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What does the term “secure” mean?

• In the August 1977 issue of Scientific American, Martin

Gardner wrote a column on the newly developed RSA

public-key cryptosystem entitled “A new kind of cipher

that would take millions of years to break”. Included in

the article was a challenge ciphertext, encrypted using a

512-bit RSA key.

• The challenge was solved 17 years later, on April 26, 1994,

by Arjen Lenstra et al.

• They factored the given public key and decrypted the

ciphertext to yield the plaintext, which was “The Magic

Words are Squeamish Ossifrage”.

• For this, they claimed a prize of U.S. $100.



What Went Wrong

The statement that the cipher would take millions of years to

break probably referred to how long it would take to run the best

factoring algorithm known in 1977 on the fastest computer

available in 1977. However, between 1977 and 1994:

• computers became much faster

• improved factoring algorithms were found

• the development of the internet facilitated large-scale

distributed computations.

Even so, the factorization still required over 5000 MIPS-years of

computation time in 1994.

The current state-of-the-art is the factorization of the 232-digit

(768 bit) challenge, RSA-768, in December 2009.



A Formal Model for Security

Any discussion of cryptographic security requires a specification of

an attack model, computational resources, and an adversarial

goal. These terms are defined as follows:

attack model

The attack model specifies the information available to the

adversary. In the case of encryption schemes, this information

could include ciphertexts, plaintext-ciphertext pairs, temporary

access to encryption or decryption oracles, etc. We will always

assume that the adversary knows the protocol being used (this is

called Kerckhoff’s Principle).



A Formal Model (cont.)

computational resources

Here, we specify the computational resources available to the

adversary, such as computing equipment, algorithms, computing

time, etc. In the case of unconditional security (aka

information theoretic security), the adversary is assumed to

have unlimited computational resources.

adversarial goal

The adversarial goal specifies what it means to “break” the

protocol. What is the adversary attempting to do and/or what

problem is he trying to solve? How is the notion of a “successful

attack” defined?



A Formal Model (cont.)

A statement of security for a cryptographic scheme will be an

assertion of the following form:

In attack model A and given specified computational

resources C, a particular adversarial goal G cannot be

achieved with probability exceeding some specified value ε.

As mentioned before, in the setting of unconditional security,

there is no limit on the computational resources available to the

adversary.



What is (Im)Possible in an Unconditional Secure

Setting?

• Secure secret-key encryption schemes exist, but secure

public-key encryption schemes do not exist.

• Secure message authentication codes exist.

• Secure signature schemes exist, but not in the public key

setting — secret verification keys are required, and these

kinds of schemes only work for a fixed number of participants.

• Secure key distribution schemes exist, but secure key

agreement is impossible without prior shared secrets.

• Secure commitment schemes exist if there is a trusted

initializer.

• Secure secret sharing schemes exist.



Issues and Goals in Unconditional Security

• Typically, unconditionally secure schemes can be used only

for a fixed number of times (e.g., the One-time Pad can

be used for only one encryption).

• Unconditionally secure schemes often require a trusted

authority to set up the scheme.

• The main goal in unconditional security is to balance security

against memory requirements (storage) and/or

communication complexity (amount of information

transmitted).

• In a multiuser setting, security guarantees only hold against

coalitions of a prespecified fixed size.



Cryptosystems (encryption schemes)

Definition

A cryptosystem is a five-tuple (P, C,K, E ,D), where the

following conditions are satisfied:

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K, the keyspace, is a finite set of possible keys.

4. For each K ∈ K, there is an encryption rule eK ∈ E and a

corresponding decryption rule dK ∈ D. Each eK : P → C
and dK : C → P are functions such that dK(eK(x)) = x for

every plaintext element x ∈ P.



Communication Channel

• Alice and Bob have a shared secret key K and Alice

computes y = eK(x) to encrypt the plaintext x .

• Bob computes x = dK(y) to decrypt the ciphertext.

