
On Reasoning about Structural Equality in
XML: A Description Logic Approach

David Toman and Grant Weddell

School of Computer Science, University of Waterloo, Canada
{david,gweddell}@uwaterloo.ca

Abstract. We define a boolean complete description logic dialect called
DLFDreg that can be used to reason about structural equality in
semistructured ordered data in the presence of document type defini-
tions. This application depends on the novel ability of DLFDreg to ex-
press functional dependencies over sets of possibly infinite feature paths
defined by regular languages. We also present a decision procedure for
the associated logical implication problem. The procedure underlies a
mapping of such problems to satisfiability problems of Datalog∨,¬

nS and
in turn to the Ackermann case of the decision problem.

1 Introduction

Equality is a fundamental notion in any interaction with data, and the need
to reason about equality during query optimization and evaluation is unavoid-
able in any practical data model and query language. Although the problem of
reasoning about equality has been studied extensively for relational and object
oriented data models, this is not the case for the more recent semistructured
ordered models and query languages such as XML and XQuery. With XML in
particular, there are three notions of equality that have surfaced in the litera-
ture. Label equality, based on equality of strings denoting element tags, and node
equality, based on node identity, are two of these notions that have simple and
efficient implementations. Structural equality between arbitrary ordered forests
representing XML documents is a third and much more costly variant of equal-
ity. Structural equality, however, is the basis for comparing XML values in the
XQuery language [5]. In particular, structural equality is heavily used by where
clauses in FLWR expressions, by duplicate elimination operators, etc.

Example 1 Consider the following XQuery expression that constructs the
names of employees who have received mail:

for x in doc(personnel)//emp,
y in doc(shipping)//received/emp

where x=y
return x/name

The detection of matching employee subdocuments in the where clause requires,
according to the XQuery specification, a potentially expensive structural equality

D. Calvanese et al. (Eds.): ICDT 2003, LNCS 2572, pp. 96–110, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.245 841.846] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (°„`)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

On Reasoning about Structural Equality in XML 97

comparison [5]. However, knowing that employee documents are structurally
equal if they have the same employee number (a fixed, and presumably small
part of the employee subdocument) would enable this test to be replaced by an
efficient test for node equality on respective employee number subdocuments.

This optimization depends on our ability to specify and reason about equality
and, in particular, about an extended notion of functional dependencies that hold
in XML documents. Note that detection of duplicate employee subdocuments
and several other XQuery operations based on structural equality can similarly
benefit from these additional reasoning capabilities.

In this paper, we propose a new approach to reasoning about structural
equality in XML documents. The proposed approach is indirect; we begin by
defining a boolean complete dialect of a description logic, DLFDreg. This dialect
has the crucial ability to reason about implied structural equality using regular
path functional dependencies. The contributions of this paper are as follows:

– We introduce the notions of regular restrictions and of regular path func-
tional dependencies, based on regular sets of feature path descriptions, in
the context of a boolean complete description logic;

– We provide a sound and complete reasoning procedure for DLFDreg, includ-
ing tight complexity bounds for the associated implication problem; and

– We show a link between reasoning in this logic and reasoning about structural
equality in XML documents.

The ability to formulate implication problems using path functional dependen-
cies has a number of important applications in query optimization. In particu-
lar, the correctness of a number of query rewrite rules that relate to duplicate
elimination [23], to sort operator elimination [31], and to a variety of other op-
timizations [29,33] can be usefully abstracted as logical implication problems.
Similar results can be obtained in the XML/XQuery setting using the regular
path functional dependencies proposed in this paper.

1.1 Related Work and Outline

There is a growing body of work on integrity constraints that have been pro-
posed in the literature to restrict the structure of XML documents. In particular,
constraints that resemble a form of keys and functional constraints have been
considered in [2,3,8,17]. However, there still remains the problem of reasoning
about arbitrary structural equality between (sub)documents with unstructured
components.

As stated above, this issue of structural equality is the focus of this paper
and is considered in the context of the description logic DLFDreg. Of particular
significance is that our results compliment earlier work by Calvanese et al. [9] that
was first to propose the use of a DL to reason about document type definitions
(or DTDs). In particular, they considered the problem of comparing DTDs to
determine various inclusion relationships.

