
Chunky and Equal-Spaced Polynomial

Multiplication

Daniel S. Roche

Symbolic Computation Group
Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada
droche@cs.uwaterloo.ca

http://www.cs.uwaterloo.ca/~droche/

November 29, 2008

Abstract

Finding the product of two polynomials is an essential and basic prob-
lem in computer algebra. While most previous results have focused on
the worst-case complexity, we instead employ the technique of adaptive
analysis to give an improvement in many “easy” cases. We present two
adaptive measures and methods for polynomial multiplication, and also
show how to effectively combine them to gain both advantages. One use-
ful feature of these algorithms is that they essentially provide a gradient
between existing “sparse” and “dense” methods. We prove that these ap-
proaches provide significant improvements in many cases but in the worst
case are still comparable to the fastest existing algorithms.

1 Introduction

Computing the product of two polynomials is one of the most important prob-
lems in symbolic computation, and the operation is a core primitive function
of any computer algebra system. With the increasing size of polynomials being
used in cryptographic algorithms, and because multiplication is a subroutine
of so many other operations, there is a definite need for efficient polynomial
multiplication routines. We introduce new multiplication algorithms which use
the technique of adaptive analysis to gain improvements compared to existing
approaches both in theory and in practice.

1.1 Polynomial Multiplication

Existing algorithms for univariate polynomial multiplication fall into two cate-
gories, depending on the underlying representation chosen. The dense represen-
tation, more common for univariate polynomials, represents every coefficient of

1

http://www.cs.uwaterloo.ca/~droche/

the polynomial in an array, including zero coefficients. The sparse or “lacunary”
representation, by contrast, is a list of coefficient-exponent pairs, wherein only
the nonzero terms are represented.

The following two equations illustrate (respectively) the dense and lacunary
representations of a univariate polynomial f over an arbitrary ring R with degree
n and t nonzero terms. Here c0, c1, . . . cn ∈ R, a1, a2, . . . , at ∈ R \ {0}, and
0 ≤ e1 < e2 < · · · < et = n.

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n (1.1)
f(x) = a1x

e1 + a2x
e2 + · · ·+ atx

et (1.2)

We will sometimes need lower bounds on the size of these representations.
Assuming unit storage for ring elements, the size of the dense representation
is exactly Θ(n), and (accounting for the fact that exponents could be multi-
precision integers) the size of the sparse representation is bounded below by
Ω(t log t+ log n).

Here, and for the remainder, we employ the usual notion of a multiplication
time function M(n), which gives the number of ring operations required to
multiply two polynomials f, g ∈ R[x] with degrees both less than n (or integers
with at most n bits). We also define and will make frequent use of the related
function δ(n) = M(n)/n.

Algorithmic advances in dense polynomial multiplication have generally fol-
lowed results for long integer multiplication. The first improvement over the
O(n2) “school” algorithm was by Karatsuba and Ofman [1963], who give M(n) ∈
O(n1.59). Toom [1963] and Cook [1966] generalized this 2-way divide-and-
conquer approach to develop a k-way divide-and-conquer scheme. The most
commonly-used variant of this is the 3-way Toom-Cook algorithm, which re-
duces the asymptotic complexity of multiplication to O(n1.47), with a higher
overhead cost at each recursive step.

The use of the Fast Fourier Transform algorithm allowed Schönhage and
Strassen [1971] to reduce the complexity of long-integer multiplication toO(n log n loglog n);
Cantor and Kaltofen [1991] later showed how to apply this technique to poly-
nomials for the same asymptotic cost.

A lower bound of Ω(n log n) has been proven in the bounded coefficients
model over C [Bürgisser and Lotz, 2004], and work on reducing the complexity
towards this lower bound is ongoing [Fürer, 2007].

To multiply two dense polynomials with different degrees, we can use a well-
known blocking approach. Say we have f, g ∈ R[x] with deg f < n, deg g < m,
and n > m. Then by splitting f into dn/me polynomial blocks, each with degree
less than m, then we can compute fg using only O(n

mM(m)), or O(nδ(m)), ring
operations.

For sparse polynomial multiplication, consider two lacunary polynomials as
in (1.2) each with t nonzero terms. The school method requires O(t2) ring
operations, and this cannot be improved in the worst case, since the result
could have t2 terms. But because lacunary polynomials can have multi-precision

2

integers in the exponents, we must also count word operations, and this is where
most algorithmic improvements in sparse polynomial multiplication have come,
as well as in the space complexity.

The school method uses O(t3 log n) word operations and O(t2) space. Yan
[1998] uses the “geobuckets” data structure to reduce the number of word oper-
ations to O(t2 log t log n). Finally, using some old results from Johnson [1974],
the space complexity can be reduced to O(t + r), where r is the number of
nonzero terms in the product [Monagan and Pearce, 2007].

1.2 Adaptive Analysis

An adaptive algorithm is one whose performance depends not only on the size of
the input but also on some other difficulty measure of the particular instance. An
important requirement, however, is that the worst-case complexity still matches
the best-known algorithms, resulting in routines which are often faster but never
asymptotically slower than traditional algorithms.

This idea was originally applied to list sorting problems, and has been first
credited to Mehlhorn [1984]. Adaptive algorithms for sorting algorithms work
faster for “almost sorted” lists (according to various measures), and have sparked
both theoretical interest and practical gain (see Petersson and Moffat [1995] for
a good overview).

von zur Gathen and Gerhard [2003] point out some similarities between
dense polynomial multiplication and sorting, as for both problems the “school
method” has quadratic complexity, while “fast methods” reduce this to superlin-
ear complexity. This leads to the obvious question of whether adaptive methods
can be used for polynomial multiplication; this work is an initial attempt at an-
swering that question. It should be noted, however, that adaptive analysis is
not new to computer algebra, although is usually takes other names. A notable
is example is “early termination” strategies for polynomial and linear algebra
computation, such as in Kaltofen and Lee [2003].

1.3 Overview of Approach

We present and analyze two different strategies for adaptive polynomial mul-
tiplication. Both are based on sparsity in the input polynomials — that is,
zero terms — but in fact these methods will gain the greatest advantage for
polynomials which are neither sparse nor dense in the sense that neither stan-
dard representation will result in particularly efficient multiplication. These
new algorithms essentially provide a finer gradient between the two existing
approaches.

The algorithms we present will always proceed in three stages. First, the
polynomials are read in and converted to a different representation which effec-
tively captures the relevant measure of difficulty. Second, we multiply the two
polynomials in the alternate representation. Finally, the product is converted
back to the original representation.

3

Our aim is of course to make all steps as efficient as possible, but in particular
we require that the computation cost be dominated by the second step (where
the multiplication is actually performed), as this is the step whose cost will
depend on the difficulty of the particular instance. The cost of the conversion
steps must therefore be linear in the size of the input polynomials.

In Section 2, we give the first idea for adaptive multiplication, which is to
write a polynomial as a list of dense “chunks”. The second idea, presented in
Section 3, is to write a polynomial with “equal spacing” between coefficients
as a dense polynomial composed with a power of the indeterminate. Section 4
shows how to combine these two ideas to make one algorithm which effectively
captures both difficulty measures. Finally, a few conclusions and ideas for future
directions are discussed in Section 5.

Preliminary progress on some of these results was presented at the Milestones
in Computer Algebra (MICA) conference held in Trinidad and Tobago in May
2008 [Roche, 2008].