• The ciphertext y is observed by the passive adversary Eve.

• However, Eve does not know K.

• Hopefully, Eve cannot figure out what K or x are.

Alice
y−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

↓
Eve sees y



Perfect Secrecy

• Assume that a cryptosystem (P, C,K, E ,D) is specified, and

a particular key K ∈ K is used for only one encryption.

• There is a probability distribution on the plaintext space, P.

• Denote the a priori probability that plaintext x occurs by

Pr[x = x ].

• The key K is chosen (using some fixed probability

distribution).

• Denote the probability that key K is chosen by Pr[K = K].

• The key and the plaintext are independent random variables.

• The two probability distributions on P and K induce a

probability distribution on C.



Perfect Secrecy (cont.)

• We compute the probability Pr[y = y ] that y is the

ciphertext that is transmitted.

• For a key K ∈ K, define

C(K) = {eK(x) : x ∈ P}.

C(K) represents the set of possible ciphertexts if K is the

key.

• For every y ∈ C, we have that

Pr[y = y ] =
∑

{K:y∈C(K)}

Pr[K = K]Pr[x = dK(y)].

• For any y ∈ C and x ∈ P, we can compute

Pr[y = y |x = x ] =
∑

{K:x=dK(y)}

Pr[K = K].



Perfect Secrecy (cont.)

• Pr[x = x |y = y ] can be computed using Bayes’ theorem:

Pr[x = x |y = y ] =
Pr[x = x ]× Pr[y = y |x = x ]

Pr[y = y ]
.

• Perfect secrecy means that Pr[x |y ] = Pr[x ] for all x, y .

• Perfectly secrecy provides unconditional security in a

known-ciphertext attack if K is used for only one

encryption.

• The attack model is that the adversary Eve is given a

ciphertext, y .

• Eve’s goal is to compute information about the plaintext of

x .



An Example

Let P = {a, b} with

Pr[a] = 1/4,Pr[b] = 3/4.

Let K = {K1, K2, K3} with

Pr[K1] = 1/2,Pr[K2] = Pr[K3] = 1/4.

Let C = {1, 2, 3, 4}, and suppose the encryption functions are

defined by the following encryption matrix:

a b

K1 1 2

K2 2 3

K3 3 4



An Example (cont.)

We first compute the probability distribution on C. We obtain the

following:

Pr[1] =
1

8

Pr[2] =
3

8
+

1

16
=

7

16

Pr[3] =
3

16
+

1

16
=

1

4

Pr[4] =
3

16
.



An Example (cont.)

Next, we can compute the conditional probability distributions on

the ciphertexts, given a plaintext. We have:

Pr[1|a] =
1

2
Pr[1|b] = 0

Pr[2|a] =
1

4
Pr[2|b] =

1

2

Pr[3|a] =
1

4
Pr[3|b] =

1

4

Pr[4|a] = 0 Pr[4|b] =
1

4
.



An Example (cont.)

Finally, we use Bayes’ Theorem to compute the conditional

probability distributions on the plaintext, given a ciphertext:

Pr[a|1] = 1 Pr[b|1] = 0

Pr[a|2] =
1

7
Pr[b|2] =

6

7

Pr[a|3] =
1

4
Pr[b|3] =

3

4

Pr[a|4] = 0 Pr[b|4] = 1.

Recalling that Pr[a] = 1/4 and Pr[b] = 3/4, we see that the

perfect secrecy property is satisfied for the ciphertext y = 3, but

not for the other three ciphertexts.



One-time Pad

The one-time pad is the best known example of a cryptosystem

that provides perfect secrecy.

Protocol: One-time Pad

Let n ≥ 1 be an integer, and take P = C = K = (Z2)n. For every

K ∈ (Z2)n, let Pr[K] = 2−n (i.e., keys are chosen equiprobably)

and for every x ∈ (Z2)n, define eK(x) to be the vector sum

modulo 2 of K and x (or, equivalently, the exclusive-or of the two

associated bitstrings). So, if x = (x1, . . . , xn) and

K = (K1, . . . , Kn), then

eK(x) = x ⊕K = (x1 +K1, . . . , xn +Kn) mod 2.