98 D. Toman and G. Weddell

In [23,24] we considered a very simple DL dialect that included an “fd”
concept constructor for capturing path functional dependencies [7,33]. The im-
plication problem for this dialect was complete for DEXPTIME despite the fact
that it did not allow defined concepts in terminologies. This result was obtained
by comparing the problem to the recognition problem for DatalognS .

The remainder of the paper is organized as follows. Section 2 defines the
syntax and semantics for DLFR, and introduces Datalog∨,¬

nS . Section 3 studies
the complexity associated with reasoning in DLFDreg; Subsection 3.1 shows
DEXPTIME hardness for a fragment of DLFDreg, then Subsections 3.2 and 3.3
present DEXPTIME decision procedure for DLFDreg. Section 4 outlines how
DLFDreg can be used to reason about structural equality in XML. We conclude
with a summary and a list of conjectures and open questions in Section 5.

2 Definitions

Apart from concepts, which are descriptions of sets, description logics that de-
rive from ALC [30], such as SHIQ [20] and DLR [11], start with descriptions of
relations as basic building blocks. Binary relations are a particular focus and are
called roles. The description logic DLFDreg introduced in this section takes an
alternative approach that starts by augmenting concepts with the notion of at-
tributes (or features). Attributes correspond to unary functions on an underlying
object domain. This approach has several advantages. First, the decidability and
complexity of logical implication for DLFDreg is closely related to reasoning in
Datalog∨,¬

nS , a logic programming language of monadic predicates and functions
[12,13]. Second, the use of Datalog∨,¬

nS provides a uniform framework in which
we can study various extensions of DLFDreg, how roles can be simulated by at-
tributes for example. And third, the connection to logic programming provides
a rich set of efficient implementation techniques [14,16].

The syntax and semantics of DLF reg and DLFDreg is given by the following.

Definition 2 (Regular Path Expression Sets) Let F be a set of attributes.
A regular path expression is defined by the grammar

L ::= f | Id | L1.L2 | L1, L2 | (L) ∗ ,

where f ∈ F and where Id denotes the empty string. A string generated by a
regular path expression L is called a path expression, and is assumed to conform
to the grammar “Pf ::= f.Pf | Id”. The set of path expressions generated by L is
denoted L(L).

Definition 3 (Syntax and Semantics of DLF reg and DLFDreg) Let C be
a set of primitive concepts disjoint from F . The derived concept descriptions
for DLFDreg are defined by the grammar in Figure 3. A concept formed by an
application of the final production in the grammar is equality generating. The
derived concept descriptions for DLF reg are those in DLFDreg that are not
equality generating.

On Reasoning about Structural Equality in XML 99

Syntax Semantics: Defn of “(·)I”

D ::= C (C)I ⊂ ∆
| D1 � D2 (D1)I ∩ (D2)I

| ¬D ∆ \ (D)I

| ∀L.D {x ∈ ∆ : (Pf)I(x) ∈ (D)I for all Pf ∈ L(L)}
| ∃L.D {x ∈ ∆ : (Pf)I(x) ∈ (D)I for some Pf ∈ L(L)}

E ::= D

| D : L → L′
{

x ∈ ∆ : ∀y ∈ (D)I .
(∧

Pf∈L(L)(Pf)I(x) = (Pf)I(y)
)

⇒
(∧

Pf∈L(L′)(Pf)I(x) = (Pf)I(y)
)}

Fig. 1. Syntax and Semantics of DLF reg and DLFDreg.

An inclusion dependency C is an expression of the form D � E.
The semantics of expressions is given with respect to a structure (∆, ·I), where ∆
is a domain of “objects”, and (.)I an interpretation function that fixes the inter-
pretations of primitive concepts to be subsets of ∆ and attributes to be total func-
tions over ∆. The interpretation is extended to path expressions, (Id)I = λx.x
and (f.Pf)I = (Pf)I ◦ (f)I , and to derived concept descriptions, cf. Figure 3.
An interpretation satisfies an inclusion dependency C(≡ D � E) if (D)I ⊆ (E)I .
A terminology T consists of a finite set of inclusion dependencies {C1, ..., Cm}.
The logical implication problem asks if T |= C holds; that is, if all interpretations
that satisfy each constraint in T must also satisfy C (the posed question).