2 Chunky Polynomials

The idea here is simple, and provides a natural gradient between the standard
dense and sparse algorithms for univariate polynomial arithmetic. For f ∈ R[x]
of degree n, we represent f as a sparse polynomial with dense “chunks” as
coefficients:

f = f1x
e1 + f2x

e2 + · · ·+ ftx
et , (2.1)

with each fi ∈ R[x] and ei ∈ N. We require only that ei+1 > ei + deg fi for
i = 1, 2, . . . , t−1, and each fi has nonzero constant coefficient. We do not insist
that each fi be completely dense; in fact, deciding how much space to allow in
each chunk is the challenge of converting to this representation, as we shall see.

Recall the notation introduced above of δ(n) = M(n)/n. A unique feature
of our approach is that we will actually use this function to tune the algorithm.
That is, we assume a subroutine is given to evaluate δ(n) for any chosen value
n.

If n is a word-sized integer, then the computation of δ(n) must use a constant
number of word operations. If n is more than word-sized, then we are asking
about the cost of multiplying two dense polynomials that cannot fit in memory,
so the subroutine should return ∞ in such cases. Practically speaking, the δ(n)
evaluation will usually be an approximation of the actual value, but for what
follows we assume the computed value is always exactly correct.

Furthermore, we require that δ(n) is an increasing function which grows
more slowly than linear, meaning that for any a, b, d ∈ N with a < b,

δ(a+ d)− δ(a) ≥ δ(b+ d)− δ(b). (2.2)

These conditions are clearly satisfied for all the dense multiplication algorithms
discussed above. In practice, classical multiplication is performed for very small

4

polynomials, followed by a range of degrees for which divide-and-conquer al-
gorithms are best, and finally FFT-based methods are used for large polyno-
mials. The piecewise δ function resulting from such an implementation would
also satisfy the conditions stated above, which we propose are therefore quite
reasonable.

The conversion of a sparse or dense polynomial to the chunky representation
proceeds in two stages: first, we compute an “optimal chunk size” k, and then we
use this computed value as a parameter in the actual conversion algorithm. The
product of the two polynomials is then computed in the chunky representation,
and finally the result is converted back to the original representation. The steps
are presented in reverse order in the hope that the goals at each stage are more
clear.

2.1 Multiplication in the chunky representation

Multiplying polynomials in the chunky representation uses sparse multiplication
on the outer loop, treating the fi’s as coefficients, and dense multiplication to
find each product figj .

Write the arguments f, g ∈ R[x] as:

f = f1x
e
(f)
1 + f2x

e
(f)
2 + · · ·+ ftf

x
e
(f)
tf

g = g1x
e
(g)
1 + g2x

e
(g)
2 + · · ·+ gtg

x
e
(g)
tg

(2.3)

Assume similar conditions on each deg fi and deg gi as in (2.1), and without
loss of generality assume tf ≥ tg, that is, f has more chunks than g. To multiply
f and g, we need to compute each product figj and put the resulting chunks
into sorted order. It is likely that some of the chunk products figj will overlap,
and hence some coefficients will also need to be summed.

By using heaps of pointers as in Monagan and Pearce [2007], the chunks of
the result are computed in order, eliminating unnecessary additions and using
little extra space. A min-heap of size tg is filled with pairs (fi, gj), and ordered
by the corresponding sum of exponents e(f)

i + e
(g)
j . Each time we compute a

new chunk product figi, we check the new exponent against the degree of the
previous chunk, in order to determine whether to make a new chunk in the
product or add to the previous one. The details of this approach are given in
Algorithm 1.

After using this algortihm to multiply f and g, we can easily convert the
result back to the dense or sparse representation in linear time. In fact, if the
output is dense, we can preallocate space for the result and store the computed
product directly in the dense array, requiring only some extra space for the heap
H and a single intermediate product hnew.

5

Algorithm 1: Chunky Multiplication
Input: f, g as in (2.3)

Output: The product fg = h1x
e
(h)
1 + h2x

e
(h)
2 + · · ·+ hth

xe
(h)
th

1 H ← min-heap initialized with pairs (f1, gi) for i = 1, 2, . . . , tg, ordered
by corresponding exponent sums

2 k ← 0; c← −1
3 while H is not empty do
4 (fi, gj)← pair from top of H
5 enew ← e

(f)
i + e

(g)
j

6 hnew ← fi · gj using dense multiplication
7 if enew > c then
8 k ← k + 1
9 hk ← hnew, e

(h)
k ← enew

10 else
11 hk ← hk + hnewx

enew−e
(h)
k

12 c← e
(h)
k + deg hk

13 if i < tf then
14 Add (fi+1, gj) to H

15 th ← k

Theorem 2.1. Algorithm 1 correctly computes the product of f and g using

O

 ∑
deg fi≥deg gj

(deg fi) · δ(deg gj) +
∑

deg fi<deg gj

(deg gj) · δ(deg fi)

ring operations and O(tf tg log tg log(deg fg)) additional word operations.

Proof. Correctness is clear from the definitions. The bound on ring operations
comes from Step 6 using the fact that δ(n) = M(n)/n. The cost of additions on
Step 11 is linear and hence also within the stated bound.

The additional cost of word operations is incurred in removing from and
adding to the heap on Steps 3 and 14. Because these steps are executed no
more than tf tg times, the size of the heap is never more than tg, and each
exponent sum is bounded by the degree of the product, the stated bound is
correct.

Notice that the cost of word operations is always less than the cost would be
if we had multiplied f and g in the standard sparse representation. We therefore
focus only on minimizing the number of ring operations in the conversion steps
that follow.

6

2.2 Conversion given optimal chunk size

The general chunky conversion problem is, given f, g ∈ R[x], both either in the
sparse or dense representation, to determine chunky representations for f and
g which minimize the cost of Algorithm 1. Here we consider a simpler problem,
namely determining an optimal chunky representation for f given that every
chunk in g is of the same size k ∈ N.

The following corollary comes directly from Theorem 2.1 and will guide our
conversion algorithm on this step.

Corollary 2.2. Given f ∈ R[x] as in (2.1), the number of ring operations
required to multiply f by a single dense polynomial with degree less than k is

O

δ(k)
∑

deg fi≥k

deg fi + k
∑

deg fi<k

δ(deg fi)

For high-degree chunks (i.e. deg fi ≥ k), we see that there is no benefit

to including any extra “space” — that is, zero coefficients, since the cost is
proportional to the sum of the degrees of these chunks. In order to minimize
the cost of multiplication, then, we should not have any chunks with degree
greater than k (except possibly in the case that every coefficient of the chunk is
nonzero), and we should minimize

∑
δ(deg fi) for all chunks with size less than

k.
These observations form the basis of our approach in Algorithm 2 below.

For an input polynomial f ∈ R[x], each “gap” of consecutive zero coefficients
in f is examined, in order. We determine the optimal chunky conversion if the
polynomial ended there — that is, if the polynomial were truncated at that gap.
At each gap, this can be accomplished simply by finding the previous gap of
highest degree that should be included in the optimal chunky representation.
We already have the conversion for the polynomial up to that gap (from a
previous step), so we simply add on the last chunk and we are done. At the
end, after all gaps have been examined, we have the optimal conversion for the
entire polynomial.

Let ai, bi ∈ Z be the sizes of each consecutive “gap” of zero coefficients and
“block” of nonzero coefficients, in order. Each ai, bi will be nonzero except
possibly for a0 (if f has a nonzero constant coefficient), and

∑
(ai + bi) = n+ 1.

