Maximal Contrast Color Visual Secret Sharing Schemes

Sabyasachi Dutta, Avishek Adhikari, Sushmita Ruj Presented by: Kyle Tilbury

Visual Cryptographic Schemes (VCS)

(k,n)-threshold visual cryptographic scheme
\rightarrow First threshold black and white VCS was proposed by Naor and Shamir in 1994
\rightarrow Sharing phase:

- Dealer encodes the secret image into n shares and gives each participant a share
\rightarrow Reconstruction phase:
- If k or more participants come together and stack their shares they will be able to retrieve the secret image visually

SecICT 2016

Share 1

Share 2

Visual Cryptographic Schemes (VCS)

\rightarrow Loss of contrast in the reconstructed secret image
\rightarrow Change in scale of shares and reconstructed secret due to pixel expansion

- Pixel expansion is the number of subpixels each pixel of the original image is encoded into
- Pixel expansion is a "goodness" measure for VCS

SecICT 2016
 Secret image

Share 1

Share 2

Colour Visual Cryptographic Schemes

\rightarrow Color visual cryptography was first conceptualized by Verheul and Tilborg in 1997
\rightarrow Jump from sharing a black \& white secret image to a color image is not straight-forward

- In black and white VCS, superposition of black or white pixels results in a black or a white pixel
- With a colour image, superposition of two different coloured pixels may give rise to a third colour
- Thus, need to define how to superimpose colours

Colour Visual Cryptographic Schemes

\rightarrow This paper gives a generic construction method to share a colour image with maximal contrast

- Maximal contrast means that while trying to recover a pixel of some colour no other false coloured pixel is reconstructed
\rightarrow Also gives a construction of visual secret sharing for (k,n)*-access structure

Colour VCS: Colour Model

\rightarrow A coloured image is an array of pixels which each have one of the c different colours $0,1, \ldots, c-1$
\rightarrow Colour superposition principle:
a. Each secret pixel is divided into some number of subpixels of colour $0,1, \ldots, c-1$

b. If some subpixels are placed on top of one another and held to light, then a light of color i filters through the stacked subpixels if and only if all the subpixels are color i
c. Otherwise, no light (black colour) filters through the stacking

- The colour black is always distinguishable from the colours and is denoted by •

Colour VCS: Colour Model

\rightarrow The "generalized $O R$ "(GOR) denoted by \vee, of the colours $i \in\{0,1, \ldots, c-1\}$ is defined as follows:

$$
(i \vee i)=i
$$

and

$$
(i \vee \cdot)=\cdot \text { for all } i=0,1, \ldots, c-1
$$

and

$$
(i \vee j)=\cdot \text { for all } i \neq j \text { where } i, j=0,1, \ldots, c-1
$$

Colour VCS: Colour Model

\rightarrow For any n-dimensional vector V with entries from the set $\{0,1, \ldots, c-1\}$,
$z_{i}(\mathrm{~V})$ denotes the number of coordinates in V equal to i where $i=0,1, \ldots, c-1$

For example:
$V=(0,1,0,2,0,1)=\square \square$
$z_{0}(V)=z_{\rho}(\square)=3$
$z_{1}(V)=z_{\mathbf{a}}(\square)=2$
$z_{2}(V)=1$

Colour VCS: Definition

\rightarrow An unconditionally secure (k,n)-threshold visual cryptographic scheme with c colours is denoted by:

$$
(\mathrm{k}, \mathrm{n})_{c} \mathrm{CVCS}
$$

\rightarrow Let $P=\{1,2, \ldots, n\}$ be a set of participants
$\rightarrow \quad A(k, n)_{c}$-CVCS on P satisfies:

1. Any subset of k participants can recover the secret image
2. Any subset of participants with size strictly less than k does not have any information about the secret image

Colour VCS: Definition

A $(k, n)_{c}$-CVCS with pixel expansion m can be implemented by means of c many $n \times m$ basis matrices $S^{0}, S^{1}, \ldots, S^{c-1}$, where S^{b} corresponds to the color $b \in\{0,1$ $, \ldots ., c-1\}$, if there exist two non-negative numbers h, I with $I<h$ such that the following two conditions hold:

1. (Contrast condition) If $X=\left\{i_{1}, \mathrm{i}_{2}, \ldots, i_{k}\right\} \subseteq P$, then for any $\mathrm{i}=0,1, \ldots, \mathrm{c}-1$ the "or" V of rows $i_{1}, i_{2}, \ldots, i_{k}$ of S satisfies $z_{i}(V) \geq h$ and $z_{j}(V) \leq I$, for $j \neq i$
2. (Security condition) If $X=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{p}}\right\} \subseteq P$, with $\mathrm{p}<\mathrm{k}$, then the $\mathrm{p} \times \mathrm{m}$ matrices obtained by restricting $S^{0}, S^{1}, \ldots, S^{c-1}$ to rows $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{p}}$ are equal up to a column permutation

Colour VCS: Definition

More simply:
\rightarrow (Contrast condition) A pixel will be seen as a pixel of colour i if and only if: Sufficiently many subpixels (at least h) are of colour i and

For any $j \neq i$, not too many subpixels (at most I) are of colour j
Schemes having I = 0 are maximal-contrast schemes
\rightarrow (Security condition) With less than the threshold of k participants, the matrices are indistinguishable in the sense that they contain the same matrices with the same frequencies