Notation 4 We simplify the notation for path expressions in the rest of the
paper by omitting the trailing Id, and also allow a syntactic composition Pf1 . Pf2
of path expressions that stands for their concatenation.

Definition 5 (Datalog∨,¬
nS [13]) A Datalog∨,¬

nS program is a finite set of
clauses constructed from monadic predicates Pi and their negations, unary
function symbols fi, constants, and a single variable x using the usual well-
formedness rules. A satisfiability problem for a Datalog∨,¬

nS program Π is to
determine if Π has a well-founded model.
A DatalognS program is a finite set of definite Horn Datalog∨,¬

nS clauses. A recog-
nition problem for a DatalognS program Π and a ground atom q is to determine
if q is true in all models of Π (i.e., if Π ∪ {¬q} is not satisfiable).

The unary function symbols are drawn from the same alphabet F used for prim-
itive attributes. Thus the path expressions in DLFDreg and terms in Datalog∨,¬

nS

correspond to each other.

Notation 6 Pf(t) denotes a Datalog∨,¬
nS term of the form “fk(· · · f1(t) · · ·)”. This

notation corresponds to the Pf = f1. · · · .fk notation for path functions.

100 D. Toman and G. Weddell

It is known that a Datalog∨,¬
nS program has a model if and only if it has a

Herbrand model [12,13,27]; this allows the use of syntactic techniques for model
construction. To establish the complexity bounds we use the following result for
the satisfiability of Datalog∨,¬

nS programs [13,18].

Proposition 7 The complexity of satisfiability for Datalog∨,¬
nS is DEXPTIME-

complete. The lower bound holds for DatalognS programs.

For the remainder of the paper, we use general first-order syntax for Datalog∨,¬
nS

formulas instead of the clausal syntax to improve readability. However, each of
the Datalog∨,¬

nS programs in the paper can be presented in a clausal form.

3 Decision Procedures and Complexity Bounds

Relationships between DLF reg, DLFDreg and Datalog∨,¬
nS are the concerns of

this section. The main underlying idea lies in relating DLFDreg concept descrip-
tions to monadic predicates and in simulating DLFDreg structural properties as
assertions in Datalog∨,¬

nS .

3.1 DLFreg: Lower Bounds

We first show that every DatalognS recognition problem can be simulated by a
DLF reg implication problem.

Definition 8 Let Π be a DatalognS program and P (Pf(0)) a ground atom (a
goal). We construct an implication problem for DLF reg as follows: a terminology
from clauses in Π,

TΠ = { ∀Pf1 .Q1 	 . . . 	 ∀Pfk .Qk � ∀Pf .P :
P (Pf(x))← Q1(Pf1(x)), . . . , Qk(Pfk(x)) ∈ Π },

and the posed question from ground facts in Qi(Pfi(0)) ∈ Π and the goal G =
P (Pf(0)),

CΠ,G = ∀Pf1 .Q1 	 . . . 	 ∀Pfk .Qk � ∀Pf .P,

where, assuming Pf(t) = fk(· · · f1(t) · · ·), ∀Pf .D denotes ∀f1. . . .∀fk.D.

Theorem 9 Let Π be a DatalognS program and G a goal. Then Π |= G ⇐⇒
TΠ |= CΠ,G.

The lower complexity bound then follows from [13,18].

Corollary 10 The implication problem for DLF reg is DEXPTIME hard; this
remains true for the fragment of DLF reg in which all concept constructors are
conjunctions and restrictions of the form “∀f.D”.

This complements the hardness result for path functional dependencies [24]:
while that result was obtained in a class-free setting, here we need multiple
class labels. Note that the complexity is inherently connected with a ∀f.D con-
struct. Without it, the problem reduces to propositional satisfiability which is
NP-complete.

On Reasoning about Structural Equality in XML 101

3.2 A Decision Procedure for DLFreg

We now consider the other direction: can DLF reg in turn be (naturally) simu-
lated by Datalog∨,¬

nS ? In this subsection, we show that this is indeed possible. In
particular, we show how to construct a Datalog∨,¬

nS satisfiability problem that is
equivalent to a given DLF reg implication problem. In the simulation, DLF reg’s
concept descriptions D are modeled by monadic predicates PD(x). The con-
struction proceeds in three steps. The first encodes the structural properties of
regular expression sets as Datalog∨,¬

nS assertions.