Decryption is identical to encryption. If y = (y1, . . . , yn), then

dK(y) = y ⊕K = (y1 +K1, . . . , yn +Kn) mod 2.



An Example

Suppose n = 2. The encryption matrix for the one-time pad is as

follows:
K x = 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00



Security of the One-time Pad
It is simple to prove that the One-time Pad provides perfect

secrecy:

• For every K ∈ (Z2)n,

Pr[K] = 2−n.

• For every x, y ∈ (Z2)n,

Pr[y |x ] = Pr[K = x ⊕ y ] = 2−n.

• For every y ∈ (Z2)n,

Pr[y ] =
∑

x∈(Z2)n
(Pr[x ]× Pr[y |x ]) =

∑
x∈(Z2)n

(Pr[x ]× 2−n) = 2−n.

• Now use Bayes’ Theorem to compute Pr[x |y ]:

Pr[x |y ] =
Pr[y |x ]× Pr[x ]

Pr[y ]
=

2−n × Pr[x ]

2−n
= Pr[x ].



Combinatorial Characterization

The following results are due to Shannon.

Theorem

Suppose (P, C,K, E ,D) is a cryptosystem.

1. If (P, C,K, E ,D) provides perfect secrecy, then

|K| ≥ |C| ≥ |P|.
2. Suppose that |K| = |C| = |P|. Then (P, C,K, E ,D) provides

perfect secrecy if and only if every key is used with equal

probability 1/|K|, and for every x ∈ P and every y ∈ C, there

is a unique key K such that eK(x) = y . (That is, the

encryption matrix is a Latin square.)



A Latin Square

Here is a Latin square of order 5:

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4



Weakening the Perfect Secrecy Requirement

Some results have been proven about encryption schemes with

“short” keys that weaken the perfect secrecy requirement, e.g., in

Y. Dodis and A. Smith, “Entropic security and the encryption

of high entropy messages”, LNCS 3378 (2005), 556–577.

Theorem

Suppose P = {0, 1}n has a probability distribution such that

Pr[x ] ≤ 2−t for all x ∈ P. Let k = n − t + 2 log2(1/ε) + 2 for

some positive real number ε, where k ≤ n. Define K = {0, 1}k .

For x ∈ P and K ∈ K, define y = eK(x) = (r, x ⊕ rK), where

r ∈ {0, 1}n is chosen randomly and rK is computed in F2n . Let f

be any function with domain P. Then, given y , no adversary can

predict f (x) with advantage exceeding ε.

“Advantage” refers to the increase in the probability that the

adversary can compute f (x) after he is given y .



Authentication Codes

Definition

An authentication code is a four-tuple (S,A,K,H), where the

following conditions are satisfied:

1. S is a finite set of possible source states.

2. A is a finite set of possible authentication tags.

3. K, the keyspace, is a finite set of possible keys.

4. H is a finite set of possible authentication rules. For each

K ∈ K, there is an authentication rule hK ∈ H such that

hK : S → A.

The message set is defined to be M = S ×A.

A message m = (s, a) is valid under key K if hK(s) = a.



Simmons’ Model for Authentication

In an impersonation attack, the active adversary, Oscar,

introduces a message (s, a) into the channel, hoping it is valid:

Oscar
(s, a)

−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

In a substitution attack, Oscar observes a message (s, a), and

then replaces it with a new message (s ′, a′), where s ′ 6= s, hoping

(s ′, a′) is valid:

Alice
(s, a)
−−−−−−→ Oscar

(s ′, a′)
−−−−−−→ Bob



Deception Probabilities

• Assume there are known probability distributions on S and K.

• Oscar’s optimal strategy for impersonation yields a

impersonation probability denoted by Pd0 .