For example, the polynomial:

f(x) = 5x10 + 3x11 + 9x13 + 20x19 + 4x20 + 8x21

has a0 = 10, b0 = 2, a1 = 1, b1 = 1, a2 = 5, and b2 = 3. Also define di

to be the degree of the polynomial up to (not including) gap i, specifically
di = a0 + b0 + a1 + b1 + · · ·+ ai−1 + bi−1.

For the gap at index i, where i > 0, we store the optimal chunky conversion
of f mod xdi by a linked list of indices of all gaps in f that should also be gaps
between chunks in the optimal chunky representation. We also store the cost
(in ring operations) of multiplying f mod xdi (in this optimal representation)

7

by a single chunk of size k. Actually, the cost divided by k is saved; call these
values c1, c2,

When examining the gap at index j, in order to determine the previous
gap of highest degree to be included in the optimal chunky representation if
the polynomial ended at gap j, we need to find the index i that minimizes
ci + δ(dj − di) (indices i where dj − di > k need not be considered, as discussed
above). From the condition on δ(n) in (2.2), we know that, if ci1 + δ(dj−di1) <
ci2 +δ(dj−di2) and i1 < i2, then the inequality continues to hold as j increases.
That is, as soon as an earlier gap results in a smaller cost than a later one, that
earlier gap will continue to beat the later one.

This means that we can essentially precompute the values of mini ci +δ(dj−
di) by maintaining a stack of index-index pairs. A pair (i1, i2) of indices indicates
that ci1 + δ(dj − di1) is minimal as long as j ≤ i2. The second pair of indices
indicates the minimal value from gap i2 to the gap of the second index of the
second pair, and so forth up to the bottom of the stack and the last gap.

The details of this rather complicated algorithm are given in Algorithm 2.
For an informal justification of the correctness of this algorithm, consider a

single iteration through the main for loop. At this point, we have computed
all optimal costs c1, c2, . . . , cj−1, and the lists of gaps to achieve those costs
L1, L2, . . . , Lj−1. We also have computed the stack S, which indicate which of
the gaps up to index j − 2 is optimal and when.

The while loop on Step 3 removes all gaps from the stack which are no
longer relevant, either because their cost is now beaten by a previous gap (when
i2 < j), or because the size of the resulting chunk would be greater than k and
therefore unnecessary to consider.

Next, we examine values of cj−1+δ(di−dj−1) for various values of i, starting
with j and increasing until a lower cost for a previous gap is found. This
corresponds to the cost of having the (j−1)’th gap be the gap of highest degree
when representing f mod xdi . If the condition of Step 5 is true, then there is
no index at which the (j − 1)’th gap should be used, so we discard it.

Otherwise, we find indices p and i2 with p < i2 such that the (j − 1)’th gap
should be the highest-degree one in f mod xdp , but not in f mod xdi2 . This
means that, of the gaps up to j − 1, this gap is optimal up to index v, for some
r ≤ v < i2. The corresponding pair is then added to the stack and we continue.

From the definitions, dm+1 = deg f+1, and so the list of gaps Lm+1 returned
on the final step gives the optimal list of gaps to include in f mod xdeg f+1, which
is obviously just f itself.

Theorem 2.3. Algorithm 2 returns the list of chunks which minimizes the cost
when multiplying by a dense size-k chunk, and has linear cost in the size of the
input representation of f .

Proof. Correctness is clear from the discussions above.
For complexity, first notice that the maximal size of S, as well as the number

of saved values ai, bi, di, si, Li, is m, the number of “gaps” of consecutive zero
coefficients in f . Clearly m is less than or equal to the number of nonzero terms
in f (call this t), which in turn is bounded by the degree of f (call this n). We

8

Algorithm 2: Chunky Conversion Algorithm
Input: k ∈ N, f ∈ R[x], and integers ai, bi, di for i = 0, 1, 2, . . . ,m as

above
Output: A list L of the indices of gaps to include in the optimal chunky

representation of f when multiplying by a single chunk of size k
1 L1 ← 0; c1 ← δ(b0); S ← empty
2 for j = 2, 3, . . . ,m+ 1 do
3 while top pair (i1, i2) from S satisfies i2 < j or dj − di1 > k do
4 Remove (i1, i2) from S

5 if top pair (i1, i2) from S satisfies
ci1 + δ(dj − di1) ≤ cj−1 + δ(dj − dj−1) then

6 Lj ← Lj−1

7 else
8 Lj ← (j − 1), Lj−1

9 r ← j
10 while top pair (i1, i2) from S satisfies

ci1 + δ(di2 − di1) > cj−1 + δ(di2 − dj−1) do
11 r ← i2
12 Remove (i1, i2) from S

13 if S is empty then
14 S ← (j − 1,m)

15 else
16 (i1, i2)← top pair from S
17 v ← least index s.t. r ≤ v < i2 s.t.

cj−1 + δ(dv − dj−1) > ci1 + δ(dv − di1)
18 S ← (j, v), S

19 cj ← cii + δ(dj − di1) (where (i1, i2) is top pair from S)

20 return Lm+1

store the lists Li as singly-linked lists, and notice that creating each Li requires
the creation of at most one new node in the linked list (some linked list nodes
will be shared in different lists Li). Therefore the total extra storage is O(t),
which is linear in either the sparse or dense representation.

Next, we see that the number of pairs (i1, i2) from S examined at each
iteration through the main loop is at most one more than the number of pairs
that are removed from S in that iteration. Since at most one new pair is added
to S on each iteration, the total cost for operations on S is O(t).

Now consider the cost of Step 17 at each iteration. If the input is given in
the sparse representation, we just perform a binary search on the interval from r
to i2. Since i2−r < m, and this step is executed at most m times, the total cost
is O(m logm), which is O(t log t), linear in the size of the sparse representation.

When the input is given in the dense representation, we also use a binary

9

search for Step 17, but we start with a one-sided search, sometimes called a
“galloping” search. First determine whether v is closer to r or to i2 by testing
the median value b(i2 + r)/2c. If we determine that v is closer to r, then a
one-sided binary search from r starts by checking r + 1, then r + 2, then r + 4,
r + 8, etc., until an index v = r + 2i is found (not necessarily with v minimal)
that satisfies the stated condition. Then perform a normal binary search on the
interval from r + 2i−1 to r + 2i to find the smallest value of v, as required. We
do the opposite if v is closer to i2.

The cost of this kind of binary search is thus proportional to O(log min{v−
r, i2 − v}) at each iteration. Notice that the interval (r, i2) in the stack is then
effectively split at the index v, so intuitively whenever more work is required
through one iteration of this step, the size of intervals is reduced, so future
iterations should have lower cost.

To be more precise, we can see that the worst case for the algorithm is that
v lies exactly between r and i2 at each iteration, and i2−r is maximal. Ignoring
the fact that the index j increases at each iteration, and assuming the worst
case that k > deg f , a rough upper bound on the total cost would then be
O(

∑`
i=1 2i · (` − i + 1)), where ` = dlog2me. This sum can be rewritten as∑`

i=1

∑i
î=1 2î, which is easily seen to be less than 2`+2, or O(m), giving linear

cost in the size of the dense representation.
Finally, computing each value of δ(u) required has constant cost, and the

number of such computations is bounded by the number of operations performed
on S and the cost of Step 17, so this is also linear in the size of the input
representation.