Definition 11 (Constraints for Regular Path Expressions)
Let 〈N, F, R, S〉 denote a right-linear grammar G for a given regular language L
consisting of nonterminal symbols N unique to L, productions R and start symbol
S ∈ N .1 For formula ϕ with one free variable x not containing any predicate
symbols of the form NB,ψ and G we define a Datalog∨,¬

nS program

ΠL =
{
∀x.NA,ϕ(x)←M(ϕ, α) : A→ α ∈ G

}

where

M(P, α) =





ϕ(x) if α = Id;
ϕ(f(x)) if α = f ;
NB,ϕ(f(x)) if α = fB.

Intuitively, the atomic formula NA,ϕ(t) is true for a term t if and only if there is
Pf ∈ L(A) such that ϕ(Pf(t)) is true (L(A) is the language generated by G from
the nonterminal A). Note that it is essential to use the minimal model semantics
to define NA,ϕ(x). However, the rules that define the atoms associated with
G’s nonterminal symbols are DatalognS rules and thus a unique minimal model
exists and can be equivalently defined by an explicit least fixpoint formula2.

The second step encodes the structural properties of DLF reg as Datalog∨,¬
nS

assertions.

Definition 12 (DLF reg Concept Formation Constraints) Let D, D1, and
D2 range over concept descriptions and f over attribute names. We define

ΠDLFreg = ΠL ∪





∀x.(PD(x) ∨ P¬D(x)),∀x.¬(PD(x) ∧ P¬D(x))
∀x.PD1�D2(x)↔ (PD1(x) ∧ PD2(x))
∀x.P∃L.D(x)↔ NS,PD (x))
∀x.P∀L.D(x)↔ ¬NS,¬PD (x))





.

where S is the start symbol in the grammar for L.
1 A grammar is right regular iff each production is of the form A → Id, A → a

or A → bB, where A and B are nonterminal symbols and a and b are terminal
symbols. It is well known that such a grammar exists for any regular expression [19].

2 This fact guarantees total models for the theories in this paper and avoids difficulties
connected with unfounded recursion in general Datalog∨,¬

nS programs. For a compre-
hensive survey of semantics for disjunctive logic programs see [15,26,28]. A thorough
exploration of that subject for Datalog∨,¬

nS is beyond the scope of this paper.

102 D. Toman and G. Weddell

The set ΠDLFreg captures the structural relationships between DLF reg concepts.
Although the set is infinite in general, the set of concepts and regular path
expressions appearing in a particular implication problem, T |= C, is finite.
Hence, one can restrict the set of assertions in ΠDLFreg to a finite subset ΠT ,C

DLFreg

that contains only predicates that define concepts and regular grammars in T ∪
{C}. In the following, we omit the superscripts whenever clear from the context.

The translation of the inclusion constraints is the final third step in the
overall translation of a DLF reg implication problem.

Definition 13 Let T and C ≡ D � E be a DLF reg terminology and an inclusion
constraint, respectively. We define

ΠT = {∀x.PD(x)→ PE(x) : D � E ∈ T }

and
ΠC = {PD(0), P¬E(0)}.

The two clauses ΠC represent the skolemized version of ¬∀x.PD(x)→ PE(x); 0
is the Skolem constant for x. As usual, a model “containing” ΠC is a counterex-
ample for C.

Theorem 14 Let T and C be a DLF reg terminology and inclusion dependency,
respectively. Then T |= C ⇐⇒ ΠDLFreg ∪ΠT ∪ΠC is not satisfiable.3

This result shows that DLF reg is essentially an alternative variable-free syntax
for (monadic) Datalog∨,¬

nS . Also, as a consequence we have:

Corollary 15 The implication problem for DLF reg is DEXPTIME-complete.

3.3 Adding Regular Functional Dependencies: DLFDreg

We now consider DLFDreg which adds equality generating concepts to DLF reg.
In this more general setting, an inclusion dependency that contains such a con-
cept is called a regular path functional dependency (regular PFD). Such depen-
dencies have the form (D1 � D2 : L1 → L2).