• Oscar optimal strategy for substitution yields a substitution

probability denoted by Pd1 .

• It is easy to see that Pd0 ≥ 1/|A| and Pd1 ≥ 1/|A|.
• Oscar can always do at least this well by making random

guess. (Optimal strategies may be better, however.)



An Example

0 1 2

K1 0 0 0

K2 1 1 1

K3 2 2 2

K4 0 1 2

K5 1 2 0

K6 2 0 1

K7 0 2 1

K8 1 0 2

K9 2 1 0

Suppose S = A = Z3 and K = {K1, . . . , K9}. We list all the

authentication rules in an authentication matrix, and we

suppose that every key is used with probability 1/9.



An Example (cont.)

• Every tag is valid under three of the nine authentication rules.

• This immediately implies that Pd0 = 3/9 = 1/3.

• Given any valid message (s, a), the number of possible keys

is reduced from nine to three.

• However, any other message (s ′, a′) (where s ′ 6= s), will be

valid under exactly one of these three keys.

• Therefore, Pd1 = 1/3.



Almost Strongly Universal Hashing

Let X and Y be finite sets. A function h : X → Y will be termed

a hash function. Let H be a set of hash functions from X to Y.

Let ε be a positive real number. H is ε-almost strongly-universal

(or ε-ASU) if the following two conditions are satisfied:

1. For every x1 ∈ X and for every y1 ∈ Y,

|{h ∈ H : h(x1) = y1}| =
|H|
|Y| .

2. For every x1, x2 ∈ X (x1 6= x2) and for every y1, y2 ∈ Y,

|{h ∈ H : h(x1) = y1, h(x2) = y2}| ≤
ε|H|
|Y| .

We denote H as an (N; n,m)-ε-ASU hash family, where

|H| = N, |X | = n and |Y| = m.



Almost Strongly Universal Hashing (cont.)

Properties 1. and 2. can be rephrased as follows:

1. For every x1 ∈ X and for every y1 ∈ Y,

Pr[h(x1) = y1] =
1

|Y| .

2. For every x1, x2 ∈ X (x1 6= x2) and for every y1, y2 ∈ Y,

Pr[h(x1) = y1 ∧ h(x2) = y2] ≤
ε

|Y| .

Observe that 1. and 2. imply the following:

3. For every x1, x2 ∈ X (x1 6= x2) and for every y1, y2 ∈ Y,

Pr[h(x2) = y2|h(x1) = y1] ≤ ε.

All probabilities are computed over a random choice of h ∈ H.



Universal Hashing and Authentication Codes

Theorem

If there exists an (N; n,m)-ε-ASU family |H| of hash functions

from X to Y, then there exists an authentication code for n

source states, having m authentication tags and N authentication

rules (and keys), such that Pd0 = 1/m and Pd1 ≤ ε.

Source states correspond to elements of X , authentication tags

correspond to elements of Y and authentication rules correspond

to the hash functions in H.



Strongly Universal Hashing

• In any (N; n,m)-ε-ASU hash family, ε ≥ 1/m.

• The hash family is strongly-universal (or SU) if ε = 1/m.

• The previous example was a (9; 3, 3)-SU hash family.

• Strongly universal hash families are equivalent to

combinatorial structures known as orthogonal arrays.

• An (N; n,m)-SU hash family is equivalent to an OAλ(n,m),

where λ = N/m2.

• A classical bound for orthogonal arrays states that

λ ≥ (n(m − 1) + 1)/m2.

• In the corresponding authentication code,

N ≥ n(m − 1) + 1 ≈ nm, so log2 |K| ' log2 |S|+ log2 |A|.



Wegman-Carter Universal Hashing

• The previous result says that the key is very long if we use a

strongly universal hash family for authentication.

• In fact, an identical bound holds for any authentication code

that attains the optimal (i.e., minimum) values of Pd0 and

Pd1 .

