Probabilistic Secret Sharing

Paolo D'Arco, Roberto De Prisco, Alfredo De santis, Angel Perez del Pozo, Ugo Vaccaro

2019-06-12

Presented by: Dimcho Karakashev

- · Introduction
- Previous Work
- · Models in the paper
- · Probabilistic scheme for finite threshold
- A probabilistic $(2,\infty)$ -threshold construction
- Transforms for general schemes from simpler ones
 - From (k,∞) -threshold scheme to $(k+1,\infty)$ -threshold scheme
 - From $(j,\infty)_{j=\{2,..,k\}}$ -threshold scheme where to $(k+1,\infty)$ -threshold scheme
 - A probabilistic (k, ∞)-threshold construction with constant size of shares

Introduction

· Secret Sharing

Figure 1. Secret sharing scheme

http://robinsnippet.blogspot.com/2017/12/shamirs-secret-sharing-scheme.html

Introduction

· Visual cryptography schemes

Share 2

Figure 2. Visual Cryptography

https://www.researchgate.net/figure/Working-of-visual-cryptography_fig1_261163761

Introduction

- Evolving access structures $-(k,\infty)$ -threshold scheme
- · Open questions in secrete sharing schemes
- This paper:
 - No study has focused on the analysis and the design of secret sharing scheme in which the secret can be reconstructed with high probability. (except visual cryptography)
 - "Can we reduce the size of the shares held by the participants if we allow a small probability of error in the reconstruction phase?"

Related Work

- · Perfect
- · Non-perfect
 - · (d,t,n)-ramp scheme
 - Statistical relaxation the privacy is not information-theoretic (some probability of information leakage)
 - Computational relaxation guarantees only against computationally bounded adversary.

Model

Probabilistic secret sharing scheme:

- ▶ Definition 2. Let S be a set of secrets such that $|S| \ge 2$, and let α be a positive real value such that $0 < \alpha \le 1$. An α -probabilistic secret sharing scheme Π for an access structure \mathcal{A} on the set of participants \mathcal{P}_n and set of secrets S consists of a pair of probabilistic polynomial time algorithms (Share, Recon) where
- · Share(s) = $\{sh_1, ..., sh_n\}$
- · Recon($\{sh_i\}_{i \in A}$) = s
- · α -correctness: Prob[Recon({sh}_i > i \in A) = s] $\geq \alpha$
- Perfect privacy

Model(evolving schemes)

Access structure:

٠

- ▶ **Definition 5.** [26, 27] Let \mathbb{N} be the set of the natural numbers. A (possibly infinite) sequence of access structures $\{\mathcal{A}_t\}_{t\in\mathbb{N}}$ is called evolving if, for every $t\in\mathbb{N}$, the following conditions hold:
- \blacksquare \mathcal{A}_t is an access structure over \mathcal{P}_t
- $= \mathcal{A}_t|_{t-1} \text{ is equal to } \mathcal{A}_{t-1}.$
- Probabilistic secret sharing for evolving access structures:
 - Share(s,{ sh_1 ,..., sh_{t-1} }) = sh_t
 - · Recon($\{sh_i\}_{i \in A}$) = s

$$B_0 = \begin{bmatrix} 000111\\001011\\001101\\001110 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 000111\\100110\\010110\\001110 \end{bmatrix}$$

$$B_0 = \begin{bmatrix} 000111\\ 001011\\ 001101\\ 001110 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 000111\\ 100110\\ 010110\\ 001110 \end{bmatrix}$$

$$B_0 = \begin{bmatrix} 000111\\ 001011\\ 001101\\ 001110 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 000111\\ 100110\\ 010110\\ 001110 \end{bmatrix}$$

$$B_0 = \begin{bmatrix} 000111\\001011\\001101\\001110 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 000111\\100110\\010110\\001110 \end{bmatrix}$$

$$sh_{1}: 000111$$

 $sh_{2}: 001011$
 $sh_{3}: 001101$
 $sh_{4}: 001110$

Deterministic (3,4)-threshold scheme:

Superposing when s=0 - 4 ones and 2 zeros

Superposing when s=1 - 5 ones and 1 zero

Probabilistic visual cryptography scheme:

$$\mathcal{C}_{0} = \left\{ \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\1\\0 \end{bmatrix} \right\} \right\} \qquad \mathcal{C}_{1} = \left\{ \begin{bmatrix} 0\\1\\0\\0\\0\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\1 \end{bmatrix} \right\}$$

Shares of the participants are randomly selected vectors(or function):

- o is reconstructed correctly $\frac{1}{3}$ of the times
- 1 is reconstructed correctly $\frac{5}{12}$ of the times
- Overall $\frac{7}{12}$ of the times

٠

Probabilistic visual cryptography scheme:

$$\mathcal{C}_{0} = \left\{ \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\1 \end{bmatrix} \right\} \qquad \qquad \mathcal{C}_{1} = \left\{ \begin{bmatrix} 0\\1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix} \right\}$$

Shares of the participants are randomly selected vectors(xor function):

- o is reconstructed correctly $\frac{5}{6}$ of the times
- 1 is reconstructed correctly $\frac{5}{6}$ of the times
- Overall $\frac{5}{6}$ of the times