2.3 Determining the optimal chunk size

All that remains is to compute the optimal chunk size k that will be used in
the conversion algorithm from the previous section. This is accomplished by
finding the value of k that minimizes the cost of multiplying two polynomials
f, g ∈ R[x], under the restriction that every chunk of f and of g has size k.

Again, we require more notation. For a polynomial f ∈ R[x] and integer k,
define cf (k) to be the least number of chunks in the chunky representation of
f , if each chunk has size at most k. So if f is written as in (2.1), cf (k) is the
smallest possible value of t under the restriction that each deg fi is less than k.

Therefore, from the cost of multiplication in Theorem 2.1, in this part we
want to compute the value of k that minimizes

cf (k) · cg(k) · k · δ(k) (2.4)

Say deg f = n. After O(n) preprocessing work (making pointers to the be-
ginning and end of each “gap”), cf (k) could be computed using O(n/k) word op-
erations, for any value k. This leads to one possible approach to computing the
value of k that minimizes (2.4) above: simply compute (2.4) for each possible k =
1, 2, . . . ,max{deg f, deg g}, and remember the minimum. Because

∑n
i=1 1/k ∈

O(log k), this gives a total cost of O((deg f) log(deg f) + (deg g) log(deg g)) ring

10

operations, which is obviously not linear in either the dense or sparse sizes of g
and f , and hence unacceptable for our purposes here.

Rather than explicitly computing each cf (k) and cg(k), we essentially main-
tain chunky representations of f and g with all chunks having size less than k,
starting with k = 1. As k increases, we count the number of chunks in each
representation, which we prove gives a very good approximation to the actual
values of cf (k) and cg(k), and has the advantage of linear complexity in the size
of either the sparse or dense representation.

To facilitate the “update” step, a minimum priority queue Q (whose specific
implementation depends on the input polynomial representation) is maintained
containing all gaps in the current chunky representations of f and g. For each
gap, the key value (on which the priority queue is ordered) is the size of the
chunk that would result from merging the two chunks adjacent to the gap into
a single chunk.

So for example, if we write f in the chunky representation as

f = (4 + 0x+ 5x2) · x12 + (7 + 6x+ 0x2 + 0x3 + 8x4) · x50,

then the single gap in f will have key value 3 + 35 + 5 = 43, which is the size
of the two adjacent chunks plus the size of the gap itself. If f is written as in
(2.1), then the ith gap has key value

1 + ei+1 + deg fi+1 − ei. (2.5)

Each gap in the priority queue also contains pointers to the two (or fewer)
neighboring gaps in the current chunky representation. Whenever a gap is re-
moved from the queue, this means that we are merging the two chunks adjacent
to that gap, so we will need to update (by increasing) the key values of any
neighboring gaps accordingly.

At each iteration through the main loop in the algorithm, the smallest key
value in the priority queue is examined, and k is increased to this value. Then
gaps with key value k are repeatedly removed from the queue until no more
remain. This means that each remaining gap, if removed, would result in a chunk
of size strictly greater than k. Finally, we compute δ(k) and an approximation
of (2.4) using the number of chunks in the current representations of f and g.

Since the purpose of this step is only to compute an “optimal chunk size”
k, and not actually to compute chunky representations of f and g, we do not
have to maintain chunky representations of the polynomials as the algorithm
proceeds, but merely counters for the number of chunks in each one.

The details of this computation are given in Algorithm 3. Because the initial
configuration of f and g, with k = 1, is exactly equal to the standard sparse
representation, the algorithm states that f and g be input in the sparse represen-
tation. This is really only for notational convenience; if the input polynomials
are in the dense representation, the value and exponent of all nonzero terms
in the sparse representation can obviously be computed in linear time, so the
algorithm works in either case.

11

Algorithm 3: Optimal Chunk Size Computation
Input: f, g ∈ R[x] written in the sparse representation as

f = a
(f)
1 xe

(f)
1 + a

(f)
2 xe

(f)
2 + · · ·+ a

(f)
tf
x

e
(f)
tf and

g = a
(g)
1 xe

(g)
1 + a

(g)
2 xe

(g)
2 + · · ·+ a

(g)
tg
x

e
(g)
tg

Output: k ∈ N that minimizes cf (k)cg(k)kδ(k)
1 Qf , Qg ← empty minimum priority queues
2 for i = 1, 2, . . . , tf − 1 do
3 Insert gap i from f into Qf with key e(f)

i+1 − e
(f)
i + 1

4 for i = 1, 2, . . . , tg − 1 do
5 Insert gap i from g into Qg with key e(g)

i+1 − e
(g)
i + 1

6 k, kmin ← 1; cmin ← tf tg
7 while Qf and Qg are not both empty do
8 k ← smallest key value from Qf or Qg

9 while Qf has an element with key value ≤ k do
10 Remove a k-valued gap from Qf and update neighbors

11 while Qg has an element with key value ≤ k do
12 Remove a k-valued gap from Qg and update neighbors

13 ccurrent ← (|Qf |+ 1) · (|Qg|+ 1) · kδ(k)
14 if ccurrent < cmin then
15 kmin ← k; cmin ← ccurrent

16 return kmin

All that remains is the specification of the data structures used to implement
the priority queues Qf and Qg. If the input polynomials are in the sparse
representation, we simply use standard binary heaps, which give logarithmic
cost for each removal and update. Because the exponents in this case are multi-
precision integers, we could in theory encounter chunk sizes that are larger
than the largest word-sized integer. But, as discussed previously, such a chunk
size would be impossible since a dense polynomial with that size cannot be
represented in memory. So our priority queues may discard any gaps whose
key value is larger than word-sized. This guarantees all keys in the queues are
word-size integers, which is necessary for the complexity analysis later.

If the input polynomials are dense, we need a structure which can perform
removals and updates in constant time. The advantage is that we can use
O(deg f + deg g) time and space. For Qf , we use an array with length deg f of
(possibly empty) linked lists, where the list at index i in the array contains all
elements in the queue with key i. (An array of this length is sufficient because
each key value in Qf is at least 2 and at most 1 + deg f .) We use the same
data structure for Qg, and this clearly gives constant time for each remove and
update operation.

To find the smallest key value in either queue at each iteration through

12

Step 8, we simply start at the beginning of the array and search forward in each
position until a non-empty list is found. Because each queue element update
only results in the key values increasing, we can start the search at each iteration
at the point where the previous search ended. Hence the total cost of Step 8 for
all iterations is O(deg f + deg g).

The following lemma proves that our approximations of cf (k) and cg(k) are
reasonably tight, and will be crucial in proving the correctness of the algorithm.

Lemma 2.4. At any iteration through Step 14 in Algorithm 3, |Qf | < 2cf (k)
and |Qg| < 2cg(k).

Proof. First consider only the polynomial f . There are two chunky representa-
tions with each chunk of degree less than k to consider: the optimal one with
cf (k) chunks and the implicitly computed one with |Qf | + 1 chunks. Denote
these by f̄ and f̂ , respectively, and write:

f̄ = f̄1x
ē1 + f̄2x

ē2 + · · ·+ f̄cf (k)x
ēcf (k)

f̂ = f̂1x
ê1 + f̂2x

ê2 + · · ·+ f̂|Qf |+1x
ê|Qf |+1

By way of contradiction, assume that the low-order terms in three chunks
of f̂ all lie within a single chunk of f̄ . That is, for some i, j ∈ N,

ēi ≤ êj < êj+1 < êj+2 ≤ ēi + deg f̄i.

