Suppose this is the random column permutation result

3. When the dealer wants to share a *c*-coloured image then for each constituent pixel he repeatedly performs the above process till all the pixels are shared

$$S^{0} = \begin{bmatrix} 01234\\ 02341\\ 03412\\ 04123 \end{bmatrix} \qquad S^{1} = \begin{bmatrix} 10234\\ 12340\\ 13402\\ 14023 \end{bmatrix} \qquad S^{2} = \begin{bmatrix} 21034\\ 20341\\ 23410\\ 24103 \end{bmatrix}$$
$$S^{3} = \begin{bmatrix} 31204\\ 32041\\ 30412\\ 34120 \end{bmatrix} \qquad S^{4} = \begin{bmatrix} 41230\\ 42301\\ 43012\\ 40123 \end{bmatrix}.$$

#### Reconstruction

#### Recall:

- 1. We have a (2, 4)<sub>5</sub>-CVCS
- 2. The superposition principle for the colours  $i \in \{0, 1, ..., c 1\}$  is:
  - a.  $(i \lor i) = i$  and
  - b.  $(i \lor \cdot) = \cdot \text{ for all } i = 0, 1, ..., c 1 \text{ and}$
  - c.  $(i \lor j) = \cdot \text{ for all } i \neq j \text{ where } i, j = 0, 1, ..., c$ - 1
- 3. A pixel will be seen as a pixel of colour i if and only if: Sufficiently many subpixels (at least h) are of colour i and for any  $j \neq i$ , not too many subpixels (at most l) are of colour j
  - a. We have l=0 and h=1

All participants shares:



### Colour VCS on (k,n)\*-access structure

- → (k,n)\*-access structure
  - Address the scenario where one participant is "essential"
  - The essential participant needs the help of k-1 participants, other than himself, to recover the secret image
- → Specific construction details can be found in the paper

→ Example of a  $(2, 3)_3^*$ -CVCS

→ "Essential" participant is the participant with Share 1



### **Conclusion and Discussion**

Conclusion:

- → Provided some overview of background for VCS
- → Went through a specific construction for a CVCS
- → Showed example of CVCS on  $(k,n)^*$ -access structure

Discussion:

→ Is there any applications for this? Is this just a fun "toy" problem to solve?

#### References

→ Dutta, S., Adhikari, A., & Ruj, S. (2018). Maximal contrast color visual secret sharing schemes. *Designs, Codes and Cryptography*, 1-13.

→ Blundo, C., De Bonis, A., & De Santis, A. (2001). Improved schemes for visual cryptography. *Designs, Codes and Cryptography*, 24(3), 255-278.