٠

(2, ∞)-threshold construction

- **Construction:**
 - Share(i) = sh_{pi}
 - · First participant receives a random bit b_1
 - For all other participants:
 - If s = 0, then participant p_i receives the same as given to b_1
 - If s = 1, then participant p_i receives new random bit
 - Recon (sh_i, sh_j) :
 - If $sh_i = sh_j$, then output is o
 - If $sh_i \neq sh_j$, then output is 1

(2, ∞)-threshold construction

- The construction is $\frac{1+p}{2}$ -probabilistic (2,∞)-threshold scheme, where (p,1-p) is the distribution of the secret bit
- · Security

Transforms for general schemes from simple ones

- From (k,∞) -threshold to $(k+1,\infty)$ -threshold
- From $\{(j,\infty)$ -threshold $_{\{j=2,..,k\}}$ to $(k+1,\infty)$ -threshold

From (k, ∞)-threshold to (k+1, ∞)-threshold

- · Let П be auxiliary (k,∞)-threshold scheme
- · Let Λ be (k+1, ∞)-threshold scheme
- The share sh_t is computed the following way:
 - $r_t \in \{0,1\}$ is chosen at random
 - For every $j \in \{1, ..., t-1\}$, a new share $w_{t,i}$ of r_t is computed using Π .
 - The share of party t is (scheme Λ):
 - $sh_t = \{s \oplus r_t\} \cup \{w_{t,j}\}_{j=\{1,..,t-1\}}$

From (k, ∞)-threshold to (k+1, ∞)-threshold

- · Let П be auxiliary (k,∞)-threshold scheme
- · Let Λ be (k+1, ∞)-threshold scheme
- Recon algorithm for scheme Λ :
 - It assumes k+1 parties: $P_{to}, P_{t1}, \dots, P_{tk}$ (chronologically ordered)
 - The last k parties run the Recon algorithm of Π with inputs: $(w_{t1,t0}, w_{t2,t0}, ..., w_{tk,t0})$ to recover r_{t0}

- $\mathbf{r}_{to} \oplus \mathbf{s} \oplus \mathbf{r}_{to} = \mathbf{s}$

Probabilistic (k, ∞)-threshold scheme with constant share size

- · Sharmir's secret sharing scheme (k,q)-threshold scheme
- Upon arrive of new participant t, r_t is chosen at random
- The share is $(r_t, p(r_t))$
- Recon algorithm:
 - · Check if all parties have different first components in their shares
 - · If so, then Reconstruct the secret

Conclusion

٠

- · Formalized the notion of probabilistic secret sharing scheme
- Provided a construction for:
 - probabilistic (3,4)-threshold secret sharing scheme
 - · probabilistic $(2,\infty)$ -threshold scheme
 - probabilistic (k,∞)-threshold scheme with constant share size
 - Transforms for general schemes from simpler ones

THANK YOU

Questions for Discussion

- Is one bit secret realistic?
 - Can you think of any scenarios?
 - Extending the schemes to more bits?
- Do you have any ideas how to make the transformation more efficient?
- Do you think probabilistic secret sharing scheme will be useful?
 - How would you choose α ?
- Does the "translation" from visual cryptographic scheme always improve the correctness property for a secret sharing scheme?

ADDITIONAL SLIDES

From {(j, ∞)-threshold}_{j from 2 to k} to (k+1, ∞)-threshold

- · Let $j \in \{1,...,k\}$, Π_j auxiliary (j,∞) -threshold scheme
- · Let Λ be (k+1, ∞)-threshold scheme to construct
- · Generation($g_1 > k$):

$$G_{m}=g_{m}$$
 G_{m+1}
 $P_{1},...,P_{gm}$ $P_{g(m+1)},...,P_{g(2m+2)}$

From {(j, ∞)-threshold}_{j from 2 to k} to (k+1, ∞)-threshold

Addtional notation: $u_{i,I}^{(m)}$ is the I-th share

Addtional notation: $u_{k+1,l}^{(m)}$ is the l-th share

From {(j,∞)-threshold}_{$j=\{2,...,k\}} to (k+1,\infty)-threshold$ </sub> G G $r_2^{(m)} \longrightarrow s \oplus r_2^{(m)} \xrightarrow{\text{shared by}} (2,g_m) \text{-threshold}$ scheme (k+1-2,∞)r₂^(m) threshold scheme . . . $r_k^{(m)} \longrightarrow s \oplus r_k^{(m)} \longrightarrow (k,g_m)$ -threshold scheme r ^(m) Player P, arrives, (the I-th player of the generation) (k+1-k,∞)-V_{i,l}^(m) threshold scheme $\Lambda_t^{(s)} = \{u_{j,l}^{(m)}\}_{j \in [k+1]} \cup \{v_{j,l}^{(i)}\}_{j \in [k], i \in [m-1]}$

From {(j, ∞)-threshold}_{j from 2 to k} to (k+1, ∞)-threshold

- Recon:
- If there are no subsequent generations, then use $(k+1,g_m)$ -threshold scheme.
- If there are subsequent generation:
 - Recover $s \oplus r_{ko}^{\ \ (m)}$ within the generation using (ko,g_m)-threshold scheme
 - Parties of subsequent generations recover r_{ko}^(m) using (k1,∞)-threshold scheme
 - $\bullet \ \ s{=}s \oplus r_{ko}^{\ (m)} \oplus r_{ko}^{\ (m)}$

Note: g_m + parties in subsequent generations = k+1