Now consider the size of the chunk formed by eliminating the gap between f̂j

and f̂j+1. This value is exactly 1 + êj+1 + deg f̂j+1 − êj , from (2.5), and it is
the key value of the corresponding gap in Qf . Because êj+2 > êj+1 + deg f̂j+1,
this value is at most êj+2 − êj . Applying the inequalities above, we finally see
that the key value is less than deg f̄i, which by definition is at most k.

But this is a contradiction, since no key values less than or equal to k remain
in Qf after the while loop on Step 9 completes. Therefore every chunk in f̄

contains at most two low-order terms of distinct chunks in f̂ . Since each low-
order term of a chunk in f̂ is nonzero, it must be in some chunk of f̄ , and
hence the number of chunks in f̂ is at most twice the number in f̄ . It follows
immediately that |Qf | < 2cf (k). An identical argument for g gives the stated
result.

Now we are ready for the main result of this subsection.

Theorem 2.5. Algorithm 3 computes a chunk size k such that cf (k) · cg(k) · k ·
δ(k) is at most 4 times the minimum value, and has worst-case linear cost in
the size of the input representations.

Proof. If k is the value returned from the algorithm and k∗ is the value which
actually minimizes (2.4), the worst that can happen is that the algorithm
computes the actual value of cf (k) cg(k) k δ(k), but overestimates the value of
cf (k∗) cg(k∗) k∗ δ(k∗). This overestimation can only occur in cf (k∗) and cg(k∗),

13

and each of those by only a factor of 2 from Lemma 2.4. Hence the value of
(2.4) at k is at most 4 times more than the actual minimum.

If f and g have sf and sg nonzero terms, respectively, then the initial sizes
of Qf and Qg are sf − 1 and sg − 1. Since gaps are only removed from the
queues (after they are initialized), there are a total of O(sf +sg) insert, remove,
and update operations for the entire algorithm.

If the input is sparse and we use a binary heap, the cost of each queue
operation is O(log t), for a total cost of O(t log t), which is a lower bound on
the size of the sparse representation. If the input is in the dense representation,
then each queue operation has constant cost. Since sf + sg ∈ O(deg f + deg g),
the total cost is O(deg f + deg g), which is of course linear in the size of the
dense representation.

2.4 Chunky Multiplication Overview

Now we are ready to examine the whole process chunky polynomial conversion
and multiplication. First we need the following easy corollary of Theorem 2.3.

Corollary 2.6. Let f ∈ R[x], k ∈ N, and f̂ be a chunky representation of f
where all chunks have degree at least k, and f̄ be the representation returned
by Algorithm 2 on input k. The cost of multiplying f̄ by a single chunk of size
` < k is then less than the cost of multiplying f̂ by the same chunk.

Proof. Consider the result of Algorithm 2 on input `. We know from Theo-
rem 2.3 that this gives the optimal chunky representation for multiplication of
f with a size-` chunk. But the only difference in the algorithm on input ` and
input k is that more pairs are removed at each iteration on Step 3 on input `.

This means that every gap included in the representation f̄ is also included
in the optimal representation. We also know that all chunks in f̄ have degree less
than k, so that f̂ must have fewer gaps that are in the optimal representation
than f̄ . It follows that multiplication of a size-` chunk by f̄ is more efficient
than multiplication by f̂ .

To review, the entire process to multiply f, g ∈ R[x] using the chunky rep-
resentation is as follows:

1. Compute k from Algorithm 3

2. Compute chunky representations of f and g using Algorithm 2 with input
k

3. Multiply the two chunky representations using Algorithm 1

4. Convert the chunky result back to the original representation

Because each step is optimal (or within a constant bound of the optimal),
we expect this approach to yield the most efficient chunky multiplication of f
and g. In any case, we know it will be at least as efficient as the standard sparse
or dense algorithm.

14

Theorem 2.7. Computing the product of f, g ∈ R[x] never uses more ring
operations than either the standard sparse or dense polynomial multiplication
algorithms.

Proof. In Algorithm 3, the values of cf (k) · cg(k) · k · δ(k) for k = 1 and
k = min{deg f, deg g} correspond to the costs of the standard sparse and dense
algorithms, respectively. Furthermore, it is easy to see that these values are
never overestimated, meaning that the k returned from the algorithm which
minimizes this formula gives a cost which is not greater than the cost of either
standard algorithm.

Now call f̂ and ĝ the implicit representations from Algorithm 3, and f̄ and
ḡ the representations returned from Algorithm 2 on input k. We know that the
multiplication of f̂ by ĝ is more efficient than either standard algorithm from
above. Since every chunk in ĝ has size k, multiplying f̄ by ĝ will have an even
lower cost, from Theorem 2.3. Finally, since every chunk in f̄ has size at most
k, Corollary 2.6 tells us that the cost is further reduced by multiplying f̄ by ḡ.

The proof is complete from the fact that conversion back to either original
representation takes linear time in the size of the output.

3 Equal-Spaced Polynomials

Next we consider an adaptive representation which is in some sense orthogo-
nal to the chunky representation. This representation will be useful when the
coefficients of the polynomial are not grouped together into dense chunks, but
rather when they are spaced evenly apart.

Let f ∈ R[x] with degree n, and suppose the exponents of f are all divisible
by some integer k. Then we can write f = a0 +a1x

k +a2x
2k + · · · . So by letting

fD = a0 + a1x+ a2x
2 + · · · , we have f = fD ◦ xk (where the symbol ◦ indicates

functional composition).
The generalization of this idea is the equal-spaced representation, which

corresponds to writing f as

f = (fD ◦ xk) · xd + fS , (3.1)

with k, d ∈ N, fD ∈ R[x] dense with degree less than n/k − d, and fS ∈ R[x]
sparse with degree less than n. The polynomial fS is a “noise” polynomial which
contains the comparatively few terms in f whose exponents are not of the form
ik + d.

Unfortunately, converting a sparse polynomial to the best equal-spaced rep-
resentation seems to be difficult. To see why this is the case, consider the
much simpler problem of verifying that a sparse polynomial f can be written
as (fD ◦ xk) · xd. For each exponent ei of a nonzero term in f , this means con-
firming that ei ≡ d mod k. But the cost of computing each ei mod k is roughly
O(

∑
(log ei)δ(log k)), which is a factor of δ(log k) greater than the size of the

input. Since k could be as large as the exponents, we see that even verifying a

15

proposed k and d takes too much time for the conversion step. Surely computing
such a k and d would be even more costly!

Therefore, for this subsection, we will always assume that the input polyno-
mials are given in the dense representation. In Section 4, we will see how by
combining with the chunky representation, we effectively handle equal-spaced
sparse polynomials without ever having to convert a sparse polynomial directly
to the equal-spaced representation.

3.1 Multiplication in the equal-spaced representation

Let g ∈ R[x] with degree less than m and write g = (gD ◦ x`) · xe + gS as in
(3.1). To compute f · g, simply sum up the four pairwise products of terms. All
these except for the product (fD ◦ xk) · (gD ◦ x`) are performed using standard
sparse multiplication methods.

Notice that if k = `, then (fD ◦ xk) · (gD ◦ x`) is simply (fD · gD) ◦ xk, and
hence is easily computed using standard dense methods. However, if k and `
are relatively prime, then almost any term in the product can be nonzero.