Colour VCS: Example

When $\mathrm{k}=2, \mathrm{n}=4$, and $\mathrm{c}=5$, the five basis matrices of a $(2,4)_{5}$-CVCS are:

$$
\begin{array}{ll}
S^{0}=\left[\begin{array}{l}
01234 \\
02341 \\
03412 \\
04123
\end{array}\right] \quad S^{1}=\left[\begin{array}{l}
10234 \\
12340 \\
13402 \\
14023
\end{array}\right] \quad S^{2}=\left[\begin{array}{l}
21034 \\
20341 \\
23410 \\
24103
\end{array}\right] \\
S^{3}=\left[\begin{array}{l}
31204 \\
32041 \\
30412 \\
34120
\end{array}\right] & S^{4}=\left[\begin{array}{l}
41230 \\
42301 \\
43012 \\
40123
\end{array}\right] .
\end{array}
$$

In this scheme we have $\mathrm{m}=$ pixel expansion $=5, I=0$, and $h=1$

Colour VCS: Example

Share generation:

1. During share generation phase the dealer chooses the matrix S^{b} if the secret pixel is colour $b \in\{0,1, \ldots, c-1\}$
2. Then he applies a random column permutation on the matrix S^{b} and gives the participant P_{i} the $i^{\text {th }}$ row of the resulting matrix as the participant's share for all i
3. When the dealer wants to share a c-coloured image then for each constituent pixel he repeatedly performs the above process till all the pixels are shared

Colour VCS: Example

Share generation:

1. During share generation phase the dealer chooses the matrix S^{b} if the secret pixel is colour $b \in\{0,1, \ldots, c-1\}$

$$
S^{0}=\left[\begin{array}{l}
01234 \\
02341 \\
03412 \\
04123
\end{array}\right]=S^{\square}=\left[\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right]
$$

Suppose our secret pixel colour $b=0=$ red

Colour VCS: Example

2. Then he applies a random column permutation on the matrix S^{b} and gives the participant P_{i} the $i^{\text {th }}$ row of the resulting matrix as the participant's share for all i

$$
S^{0}=\left[\begin{array}{l}
01234 \\
02341 \\
03412 \\
04123
\end{array}\right]=S^{\square}=\left[\begin{array}{l}
\square \\
\square \square \\
\square
\end{array}\right]
$$

Suppose this is the random column permutation result

Colour VCS: Example

3. When the dealer wants to share a c-coloured image then for each constituent pixel he repeatedly performs the above process till all the pixels are shared

$$
\begin{array}{ll}
S^{0}=\left[\begin{array}{l}
01234 \\
02341 \\
03412 \\
04123
\end{array}\right] \quad S^{1}=\left[\begin{array}{l}
10234 \\
12340 \\
13402 \\
14023
\end{array}\right] \quad S^{2}=\left[\begin{array}{l}
21034 \\
20341 \\
23410 \\
24103
\end{array}\right] \\
S^{3}=\left[\begin{array}{l}
31204 \\
32041 \\
30412 \\
34120
\end{array}\right] & S^{4}=\left[\begin{array}{l}
41230 \\
42301 \\
43012 \\
40123
\end{array}\right] .
\end{array}
$$

Colour VCS: Example

Reconstruction

Recall:

1. We have a $(2,4)_{5}$-CVCS
2. The superposition principle for the colours $i \in$ $\{0,1, \ldots, c-1\}$ is:
a. $(\mathrm{i} \vee \mathrm{i})=\mathrm{i}$ and
b. $\quad(i \vee \cdot)=\cdot$ for all $i=0,1, \ldots, c-1$ and
c. $(i \vee j)=\cdot$ for all $i \neq j$ where $i, j=0,1, \ldots, c$ - 1
3. A pixel will be seen as a pixel of colour i if and only if: Sufficiently many subpixels (at least h) are of colour i and for any $j \neq i$, not too many subpixels (at most l) are of colour j

All participants shares:

Participant 1 and participant 3 collaborate to reconstruct the secret

a. We have $/=0$ and $h=1$

Colour VCS on (k,n)*-access structure

$\rightarrow \quad(\mathrm{k}, \mathrm{n})^{\star}$-access structure

- Address the scenario where one participant is "essential"
- The essential participant needs the help of k -1 participants, other than himself, to recover the secret image
\rightarrow Specific construction details can be found in the paper

Colour VCS: Example

\rightarrow Example of a $(2,3)_{3}{ }^{*}$-CVCS
\rightarrow "Essential" participant is the participant with Share 1

Secret Image

Conclusion and Discussion

Conclusion:
\rightarrow Provided some overview of background for VCS
\rightarrow Went through a specific construction for a CVCS
\rightarrow Showed example of CVCS on (k,n)*-access structure

Discussion:

\rightarrow Is there any applications for this? Is this just a fun "toy" problem to solve?

References

\rightarrow Dutta, S., Adhikari, A., \& Ruj, S. (2018). Maximal contrast color visual secret sharing schemes. Designs, Codes and Cryptography, 1-13.
\rightarrow Blundo, C., De Bonis, A., \& De Santis, A. (2001). Improved schemes for visual cryptography. Designs, Codes and Cryptography, 24(3), 255-278.