There are two cases to consider that depend on the structure of C for an
arbitrary DLFDreg implication problem T |= C.

Case 1: C is not a regular PFD. In this case, it is straightforward to show that
any regular PFDs occurring in T will not interfere with the decision procedure
from Section 3.2.

Lemma 16 Let T ′ be the set of inclusion dependencies in a DLFDreg terminol-
ogy T that are not regular PFDs. Then if T ′ has a model it also has a Herbrand
model. A Herbrand model is also a model of T .
3 Note that we are assuming that satisfiability for Datalog∨,¬

nS is defined with respect
to well-founded models.

On Reasoning about Structural Equality in XML 103

Thus, the implication problem reduces to the problem in Section 3.2 since, by
the above Lemma, the regular PFDs in T do not interfere with the decision
procedure.

Case 2: C(= D1 � D2 : L1 → L2) is a regular PFD. To falsify C, it must be
possible to have two objects, one in D1 and another in D2, that satisfy the pre-
conditions of the dependency but that fail to satisfy the conclusion. We therefore
construct two copies of the interpretation for the pure DLF reg constraints in T
similarly to [21,33]. However, as Herbrand terms are essentially the same in the
two copies, it is sufficient to distinguish them by renaming the predicate symbols
[24]. In addition, we need to model the “rules” of equality and their interaction
with concept descriptions. The structural rules for DLFDreg are thus defined as
follows:

ΠDLFDreg = ΠG
DLFreg

∪ΠB
DLFreg

∪
{
∀x.Eq(x)→ Eq(f(x))
∀x.Eq(x)→ (PG

D (x)↔ PB
D (x))

}
,

where ΠG and ΠB are sets of assertions Π in which every predicate symbol ρ
is renamed to a “green” version ρG and a “blue” version ρB , respectively.

Definition 17 Let T |= C be a DLFDreg implication problem for which C is the
regular PFD

D1 � D2 : L1 → L2,

let T ′′ be all regular PFDs in T , and let T ′ = T \ T ′′. We define

ΠC = {PG
D1

(0), PB
D2

(0),¬NS1,¬Eq(0), NS2,¬Eq(0)}

and

ΠT = ΠG
T ′ ∪ΠB

T ′ ∪




∀x.(PG

Di
(x) ∧ PB

Dj
(x) ∧ (¬NSi,¬Eq(x)))→ ¬NSj ,¬Eq(x)

∀x.(PB
Di

(x) ∧ PG
Dj

(x) ∧ (¬NSi,¬Eq(x)))→ ¬NSj ,¬Eq(x)
for (Di � Dj : Li → Lj) ∈ T ′′





where Si and Sj are the start symbols in the grammars for Li and Lj, respec-
tively.

Theorem 18 Let T |= C be a DLFDreg implication problem in which C is a
regular PFD. Then T |= C if and only if ΠDLFDreg ∪ΠT ∪ΠC is not satisfiable.

And since all DLF reg implication problems are also DLFDreg implication prob-
lems, we have:

Corollary 19 The implication problem for DLFDreg is DEXPTIME-complete.

4 Structural Equality in XML

We now show how to map XML documents to DLFDreg interpretations in a
way that enables useful reasoning about the structural equality of arbitrary

104 D. Toman and G. Weddell

subdocuments. To begin, it will be useful to have a concise definition of an XML
document. Our formulation is based on the common practice of interpreting an
XML document or a document collection as an ordered forest of rooted node-
labeled ordered trees.

Definition 20 (XML Forests and Trees) Let String be a set of strings. We
define the set XF of XML forests inductively by

XF = [] | [XNode(s, x)] | x@y,

where s is in String, x and y are in XF, [] denotes an empty forest4, [XNode(s, x)]
denotes a forest containing a single tree with a root labeled s (the string s repre-
sents a tag or PCDATA) and an ordered forest x, and x@y denotes a concatenation
of two ordered forests.

This formulation of XML is very simple with no explicit accounting of node iden-
tity, of element, attribute or text node types, or of “don’t care” child node order.
However, such features can easily be added by additional encoding conventions
that relate either to node labeling or to subtree patterns. A text leaf node with
CDATA “abc”, for example, might be encoded using the label “text:abc”. A
similar approach can be taken to represent attributes, etc.