This indicates that the gcd of k and ` is very significant. Write r and s for
the greatest common divisor and least common multiple of k and `, respectively.
To multiply (fD ◦ xk) by (gD ◦ x`), we perform a transformation similar to the
process of finding common denominators in the addition of fractions. First split
fD ◦ xk into s/k (or `/r) polynomials, each with degree less than n/s and right
composition factor xs, as follows:

fD ◦ xk = (f0 ◦ xs) + (f1 ◦ xs) · xk + (f2 ◦ xs) · x2k · · ·+ (fs/k−1 ◦ xs) · xs−k

Similarly split gD◦x` into s/` polynomials g0, g1, . . . , gs/`−1 with degrees less
than m/s and right composition factor xs. Then compute all pairwise products
fi · gj , and combine them appropriately to compute the total sum (which will
be equal-spaced with right composition factor xr).

Algorithm 4 gives the details of this method.
As with chunky multiplication, this final product is easily converted to the

standard dense representation in linear time. The following theorem gives the
complexity analysis for equal-spaced multiplication.

Theorem 3.1. Let f, g be as above such that n > m, and write tf , tg for the
number of nonzero terms in fS and gS, respectively. Then Algorithm 4 correctly
computes the product f · g using

O ((n/r) · δ(m/s) + ntg/k +mtf/`+ tf tg)

ring operations.

Proof. Correctness follows from the preceding discussion.
The polynomials fD and gD have at most n/k and m/` nonzero terms,

respectively. So the cost of computing the three products in Step 11 by using
standard sparse multiplication is O(ntg/k+mtf/`+tf tg) ring operations, giving
the last three terms in the complexity measure.

16

Algorithm 4: Equal Spaced Multiplication
Input: f = (fD ◦ xk) · xd + fS , g = (gD ◦ x`) · xe + gS ,
with fD = a0 + a1x+ a2x

2 + · · · , gD = b0 + b1x+ b2x
2 + · · ·

Output: The product f · g
1 r ← gcd(k, `), s← lcm(k, `)
2 for i = 0, 1, . . . , s/k − 1 do
3 fi ← ai + as+ix+ a2s+ix

2 + · · ·
4 for i = 0, 1, . . . , s/`− 1 do
5 gi ← bi + bs+ix+ b2s+ix

2 + · · ·
6 hD ← 0
7 for i = 0, 1, . . . , s/k − 1 do
8 for j = 0, 1, . . . , s/`− 1 do
9 Compute fi · gj by dense multiplication

10 hD ← hD + ((fi · gj) ◦ xs) · xik+j`

11 Compute (fD ◦ xk) · gS , (gD ◦ x`) · fS , and fS · gS by sparse multiplication
12 return hD · xe+d + (fD ◦ xk) · gS · xd + (gD ◦ x`) · fS · xe + fS · gS

The initialization in Steps 2–5 and the additions in Steps 10 and 12 all have
cost bounded by O(n/r), and hence do not dominate the complexity.

All that remains is the cost of computing each product fi ·gj by dense multi-
plication on Step 9. From the discussion above, deg fi < n/s and deg gj < m/s,
for each i and j. Since n > m, (n/s) > (m/s), and therefore this product can
be computed using O((n/s)δ(m/s)) ring operations. The number of iterations
through Step 9 is exactly (s/k)(s/`). But s/` = k/r, so the number of iterations
is just s/r. Hence the total cost for this step is O((n/r)δ(m/s)), which gives
the first term in the complexity measure.

It is worth noting that no additions of ring elements are actually performed
through each iteration of Step 10. The proof is as follows. If this were not true,
then we would have

i1k + j1` ≡ i2k + j2` mod s

for distinct pairs (i1, j1) and (i2, j2). Without loss of generality, assume i1 6= i2,
and write

(i1k + j1`)− (i2k + j2`) = qs

for some q ∈ Z. Rearranging gives

(i1 − i2)k = (j2 − j1)`+ qs.

Because `|s by definition, the left hand side is a multiple of both k and `, and
therefore by definition must be a multiple of s, their lcm. Since 0 ≤ i1, i2 < s/k,
|i1 − i2| < s/k, and therefore |(i1 − i2)k| < s. The only multiple of s with this
property is of course 0, and since k 6= 0 this means that i1 = i2, a contradiction.

17

The following theorem compares the cost of equal-spaced multiplication to
standard dense multiplication, and will be used to guide the approach to con-
version below.

Theorem 3.2. Let f, g,m, n, tf , tg be as before. Algorithm 4 does not use
asymptotically more ring operations than standard dense multiplication to com-
pute the product of f and g as long as tf ∈ O(δ(n)) and tg ∈ O(δ(m)).

Proof. Assuming again that n > m, the cost of standard dense multiplication
is O(nδ(m)) ring operations, which is the same as O(nδ(m) +mδ(n)).

Using the previous theorem, the number of ring operations used by Algo-
rithm 4 is

O ((n/r)δ(m/s) + nδ(m)/k +mδ(n)/`+ δ(n)δ(m)) .

Because all of k, `, r, s are at least 1, and since δ(n) < n, every term in this
complexity measure is bounded by nδ(m)+mδ(n). The stated result follows.

3.2 Converting to equal-spaced

The only question when converting a polynomial f to the equal-spaced repre-
sentation is how large we should allow tS (the number of nonzero terms in of
fS) to be. From Theorem 3.2 above, clearly we need tS ∈ δ(deg f), but we can
see from the proof of the theorem that having this bound be tight will often
give performance that is equal to the standard dense method (not worse, but
not better either).

Let t be the number of nonzero terms in f . Since the goal of any adaptive
method is to in fact be faster than the standard algorithms, we use the lower
bound of δ(n) ∈ Ω(log n) and t ≤ deg f + 1 and require that tS < log2 t.

As usual, let f ∈ R[x] with degree less than n and write

f = a1x
e1 + a2x

e2 + · · ·+ atx
et ,

with each ai ∈ R\{0}. The reader will recall that this corresponds to the sparse
representation of f , but keep in mind that we are assuming f is given in the
dense representation; f is written this way only for notational convenience.

The conversion problem is then to find the largest possible value of k such
that all but at most log2 t of the exponents ej can be written as ki+ d, for any
nonnegative integer i and a fixed integer d. Our approach to computing k and
d will be simply to check each possible value of k, in decreasing order. To make
this efficient, we need a bound on the size of k.

Lemma 3.3. Let n ∈ N and e1, . . . , et be distinct integers in the range [0, n].
If at least t− log2 t of the integers ei are congruent to the same value modulo k,
for some k ∈ N, then

k ≤ n

t− 2 log2 t− 1
.

18

Proof. Without loss of generality, order the ei’s so that 0 ≤ e1 < e2 < · · · <
et ≤ n. Now consider the telescoping sum (e2−e1)+(e3−e2)+ · · ·+(et−et−1).
Every term in the sum is at least 1, and the total is et− e1, which is at most n.

Let S ⊆ {e1, . . . , et} be the set of at most log2 t integers not congruent to the
others modulo k. Then for any ei, ej /∈ S, ei ≡ ej mod k. Therefore k|(ej − ei).
If j > i, this means that ej − ei ≥ k.

Returning to the telescoping sum above, each ej ∈ S is in at most two of
the sum terms ei − ei−1. So all but at most 2 log2 t of the terms are at least k.
Since there are exactly t− 1 terms, and the total sum is at most n, we conclude
that (t− 2 log2 t− 1) · k ≤ n. The stated result follows.

