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Introduction
• Secret Sharing
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Figure 1. Secret sharing scheme

http://robinsnippet.blogspot.com/2017/12/shamirs-secret-sharing-scheme.html



Introduction
• Visual cryptography schemes
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https://www.researchgate.net/figure/Working-of-visual-cryptography_fig1_261163761

Figure 2. Visual Cryptography



Introduction
• Evolving access structures – (k,∞)-threshold scheme

• Open questions in secrete sharing schemes

• This paper:

– No study has focused on the analysis and the design of secret sharing scheme 
in which the secret can be reconstructed with high probability. (except visual 
cryptography)

– “Can we reduce the size of the shares held by the participants if we allow a 
small probability of error in the reconstruction phase?”
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Related Work

• Perfect

• Non-perfect

• (d,t,n)-ramp scheme
• Statistical relaxation – the privacy is not information-theoretic (some 

probability of information leakage)
• Computational relaxation – guarantees only against computationally bounded 

adversary.
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Model
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• Probabilistic secret sharing scheme:

• Share(s) = {sh
1
,...,sh

n
}

• Recon({sh
i
} 

i∈Α) = s

• α-correctness: Prob[Recon({sh
i
} 

i∈Α)=s] ≥α

• Perfect privacy



Model(evolving schemes)

• Access structure:

• Probabilistic secret sharing for evolving access structures:

• Share(s,{sh
1
,…,sh

t-1
}) =sh

t

• Recon({sh
i
} 

i∈Α) = s
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Probabilistic schemes for the threshold finite case

• (3,4)-threshold deterministic scheme:
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Probabilistic schemes for the threshold finite case

• (3,4)-threshold deterministic scheme:
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Probabilistic schemes for the threshold finite case

• (3,4)-threshold deterministic scheme:
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Probabilistic schemes for the threshold finite case

• (3,4)-threshold deterministic scheme:

sh
1
:

sh
2
:

sh
3
:

sh
4
:
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Probabilistic schemes for the threshold finite case

• Deterministic (3,4)-threshold scheme:

• Superposing when s=0 - 4 ones and 2 zeros

• Superposing when s=1 - 5 ones and 1 zero
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Probabilistic schemes for the threshold finite case

• Probabilistic visual cryptography scheme:

• Shares of the participants are randomly selected vectors(or function):

• 0 is reconstructed correctly     of the times
• 1 is reconstructed correctly      of the times

– Overall       of the times
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Probabilistic schemes for the threshold finite case

• Probabilistic visual cryptography scheme:

• Shares of the participants are randomly selected vectors(xor function):

• 0 is reconstructed correctly     of the times
• 1 is reconstructed correctly      of the times

– Overall     of the times

5
6
5
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(2,∞)-threshold construction

• Construction:

• Share(i) = sh
pi

• First participant receives a random bit b
1

• For all other participants:
• If s = 0, then participant p

i
 receives the same as given to b

1

• If s = 1, then participant p
i
 receives new random bit

• Recon(sh
i
,sh

j
):

• If sh
i 
= sh

j
, then output is 0

• If sh
i  
≠ sh

j
, then output is 1
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(2,∞)-threshold construction

• The construction is       -probabilistic (2,∞)-threshold scheme, where (p,1-p) is the 
distribution of the secret bit

• Security

•       - correctness

1+ p
2

1+ p
2

1
2

1
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Transforms for general schemes from simple ones

• From (k,∞)-threshold to (k+1,∞)-threshold

• From {(j,∞)-threshold
{j=2,..,k} 

to (k+1,∞)-threshold
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From (k,∞)-threshold to (k+1,∞)-threshold

• Let Π be auxiliary (k,∞)-threshold scheme

• Let Λ be (k+1,∞)-threshold scheme

• The share sh
t 
is computed the following way:

– r
t 

 {0,1} ∈ is chosen at random

– For every j  {1,…,t-1}∈  , a new share w
t,j

 of r
t 
is computed using Π.