• Wegman and Carter gave a construction that showed that

the key length could be reduced dramatically if Pd1 is a bit

bigger than the optimal value.

• Here we describe a general framework to construct efficient

Wegman-Carter type authentication codes based on certain

types of universal hash families.



Universal Hashing

For a hash function h, and for x1, x2 ∈ X , x1 6= x2, define

δh(x1, x2) = 1 if h(x1) = h(x2), and δh(x1, x2) = 0 otherwise.

For a finite set H of hash functions, define

δH(x1, x2) =
∑
h∈H

δh(x1, x2).

Let ε be a positive real number. H is ε-almost universal (or

ε-AU) if

δH(x1, x2) ≤ ε|H|

for all x1, x2 ∈ X , x1 6= x2.

Equivalently, H is ε-AU if Pr[h(x1) = h(x2)] ≤ ε, where the

probability is computed over a random choice of h ∈ H.



Composition Construction

Theorem

Suppose H1 is an ε1-AU class of hash functions from X1 to Y1,
and suppose H2 is an ε2-ASU class of hash functions from Y1 to

Y2. Then there exists an ε-ASU class H of hash functions from

X1 to Y2, where ε = ε1 + ε2 and |H| = |H1| × |H2|.
Construction. For every h1 ∈ H1 and every h2 ∈ H2 define a

hash function h1 ◦ h2 as follows:

(h1 ◦ h2)(x) = h2(h1(x))

for all x ∈ X1.



Composition Construction (cont.)
Proof. Property 1. is easy to verify. We prove property 2. when

y1 = y2 (this is the case that yields the highest probability).

Let x1, x2 ∈ X1. We distinguish two cases:

case 1 h1(x1) = h1(x2) occurs with probability at most ε1.

Then

Pr[h(x1) = h(x2) = y1|h1(x1) = h1(x2)] =
1

|Y2|
.

case 2 h1(x1) 6= h1(x2) occurs with probability ≤ 1. Then

Pr[h(x1) = y1 ∧ h(x2) = y2|h1(x1) 6= h1(x2)] ≤
ε2
|Y2|

.

Combining the two cases and simplifying, we get

Pr[h(x1) = y1 ∧ h(x2) = y2] ≤ ε1 ×
1

|Y2|
+ 1×

ε2
|Y2|

=
ε1 + ε2
|Y2|

.



Examples

• Recall that, in an authentication code derived from a

strongly universal hash family (i.e., ε = 1/m, the best we can

hope for is

log2 |K| ≈ log2 |S|+ log2 |A|.

• It is possible to construct 2m -ASU hash families using the

composition construction that have drastically fewer keys.

• Using Reed-Solomon codes as ε-AU hash families,

Bierbrauer et al (1993) showed that

log2 |K| ≈ 3 log2 |A|+ 2(log2 log2 |S| − log2 log2 |A|).



Wyner’s Wiretap Channel

• The wire-tap channel was introduced in A.D. Wyner, “The

wire-tap channel”, The Bell System Technical Journal 54

(1975), 1355–1387.

• Alice uses a non-secret encoding method to encode a one

bit message b as x = x1 . . . xn to send to Bob.

• Suppose there is a reliable channel connecting Alice and Bob,

but Eve (the eavesdropper) sees a corrupted version z of x .

• For example, suppose that Eve’s wiretap channel is a binary

symmetric channel with error probability p < 1/2.

• That is, Pr[zi = xi] = 1− p and Pr[zi 6= xi] = p.

Alice
x1 . . . xn−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

↓
Eve sees z1 . . . zn



Wyner’s Wiretap Channel (cont.)

• To encode b = 0, Alice chooses a random n-tuple having

even weight, and to encode b = 1, Alice chooses a random

n-tuple having odd weight.

• Eve obtains the correct value of b if and only if there is an

even number of errors, which happens with probability

1

2
+

1

2
(1− 2p)n.