We now employ this lemma to develop an algorithm to determine the best
values of k and d, given a dense polynomial f . Starting from the largest possible
value from the bound, for each candidate value k, we compute each ei mod k,
and find the majority element — that is, a common modular image of more
than half of the exponents.

To compute the majority element, we use a now well-known approach first
credited to Boyer and Moore [1981] and Fischer and Salzberg [1982]. Intuitively,
pairs of different elements are repeatedly removed until only one element re-
mains. If there is a majority element, this remaining element is it; only one
extra pass through the elements is required to check whether this is the case.
Finding the majority element does not actually require removing items from the
list, but just making a single pass through the list and maintaining a current
candidate majority and a count.

Algorithm 5: Equal Spaced Conversion
Input: Exponents e1, e2, . . . , et ∈ N and integer n such that

0 ≤ e1 < e2 < · · · < et = n
Output: k, d ∈ N and S ⊆ {e1, . . . , et} such that ei ≡ d mod k for all

exponents ei not in S, and |S| ≤ log2 t.
1 if t < 32 then k ← n
2 else k ← bn/(t− 1− 2 log2 t)c
3 while k ≥ 2 do
4 d← e1 mod k; j ← 1
5 for i = 2, 3, . . . , t do
6 if ei ≡ d mod k then j ← j + 1
7 else if j > 0 then j ← j − 1
8 else d← ei mod k; j ← 1

9 S ← {ei : ei 6≡ d mod k}
10 if |S| ≤ log2 t then return k, d, S
11 k ← k − 1

12 return 1, 0, ∅

Once we have the values of k, d, S from the algorithm, it is easy to construct
fD and fS such that f = (fD ◦ xk) · xd + fS by making one more pass through

19

the polynomial. After performing separate conversions for two polynomials
f, g ∈ R[x], they can of course be multiplied using Algorithm 4.

The following theorem proves correctness when t > 4. If t ≤ 4, we can always
trivially set k = et − e1 and d = e1 mod k to satisfy the stated conditions.

Theorem 3.4. Given integers e1, . . . , et and n, with t > 4, Algorithm 5 com-
putes the largest integer k such that at least t − log2 t of the integers ei are
congruent modulo k, and uses O(n) word operations.

Proof. In a single iteration through the while loop, we compute the majority
element of the set {ei mod k : i = 1, 2, . . . , t}, if there is one. For the details
of the correctness of this part, see Boyer and Moore [1981]. Because t > 4,
log2 t < t/2. Therefore any element which occurs at least t − log2 t times in a
t-element set is a majority element, which proves that any k returned by the
algorithm is such that at least t− log2 t of the integers ei are congruent modulo
k.

From Lemma 3.3, we know that the initial value of k on Step 1 or 2 is greater
than the optimal k value. Since we start at this value and decrement to 1, the
largest k satisfying the stated conditions is returned.

For the complexity, first consider the cost of a single iteration through the
main while loop. Since each integer ei is word-sized, computing each ei mod
k has constant cost. Computing the set S on Step 9 involves checking each
ei mod k once more, so in total each iteration through the loop requires iterating
through the values of ei mod k twice. Hence the total cost for each loop iteration
is O(t) word operations.

If t < 32, then t ∈ O(1), so the O(n) iterations through the loop result in
O(n) total cost.

Otherwise, we start with k = bn/(t− 1− 2 log2 t)c and decrement. Because
t ≥ 32, t/2 > 1+2 log2 t. Therefore (t−1−2 log2 t) > t/2, so the initial value of k
is less than 2n/t. This gives an upper bound on the number of iterations through
the while loop, and so the total cost is O(n) word operations, as required.

Algorithm 5 can be implemented using only a constant amount of space (not
counting the space for the returned set S). However, this is misleading as the
exponents e1, . . . , et must first be extracted from the dense polynomial f and
stored in a list before calling this algorithm. So the total conversion to the
equal-spaced representation uses O(t) extra space, not including the space for
the output polynomials fD and fS . This is at most linear in the size of the
output.

4 Chunks with Equal Spacing

The next question is whether the ideas of chunky and equal-spaced polynomial
multiplication can be effectively combined into a single algorithm. To accom-
plish this, an obvious approach would be to first perform chunky polynomial
conversion, and then equal-spaced conversion on each of the dense chunks. This

20

approach should work very well in practice, but unfortunately it may be less ef-
ficient than just performing equal-spaced multiplication in some extreme cases,
and hence is not acceptable.

We will in fact perform chunky conversion first, but instead of performing
equal-spaced conversion on each dense chunk separately, we run Algorithm 5
in parallel in order to determine a single spacing parameter k that will be the
same for all chunks of each polynomial.

Let f = f1x
e1 + f2x

e2 + · · ·+ ftx
et in the optimal chunky representation for

multiplication by another polynomial g. We first compute the smallest bound
on k for any of the chunks fi, using Lemma 3.3. Starting with this value, we
execute the while loop of Algorithm 5 for each polynomial fi, stopping at the
largest value of k such that the total size of all sets S on Step 9 for all chunks
fi is at most log2 tf , where tf is the total number of nonzero terms in f .

The polynomial f can then be rewritten (changing the values of fi and ei

from above) as

f = (f1 ◦ xk) · xe1 + (f2 ◦ xk) · xe2 + · · ·+ (ft ◦ xk) · xet + fS ,

where fS is in the sparse representation and has O(log tf) nonzero terms.
Let k∗ be the value returned from Algorithm 5 on input of the entire poly-

nomial f . Using k∗ instead of k, f could still be written as above with fS

having at most log2 tf terms. Therefore the value of k computed in this way is
always greater than or equal to k∗ if the initial bounds are correct. This will
be the case except when every chunk fi has few nonzero terms (and therefore
t is close to tf). However, this reduces to the problem of converting a sparse
polynomial to the equal-spaced representation, which seems to be intractable,
as discussed above. So our cost analysis will be predicated on the assumption
that the computed value of k is never smaller than k∗.

We perform the same equal-spaced conversion for g, and then use Algo-
rithm 1 to compute the product f · g, with the difference that each product
fi · gj is computed by Algorithm 4 rather than standard dense multiplication.
As with equal-spaced multiplication, the products involving fS or gS are per-
formed using standard sparse multiplication.

Theorem 4.1. The algorithm described above to multiply polynomials with
equal-spaced chunks never uses more ring operations than either chunky or equal-
spaced multiplication, provided that the computed “spacing parameters” k and `
are not smaller than the values returned from Algorithm 5.

Proof. Let n,m be the degrees of f, g respectively and write tf , tg for the number
of nonzero terms in f, g respectively. The sparse multiplications involving fS

and gS use a total of tg log tf + tf log tg + (log tf)(log tg) ring operations. Both
the chunky or equal-spaced multiplication algorithms always require O(tgδ(tf)+
tfδ(tg)) ring operations in the best case, and since δ(n) ∈ Ω(log n), the cost of
these sparse multiplications is never more than the cost of the standard chunky
or equal-spaced method.

The remaining computation is that to compute each product fi · gj using
equal-spaced multiplication. Write k and ` for the powers of x in the right

21

composition factors of f and g respectively. Theorem 3.1 tells us that the cost
of computing each of these products by equal-spaced multiplication is never
more than computing them by standard dense multiplication, since k and ` are
both at least 1. Therefore the combined approach is never more costly than just
performing chunky multiplication.

