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Secret Sharing

Secret Sharing Scheme (Shamir 79)

Secret: s

Participants: P = {P1, ....,Pn}
Shares: {s1, ...., sn}
Access Structure: A ⊆ 2P

Correctness: Every authorized set B ∈ A can recover s.
Privacy: Any unauthorized set B /∈ A cannot learn anything about s.

(t,n) Threshold schemes

Participants: P = {P1, ....,Pn}
Access Structure: A = {A ⊆ P : |A| ≥ t}
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Graph Secret Sharing

Graph Secret Sharing Scheme

Participants: The participants are the vertices of a graph G =(V, E)

Access Structure: A set of participants is qualified if there is an edge
e ∈ E with endpoints in this set.
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Graph Secret Sharing
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Graph Threshold Secret Sharing

Clique: It defines threshold access structure of threshold 2.
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Efficiency

Efficiency of a secret sharing scheme

The efficiency of a secret sharing scheme is measured by:
The ratio between The maximum size of the shares given to any
participant and the size of the secret

Using Shannons entropy to measure the complexity of a secret sharing
scheme
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Shannons entropy

Shannons entropy

Shannons entropy measures the amount of uncertainty of a
distribution.

The requirements of secret sharing can be formulized by using entropy.

Shannons entropy

Let random variable X takes values x1, ..., xn with probabilities p1, ..., pn.
The Shannons entropy of X is defined by
H(X ) = −

∑n
i=1 p(xi )log(p(xi )) = −E (log(Pr [x ]))
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Definitions: complexity

Definitions

H(.) denotes the Shannon entropy

Complexity c(A) = inf
S

max
v∈V

H(εv )
H(εs)

ideal access structure: when c(A) = 1

f : 2V → R+ a normalized entropy function

f (x) = H(x)
H(εs)
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Graph Example:
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Graph Example:

Problem

Characterization of ideal schemes?

matroid theory elements

This problem isnt meant for this paper

Problem

Estimation/determination of the complexity for a given system
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Sporadic Example:

Theorem (Csirmaz, 09)

Let G = (V, E) be a graph of girth at least 6 and with no adjacent vertices
of degree at least 3. Then c(G) = 2− 1

d , where d is the maximal degree.

Theorem (Csirmaz, 07)

LetHdbe the d-dimensional hypercube. Then c(Hd) = d
2

Theorem (Csirmaz, 12)

Let T be a tree, with maximal core of size d. Then c(T) = 2− 1
d . A

subset of the vertices of a tree is a core if it induces a connected subgraph
and for each vertex in the subset one finds a neighbor outside the subset.
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main problem:

Problem

Does there exist large girth graphs with large complexity?

recursive family of d-regular graphs of girth 6 with complexity (d +
1)/2 (van Dijk and Blundo et al. 95)

d-dimensional hypercube (girth 4) with complexity d/2 (Csirmaz 07)

graphs of girth at least 6 with no adjacent vertices of degree at least
3 and complexity 2-1/d (Csirmaz, LP 09)

trees (girth 0) with complexity 2-1/d. (Csirmaz, Tardos 12)
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Lower bounds for the complexity:

Entropy method (Blundo, 95)

f : 2V → R+ a normalized entropy function, such that:

f is monotone and submodular; moreover f(Ø) = 0;

f(A) + 1 ≤ f(B) if A ⊂ B, A is independent and B is not (strict
monotonicity)

f(AC) + f(BC) ≥ f(C) + f(ABC) + 1 if C is empty or independent,
AC and BC are qualified (strict submodularity).

If for any such function f we have f(v) ≥ α for some vertex v of G,
then the complexity of G is at least α.
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upper bounds for the complexity :

Only solvable for small examples as huge LP problem.

Theorem

For any normalized entropy function f on Gd :

H(X ) = −
∑
v∈Gd

f (v)− f (Gd) ≥ d

2
|Gd | − 1

For every graph Gd ∈ Gd :

c(Gd) ≥ d + 1

2
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Constructions:

Theorem (Stinson,94)

Let G = (V, E) covered by ideal graphs such that every vertex is contained
in at most v and every edge is contained in at least e such graphs. Then
c(G)≤ v

e .

Corollary (Stinson,94)

c(G)≤ d+1
2 , d is the maximal degree (covering with stars).

Corollary ( Pyber, 97)

c(G)≤ c n
logn , d is the maximal degree (covering with complete bipartite

graphs) ).
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The graph family Gd :

Recursive construction

G2 = (A2,B2) is the cycle of even length

Gd = (Ad ,Bd) has been constructed, take several copies of Gd

Gd+1 : add an (arbitrary) 1-factor between B i
d and Ai+1

d for all i
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The graph family Gd :

Definition

Gd consists of all graphs Gd constructed this way

Claim

Every Gd is a d -regular bipartite graph with, and hence c(Gd) ≤ (d+1)
2 by

Stinsons bound

Theorem

For every graph Gd ∈ Gd :
c(Gd) = d+1

2
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Summary

Using the entropy method, it was shown that the general upper
bound (d+ 1)/2 on the complexity of graph based secret sharing
schemes, known as Stinsons bound, is tight for a large class of
inductively defined d-regular bipartite graphs.

This result refutes the widely believed conjecture that large girth
graphs have bounded complexity due to the exponentially
diminishing interaction between the shares assigned to the vertices.
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