Reasoning about XML documents in DLFDreg is achieved by mapping or-
dered forests corresponding to XML documents to DLFDreg interpretations. As
in [9], we encode arbitrary XML forests by binary trees in which the first edge
connects parent nodes with their first child and the next edge with their right
sibling [25]. However, to be able to reason about structural equality, we add a
third label edge connecting a node with its string label. Infinite completions of
such tree yields an DLFDreg interpretation. Formally:

Definition 21 Let F ∈ XF be a XML forest. We define an DLFDreg interpre-
tation that represents this forest in two steps.

1. Let String ⊂ ∆ be the set of all strings. For every document tag <a> we define
a primitive class Ca interpreted by (Ca)I = {<a>} ⊂ String.

2. The tree structure of the XML document is then captured by defining the in-
terpretation for an additional primitive concept CXML, satisfying (CXML)I ∩
String = ∅, and the interpretation of the primitive features f , n, and l. The
interpretation of the primitive concept CXML is defined by simultaneous in-
duction on the structure of F utilizing partial interpretations (CXML)I

F and
an auxiliary rF constant (denoting the root of the encoded document F).
– F is an empty forest. Then (CXML)I

F = ∅ and rF is an arbitrary element
n ∈ ∆− String.

– F is a tree XNode(s,F ′). Then

(CXML)I
F := (CXML)I

F ′ ∪ {n} for n ∈ ∆− String∪(CXML)I
F ′ .

In addition, we modify the interpretation of the primitive features assert-
ing that (l)I(n) = s ∈ String, and (f)I(n) = rF ′ and set rF = n.

4 We employ common list notation to represent ordered forests.

On Reasoning about Structural Equality in XML 105

<emp>
<eid>1234</eid>
<name>Mary</name>
<children>

<name>Mary</name>
<name>Bob</name>

</children>
...
...

</emp>

��������

l

�����
��

f

��

emp

��������

l

�����
��

f

��

n ����������

l

���
��

��
��

��
��

��

f

��

n ����������
l

�����
���

f

��

n �� . . .

eid children

��������

l

�����
��

��������

l

���
��

��
��

��
��

��
��������

f

��

n ��
l

�����
���

��������

f

��

l

�����������������

1234 name

��������

l

�������
��������

l

�����
��

Mary Bob

Fig. 2. An XML Document and DLFDreg Interpretation

– F is a forest of trees T1T2 . . . Tk such that (CXML)I
Ti
∩ (CXML)I

Tj
= ∅.5

Then
(CXML)I

F :=
⋃

0<i≤k
(CXML)I

Ti
.

In addition, we modify the interpretation of the primitive features assert-
ing that (n)I(rti) = rti+1 for 0 < i < k and set rF = rt1 .

Without loss of generality, we assume that feature values not explicitly defined
in this construction are roots of complete ternary trees, the nodes of which do
not belong to interpretations of primitive concepts defined above.

Theorem 22 Let o1, o2 ∈ (CXML)I be two nodes in the interpretation (∆, (.)I)
that correspond to the roots of XML forests F1,F2, respectively. Then F1 = F2
structurally if and only if (Pf)I(o1) = (Pf)I(o2) for all Pf ∈ L((f, n) ∗ .l).

Example 23 In Figure 2, we illustrate an XML fragment together with the
DLFDreg interpretation that corresponds to this fragment. Now consider how
to express that <eid>s are always integer values and are the first components
of <emp>s. This is indirectly accomplished by including the following inclusion
dependency in a terminology constraining Cemp:

∀l.Cemp � (∀f.l.Ceid) 	 (∀f.f.l.Cint)

Finally, consider how to express that <eid>s are keys for employee subdocu-
ments. This is also indirectly accomplished by including the following regular
path functional dependency in the same terminology:

∀l.Cemp � (∀l.Cemp) : f.f.l→ (f, n) ∗ .l
5 It is always possible to pick disjoint sets to interpret nodes in distinct trees.

106 D. Toman and G. Weddell

Observe that this dependency requires no knowledge of the structure of employee
subdocuments beyond the fact that an <eid> element is the first child of every
such document.