• This quantity approaches 1/2 exponentially quickly, which

means that determining b from z is basically a random guess

for Eve.



Privacy Amplification

• We describe a variation of the wire-tap channel from C.H.

Bennett, G. Brassard, C. Crépeau and U.M. Maurer,

“Generalized privacy amplification”, IEEE Transactions on

Information Theory 41 (1995), 1915–1923.

• Alice transmits a message x to Bob and Eve sees z = e(x),

where e : X → Z is Eve’s chosen eavesdropping function.

• Alice and Bob each compute K = f (x), where f is a public

function chosen randomly from an ε-AU class of hash

functions from X to Y, where |X | = N and |Y| = M.



Privacy Amplification (cont.)

Alice
x, f−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

↓
Eve sees z = e(x) and f

• Eve’s average uncertainty about K, given f and z , is

I(K|f, z) = h(K)− h(K|f, z)

• This quantity is also called mutual information in

information theory.

• It can be proven that

I(K|f, z) ≤ log2M − log2N + log2(|Z|+ εN).



Secret Sharing

• Various types of shared control schemes depend on a

cryptographic primitive called a (t, n)-threshold scheme.

• Let t and n be positive integers, where t ≤ n.

• There is a trusted authority, denoted TA, and n users,

denoted U1, . . . ,Un.

• The TA has a secret value K ∈ K, called a secret or a key,

where K is a specified finite set.



Secret Sharing

• The TA uses a share generation algorithm to split K into n

shares, denoted s1, . . . , sn.

• Each share si ∈ S, where S is a specified finite set.

• For every i , 1 ≤ i ≤ n, the share si is transmitted by the TA

to user U i using a secure channel.

• The following two properties should hold:

1. a reconstruction algorithm can be used to reconstruct the

secret, given any t of the n shares,

2. no t − 1 shares reveal any information as to the value of the

secret.



An (n, n)-Threshold Scheme

• Suppose K ∈ Zm is the secret.

• Let s1, . . . , sn−1 be chosen independently and uniformly at

random from Zm.

• Let

sn = K −
n−1∑
i=1

si mod m.

• s1, . . . , sn are shares of an (n, n)-threshold scheme:

1. K =
∑
si mod m, and

2. given all the shares except sj , K could take on any value,

depending on the value of the share sj .



Shamir Threshold Scheme

• In 1979, Shamir showed how to construct a (t, n)-threshold

scheme based on polynomial interpolation over Zp, where p

is prime.

• Let p ≥ n + 1 be a prime.

• Let K = S = Zp.

• In an initialization phase, x1, x2, . . . , xn are defined to be n

distinct non-zero elements of Zp.

• the TA gives xi to U i , for all i , 1 ≤ i ≤ n.

• The xi ’s are public information.



Share Generation

Protocol: Shamir scheme share generation

Input: A secret K ∈ Zp.

1. The TA chooses a1, . . . , at−1 independently and uniformly at

random from Zp.

2. The TA defines

a(x) = K +

t−1∑
j=1

aj x
j

(note that a(x) ∈ Zp[x ] is a random polynomial of degree at

most t − 1, such that the constant term is the secret, K).

3. For 1 ≤ i ≤ n, the TA constructs the share si = a(xi) and

gives it to U i using a secure channel.



Reconstruction

• Suppose users U i1 , . . . ,U it want to determine K.

• They know that sij = a(xij ), 1 ≤ j ≤ t.
• Since a(x) is a polynomial of degree at most t − 1, they can

determine a(x) by Lagrange interpolation; then K = a(0).

• The Lagrange interpolation formula is as follows:

a(x) =

t∑
j=1

sij

∏
1≤k≤t,k 6=j

x − xik
xij − xik

.

• set x = 0; then

K =

t∑
j=1

sij

∏
1≤k≤t,k 6=j

−xik
xij − xik

=

t∑
j=1

sij

∏
1≤k≤t,k 6=j

xik
xik − xij

.



Reconstruction (cont.)