To compare with the cost of equal-spaced multiplication, assume that k and
` are the actual values returned by Algorithm 5 on input f and g. This is the
worst case, since we have assumed that k and ` are never smaller than the values
from Algorithm 5.

Now consider the cost of multiplication by a single equal-spaced chunk of
g. This is the same as assuming g consists of only one equal-spaced chunk.
Write di = deg fi for each equal-spaced chunk of f , and r, s for the gcd and
lcm of k and `, respectively. If m > n, then of course m is larger than each
di, so multiplication using the combined method will use O((m/r)

∑
δ(di/s))

ring operations, compared to O((m/r)δ(n/s)) for the standard equal-spaced
algorithm, by Theorem 3.1.

Now recall the cost equation (2.4) used for Algorithm 3:

cf (b) · cg(b) · b · δ(b),

where b is the size of all dense chunks in f and g. By definition, cf (n) = 1,
and cg(n) ≤ m/n, so we know that cf (n) cg(n)n δ(n) ≤ mδ(n). Because the
chunk sizes di were originally chosen by Algorithm 3, we must therefore have
m

∑t
i=1 δ(di) ≤ mδ(n). The restriction that the δ function grows more slowly

than linear then implies that (m/r)
∑
δ(di/s) ∈ O((m/r)δ(n/s)), and so the

standard equal-spaced algorithm is never more efficient in this case.
When m ≤ n, the number of ring operations to compute the product using

the combined method, again by Theorem 3.1, is

O

δ(m/s) ∑
di≥m

(di/r) + (m/r)
∑

di<m

δ(di/s)

 , (4.1)

compared with O((n/r)δ(m/s)) for the standard equal-spaced algorithm. Be-
cause we always have

∑t
i=1 di ≤ n, the first term of (4.1) is O((n/r)δ(m/s)).

Using again the inequality m
∑t

i=1 δ(di) ≤ mδ(n), along with the fact that
mδ(n) ∈ O(nδ(m)) because m ≤ n, we see that the second term of (4.1) is also
O((n/r)δ(m/s)). Therefore the cost of the combined method is never more than
the cost of equal-spaced multiplication alone.

5 Conclusions

We have seen two methods for adaptive polynomial multiplication where we can
now achieve optimal representations (under some set of restrictions) in linear
time in the size of the input. We have also seen how to combine these two ideas
into one algorithm which inherently captures both measures of difficulty, and

22

should in fact have significantly better performance than either the chunky or
equal-spaced algorithm in many cases.

However, converting a sparse polynomial to the equal-spaced representation
in linear time is still out of reach, and this problem is the source of the restriction
of Theorem 4.1. Some justification for the impossibility of such a conversion
algorithm was given, due to the fact that the exponents could be long integers.
However, we still do not have an algorithm for sparse polynomial to equal-spaced
conversion under the (probably reasonable) restriction that all exponents be
word-sized integers. A linear-time algorithm for this problem would be useful
and would make our adaptive approach more complete, though slightly more
restricted in scope.

Some early results from a trial implementation indicate that the algorithms
we present are quite good at computing efficient adaptive representations, even
in the presence of “noise” in the input polynomials, and although the conversion
does sometimes have a measurable cost, it is almost always significantly less
than the cost of the actual multiplication. This gives some evidence that our
theoretical results hold in practice, but much more work on a more efficient
implementation and much more testing is needed to investigate this claim. There
are countless small “tricks” and tweaks to the algorithms that are likely to
cause significant improvements in practice (without affecting the asymptotic
complexities).

Another area for further development would be multivariate polynomials.
The ideas we present here could be trivially extended to multivariate polyno-
mials given a term ordering, but a “smarter” adaptive algorithm should be able
to choose the best such ordering by investigating the structure of the input.

Finally, even though we have proven that our algorithms produce optimal
adaptive representations, it is always under some restriction of the way that
choice is made (for example, requiring to choose an “optimal chunk size” k
first, and then compute optimal conversions given k). These results would be
significantly strengthened by proving lower bounds over all available adaptive
representations of a certain type, but such results have thus far been elusive.

Acknowledgement

The author would like to thank his supervisors, Mark Giesbrecht and Arne
Storjohann, for their continuing support and guidance.

References

R. Boyer and J. Moore. A fast majority vote algorithm. Technical Report
1981-32, Institute for Computing Science, University of Texas, Austin, 1981.

Peter Bürgisser and Martin Lotz. Lower bounds on the bounded coefficient
complexity of bilinear maps. J. ACM, 51(3):464–482 (electronic), 2004. ISSN
0004-5411.

23

David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Inform., 28(7):693–701, 1991. ISSN 0001-5903.

Stephen A. Cook. On the Mininum Computation Time of Functions. PhD
thesis, Harvard University, 1966.

M. J. Fischer and S. L. Salzberg. Finding a majority among n votes: Solution
to problem 81-5. J. Algorithms, 3(4):376–379, 1982.

Martin Fürer. Faster integer multiplication. In STOC ’07: Proceedings of
the thirty-ninth annual ACM symposium on Theory of computing, pages 57–
66, New York, NY, USA, 2007. ACM Press. ISBN 978-1-59593-631-8. doi:
http://doi.acm.org/10.1145/1250790.1250800.

Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cam-
bridge University Press, Cambridge, second edition, 2003. ISBN 0-521-82646-
2.

Stephen C. Johnson. Sparse polynomial arithmetic. SIGSAM Bull., 8(3):63–71,
1974. ISSN 0163-5824. doi: http://doi.acm.org/10.1145/1086837.1086847.

Erich Kaltofen and Wen-shin Lee. Early termination in sparse interpola-
tion algorithms. J. Symbolic Comput., 36(3-4):365–400, 2003. ISSN 0747-
7171. International Symposium on Symbolic and Algebraic Computation
(ISSAC’2002) (Lille).

A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on au-
tomata. Dokl. Akad. Nauk SSSR, 7:595–596, 1963.

Kurt Mehlhorn. Data structures and algorithms. 1. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, Berlin, 1984. ISBN 3-540-
13302-X. Sorting and searching.

Michael B. Monagan and Roman Pearce. Polynomial division using dynamic ar-
rays, heaps, and packed exponent vectors. Lecture Notes in Computer Science,
4770:295–315, 2007. Computer Algebra in Scientific Computing (CASC’07).

Ola Petersson and Alistair Moffat. A framework for adaptive sorting. Discrete
Appl. Math., 59(2):153–179, 1995. ISSN 0166-218X.

Daniel S. Roche. Adaptive polynomial multiplication. In Proc. Milestones in
Computer Algebra (MICA ’08), pages 65–72, 2008.

A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Com-
puting (Arch. Elektron. Rechnen), 7:281–292, 1971.

A. L. Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. Dokl. Adad. Nauk. SSSR, 150(3):496–498, 1963.

Thomas Yan. The geobucket data structure for polynomials. J. Symbolic Com-
put., 25(3):285–293, 1998. ISSN 0747-7171.

24

	Introduction
	Polynomial Multiplication
	Adaptive Analysis
	Overview of Approach

	Chunky Polynomials
	Multiplication in the chunky representation
	Conversion given optimal chunk size
	Determining the optimal chunk size
	Chunky Multiplication Overview

	Equal-Spaced Polynomials
	Multiplication in the equal-spaced representation
	Converting to equal-spaced

	Chunks with Equal Spacing
	Conclusions