Now, as a consequence of Theorem 22, we can replace the structural equal-
ity in the where clause of the XQuery in Example 1 by a much more efficient
comparison of integer values:

where x=y ⇒ where x/eid/data()=y/eid/data()

In addition the typing constraint above specifies the location of the <eid> com-
ponent in the XML tree (the first child of <emp>) and the location (first child of
<eid>) and structure (integer) of the identifier itself.

The positional nature of specifying structural relationships between elements
is essential to reasoning about structural equality. In particular keyword-based
functional dependencies (i.e., those based on element tag names) [2,3] cannot
distinguish documents <a>12 and 2<a>1.

5 Summary

Structural equality is an important performance issue for XML data models and
query languages. We have presented a description logic called DLFDreg that can
be used for reasoning about structural equality in such models, and have outlined
how DLFDreg can be applied in the case of XML and XQuery. This application
depends on a more powerful version of an fd concept constructor in DLFDreg
that has a novel and essential ability to express functional dependencies over
sets of possibly infinite feature paths defined by regular languages. Thus, our
work compliments earlier work [9] in which a description logic is used to reason
about XML document type definitions.

We have also presented a decision procedure for DLFDreg. The procedure
is based on mapping implication problems in DLFDreg to satisfaction problems
in the logic programming language Datalog∨,¬

nS . It is worth noting that this can
in turn be reduced to the classical decision problem for the Ackermann (∃∗∀∃∗)
prefix [1].

Definition 24 (Monadic Ackerman Formulae) Let Pi be monadic predi-
cate symbols and x, yi, zi variables. A monadic first-order formula in the Ack-
ermann class is a formula of the form ∃z1 . . .∃zk∀x∃y1 . . .∃yl.ϕ where ϕ is a
quantifier-free formula over the symbols Pi.

To establish this final relationship, we can appeal to the results in [22] in which
the authors outline a mapping of satisfiability problems for the µ-calculus to
a closed disjunctive fixpoint free fragment of the µ-calculus. Note that it is
straightforward to map Datalog∨,¬

nS satisfiability problems, in turn, to µ-calculus
when recursion in Datalog∨,¬

nS passes through even numbers of negations.

On Reasoning about Structural Equality in XML 107

5.1 Future Work

There are several avenues of work currently under way that we believe will
enhance the results of this paper. In particular, we are exploring the possibility
of adapting results in [21] to allow the regular path functional dependencies in
DLFDreg to have empty left-hand-sides, a serious possibility in view of the fact
that element tags in XML are not (a least apriori) “isa” related. Such constraints
can be used to (almost) simulate the incorporation of nominals in a terminology.
Another topic we are exploring relates to finite models. Although [21] has shown
that any object model with path functional dependencies does not have the finite
model property, we believe an acyclicity property that underlies XML document
type definitions can be exploited to recover the finite model property for related
terminologies.

So how “close to the cliff or the valley” have we come? One of the remain-
ing limitations of DLFDreg is the lack of an ability to define roles that are
inverse attributes. This would represent a first opportunity for roles and func-
tional dependencies to interact in DLFDreg. Although the details are beyond
the scope of this paper, it is possible to adapt the undecidability result of [10]
to show that DLFDreg extended with inverse attributes will render its impli-
cation problem undecidable. However, some limited capacity to express inverse
roles while ensuring decidability is still very desirable. Syntactic restrictions on
regular path functional dependencies along the lines considered in [10] merit par-
ticular consideration. Second, the consequences of granting full first-order status
to such dependencies are not clear. Indeed, the epistemological significance of
either a negated fd or even the disjunction of two fds is unclear. Finally, we
plan to investigate more general decidable constraint theories as the basis for
path dependencies [4] and to integrate results in [32] that relate to ordering
dependencies.

Acknowledgments. The authors gratefully acknowledge the Natural Sciences
and Engineering Research Council of Canada, the Communications and Infor-
mation Technology of Ontario and Nortel Networks Ltd. for their support of this
research.

References

1. Wilhelm Ackermann. Solvable Cases of the Decision Problem. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1954.

2. Marcelo Arenas, Wenfei Fan, and Leonid Libkin. On Verifying Consistency of XML
Specifications. In ACM Symposium on Principles of Database Systems, pages 259–
270, 2002.