Protocol: Shamir scheme secret reconstruction

Input: xi1 , . . . , xit , si1 , . . . , sit

1. For 1 ≤ j ≤ t, define

bj =
∏

1≤k≤t,k 6=j

xik
xik − xij

.

Note: the bj ’s do not depend on the shares, so they can be

precomputed (for a given subset of t users).

2. Compute

K =

t∑
j=1

bj sij .



Example

• Suppose that p = 17, t = 3, and n = 5; and the public

x-co-ordinates are xi = i , 1 ≤ i ≤ 5.

• Suppose that the participants in G = {U1,U3,U5} wish to

compute K, given their shares 8, 10 and 11, respectively.

• The following computations are performed:

b1 =
x3x5

(x3 − x1)(x5 − x1)
mod 17

= 3× 5× (−2)−1 × (−4)−1 mod 17

= 4,

b2 = 3, and

b3 = 11

K = 4× 8 + 3× 10 + 11× 11 mod 17 = 13.



Security of the Shamir Scheme

• Suppose users U i1 , . . . ,U it−1 want to determine K.

• They know that sij = a(xij ), 1 ≤ j ≤ t − 1.

• Let K0 be arbitrary.

• By Lagrange interpolation, there is a unique polynomial

a0(x) such that sij = a0(xij ) for 1 ≤ j ≤ t − 1 and such that

K0 = a0(0).

• Hence no value of K can be ruled out, given the shares held

by t − 1 users.



Security of the Shamir Scheme (cont.)

• With a bit more work, we can show that the Shamir scheme

satisfies a property analogous to perfect secrecy.

• We assume an arbitrary but fixed a priori probability

distribution on K.

• Given any set of τ ≤ t − 1 or fewer shares, say sij ,

j = 1, . . . , τ , and given any K0 ∈ K, it is possible to show

that

Pr[K0|si1 , . . . , siτ ] = Pr[K0].



Key Predistribution

• Key predistribution refers to a protocol where a trusted

authority (TA) distributes secret information to a set U of n

users in a network.

• Each user U ∈ U receives secret information from the TA via

a secure channel.

• For certain prespecified subsets P ⊆ U , each user in P can

compute a key kP from the secret information he or she

holds (no interaction is required).

• The key kP should be secure against certain prespecified

coalitions F where F ∩ P = ∅.



Key Predistribution
Protocol: Blom’s key distribution scheme

1. For 0 ≤ i , j ≤ k , the TA chooses random elements ai ,j ∈ Zp,

such that ai ,j = aj,i for all i , j (where k is the security

parameter). Then the TA forms the polynomial

f (x, y) =

k∑
i=0

k∑
j=0

ai ,j x
iy j mod p.

2. For each user U, the TA computes the polynomial

gU(x) = f (x, rU) mod p =

k∑
i=0

aU,i x
i

and transmits the coefficient vector (aU,0, . . . , aU,k) to U

over a secure channel. (Every user U has a different public

value rU ∈ Zp.)

3. For any two users U and V , the key KU,V = f (rU , rV ).



A Toy Example (k = 1)

• Suppose p = 17.

• Suppose there are three users: U, V and W , and their public

values are rU = 12, rV = 7 and rW = 1.

• Suppose the TA chooses the polynomial

f (x, y) = 8 + 7(x + y) + 2xy .

• the g polynomials are as follows:

gU(x) = 7 + 14x

gV (x) = 6 + 4x

gW (x) = 15 + 9x



A Toy Example (cont.)

• the three keys are

KU,V = 3

KU,W = 4

KV ,W = 10

• U would compute KU,V as

gU(rV ) = 7 + 14× 7 mod 17 = 3

• V would compute KU,V as

gV (rU) = 6 + 4× 12 mod 17 = 3



Security of the Blom Scheme

The Blom scheme satisfies the following security properties:

1. No set of k users, say W 1, . . . ,W k can determine any

information about a key for two other users, say KU,V .