– The share of party t is(scheme Λ):

● sh
t
={s  r⨁

t
} {w⋃

t,j
}

j={1,..,t-1}
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From (k,∞)-threshold to (k+1,∞)-threshold

• Let Π be auxiliary (k,∞)-threshold scheme

• Let Λ be (k+1,∞)-threshold scheme

• Recon algorithm for scheme Λ:

– It assumes k+1 parties: P
t0

,P
t1
,...,P

tk 
(chronologically ordered)

– The last k parties run the Recon algorithm of Π with inputs: 
(w

t1,t0
,w

t2,t0
,...,w

tk,t0
) to recover r

t0

– r
t0

  s  r⨁ ⨁
t0

= s
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Probabilistic (k,∞)-threshold scheme with constant share size

• Sharmir’s secret sharing scheme - (k,q)-threshold scheme

• Upon arrive of new participant t, r
t 
is chosen at random

• The share is (r
t
,p(r

t
))

• Recon algorithm: 

• Check if all parties have different first components in their shares
• If so, then Reconstruct the secret
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Conclusion

• Formalized the notion of probabilistic secret sharing scheme
• Provided a construction for:

• probabilistic (3,4)-threshold secret sharing scheme
• probabilistic (2,∞)-threshold scheme
• probabilistic (k,∞)-threshold scheme with constant share size

• Transforms for general schemes from simpler ones
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THANK YOU
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Questions for Discussion

• Is one bit secret realistic?
• Can you think of any scenarios?
• Extending the schemes to more bits?

• Do you have any ideas how to make the transformation more efficient?
• Do you think probabilistic secret sharing scheme will be useful?

– How would you choose α?
● Does the “translation” from visual cryptographic scheme always improve the 

correctness property for a secret sharing scheme?
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ADDITIONAL SLIDES



From {(j,∞)-threshold}j from2 to k to (k+1,∞)-threshold

• Let j {1,…,k}, ∈ Π
j 
auxiliary (j,∞)-threshold scheme

• Let Λ be (k+1,∞)-threshold scheme to construct

• Generation(g
1
>k):

P
1
,...,P

gm

G
m
=g

m

P
g(m+1)

,...,P
g(2m+2)

G
m+1
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From {(j,∞)-threshold}j from2 to k to (k+1,∞)-threshold
G

m

r
2

(m)

r
3

(m)

r
k
(m)

...

s  ⨁ r
2

(m)

s  ⨁ r
3

(m)

s  ⨁ r
k
(m)

shared by
(2,g

m
)-threshold 

scheme

(3,g
m
)-threshold 

scheme

(k,g
m
)-threshold 

scheme

Addtional notation:
u

j,l
(m) is the l-th share 

s (k+1,g
m
)-threshold 

scheme

Addtional notation:
u

k+1,l
(m) is the l-th share 
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From {(j,∞)-threshold}j ={2,…,k} to (k+1,∞)-threshold
G

m

r
2
(m)

r
k
(m)

...

s  ⨁ r
2

(m)

s  ⨁ r
k
(m)

shared by
(2,g

m
)-threshold 

scheme

(k,g
m
)-threshold 

scheme

Player P
t
 arrives, (the l-th player of the generation)

G
i

r
2

(m)

r
k
(m)

...

(k+1-2,∞)-
threshold scheme

(k+1-k,∞)-
threshold scheme v

j,l
(m)
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From {(j,∞)-threshold}j from2 to k to (k+1,∞)-threshold

• Recon:

– If there are no subsequent generations, then use (k+1,g
m

)-threshold scheme.

– If there are subsequent generation:

● Recover s  r⨁
k0

(m) within the generation using (k0,g
m

)-threshold scheme

● Parties of  subsequent generations recover r
k0

(m) using (k1,∞)-threshold 

scheme  
   
 

● s=s  r⨁
k0

(m)  r⨁
k0

(m)

Note: g
m

 + parties in subsequent generations = k+1
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