2. Any set of k + 1 users, say W 1, . . . ,W k+1, can break the

scheme.



Security of the Blom Scheme (cont.)

• A set of users W 1, . . . ,W ` (collectively) know the

polynomials gW i
(x) = f (x, rW i

) mod p, 1 ≤ i ≤ `.
• We use a bivariate Lagrange interpolation formula to

prove 2.

• Suppose p is prime; y1, y2, . . . , ym+1 ∈ Zp are distinct; and

suppose that a1(x), a2(x), . . . , am+1(x) ∈ Zp[x ] are

polynomials of degree at most m.

• There is a unique polynomial A(x, y) ∈ Zp[x, y ] having

degree at most m (in x and y) such that A(x, yi) = ai(x),

1 ≤ i ≤ m + 1.

• The polynomial A(x, y) is defined as follows:

A(x, y) =

m+1∑
j=1

aj(x)
∏

1≤h≤m+1,h 6=j

y − yh
yj − yh

.



Example of Bivariate Interpolation

Suppose that p = 13, m = 2, y1 = 1, y2 = 2, y3 = 3

a1(x) = 1 + x + x2, a2(x) = 7 + 4x2 and a3(x) = 2 + 9x . Then:

(y − 2)(y − 3)

(1− 2)(1− 3)
= 7y2 + 4y + 3

(y − 1)(y − 3)

(2− 1)(2− 3)
= 12y2 + 4y + 10

(y − 1)(y − 2)

(3− 1)(3− 2)
= 7y2 + 5y + 1

A(x, y) = (1 + x + x2)(7y2 + 4y + 3) + (7 + 4x2)(12y2 + 4y + 10)

+(2 + 9x)(7y2 + 5y + 1) mod 13

= y2 + 3y + 10 + 5xy2 + 10xy + 12x + 3x2y2 + 7x2y + 4x2



Insecurity wrt k + 1 Colluders

• A set of bad users W 1, . . . ,W k+1 (collectively) know the

polynomials

gW i
(x) = f (x, rW i

) mod p,

1 ≤ i ≤ k + 1.

• Using the bivariate interpolation formula, they can compute

f (x, y).

• Then they can compute any key.



Security wrt k Colluders

• A set of bad users W 1, . . . ,W k (collectively) know the

polynomials

gW i
(x) = f (x, rW i

) mod p,

1 ≤ i ≤ k .

• We show that this information is consistent with any possible

value of the key.

• Let K be the real (unknown) key, and let K0 6= K.

• Define a polynomial f0(x, y) as follows:

f0(x, y) = f (x, y) + (K0 −K)
∏
1≤i≤k

(x − rW i
)(y − rW i

)

(rU − rW i
)(rV − rW i

)
.



Security wrt k Colluders (cont.)

• f0 is a symmetric polynomial (i.e., f0(x, y) = f0(y , x)).

• For 1 ≤ i ≤ k , it holds that

f0(x, rW i
) = f (x, rW i

) = gW i
(x).

• Further,

f0(rU , rV ) = f (rU , rV ) +K0 −K = K0.

• We have shown that, for any possible value of the key, say

K0, there is a symmetric polynomial f0 such that the key

KU,V = K0 and such that the secret information held by the

k bad users is unchanged.



Closing Remarks

• There is a rich body of work on unconditionally secure

cryptography.

• Unconditionally secure schemes tend to have simple

constructions and they are very efficient.

• Ultimately, any security proof in the unconditionally secure

setting is a proof about certain probability distributions.

• Some goals cannot be accommodated in the unconditionally

secure setting (e.g., public-key encryption schemes).

• Some goals can be achieved only by assuming some

limitations on the usage or functionality of the scheme

and/or the number of adversaries who are conspiring to

break the scheme.

• Nevertheless, unconditionally secure schemes are very useful

in a wide variety of contexts, including conventional

(computationally secure) cryptography.