3. Marcelo Arenas and Leonid Libkin. Normal Form for XML Documents. In ACM
Symposium on Principles of Database Systems, pages 85–96, 2002.

4. Marainne Baudinet, Jan Chomicki, and Pierre Wolper. Constraint-Generating
Dependencies. In International Conference on Database Theory, 1995.

108 D. Toman and G. Weddell

5. S. Boag, D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu.
XQuery 1.0: An XML Query Language. Technical report, W3C, 2001.

6. Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer-Verlag, 1997.

7. Alexander Borgida and Grant E. Weddell. Adding uniqueness constraints to de-
scription logics. In International Conference on Deductive and Object Oriented
Databases, DOOD, pages 85–102, 1997.

8. Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and
Wang Chiew Tan. Keys for XML. In World Wide Web, pages 201–210, 2001.

9. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Representing
and Reasoning on XML Documents: A Description Logic Approach. Journal of
Logic and Computation, 9(1):295–318, 1999.

10. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification
Constraints and Functional Dependencies in Description Logics. In International
Joint Conference on Artificial Intelligence, pages 155–160, 2001.

11. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Description Logic Framework for Information Integration. In
Principles of Knowledge Representation and Reasoning (KR’98), pages 2–13, 1998.

12. Jan Chomicki. Functional Deductive Databases: Query Processing in the Presence
of Limited Function Symbols. PhD thesis, Rutgers University, 1990. Laboratory
for Computer Science Research LCSR-TR-142.

13. Jan Chomicki and Tomasz Imieliński. Finite Representation of Infinite Query
Answers. ACM Transactions on Database Systems, 18(2):181–223, June 1993.

14. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declarative
Problem-solving using the dlv System. In Jack Minker, editor, Logic-Based Arti-
ficial Intelligence. Kluwer Academic Publishers, 2000.

15. Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM
Transactions on Database Systems, 22(3):364–418, 1997.

16. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. The KR System dlv: Progress Report, Comparisons and Benchmarks. In
Principles of Knowledge Representation and Reasoning, KR’98, pages 406–417,
1998.

17. Wenfei Fan and Leonid Libkin. On XML integrity constraints in the presence of
DTDs. In Symposium on Principles of Database Systems, 2001.

18. Martin Fürer. Alternation and the Ackermann Case of the Decision Problem.
L’Enseignement Math., 27:137–162, 1981.

19. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

20. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reasoning for Ex-
pressive Description Logics. In Logic Programming and Automated Reasoning,
LPAR’99, pages 161–180, 1999.

21. Minoru Ito and Grant Weddell. Implication Problems for Functional Constraints
on Databases Supporting Complex Objects. Journal of Computer and System
Sciences, 49(3):726–768, 1994.

22. David Janin and Igor Walukiewicz. Automata for the µ-calculus and related results.
In Mathematical Foundations of Computer Science, pages 552–562, 1995.

23. Vitaliy L. Khizder, David Toman, and Grant Weddell. Reasoning about Duplicate
Elimination with Description Logic. In Rules and and Objects in Databases, DOOD
2000 (part of Computational Logic 2000), pages 1017–1032, 2000.

On Reasoning about Structural Equality in XML 109

24. Vitaliy L. Khizder, David Toman, and Grant E. Weddell. On Decidability and
Complexity of Description Logics with Uniqueness Constraints. In International
Conference on Database Theory ICDT’01, pages 54–67, 2001.

25. Donald E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison-Welsley (2ed), 1998.

26. Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable models:
Unfounded sets, fixpoint semantics, and computation. Information and Computa-
tion, 135(2):69–112, 1997.

27. John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
28. Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of Disjunctive Logic

Programming. MIT Press, Cambridge, MA, 1992.
29. Alberto O. Mendelzon and Peter T. Wood. Functional Dependencies in Horn

Clause Queries. TODS, 16(1):31–55, 1991.
30. Manfred Schmidt-Schauß and Gert Smolka. Attributive Concept Descriptions with

Complements. Artificial Intelligence, 48(1):1–26, 1991.
31. David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. Fundamental Tech-

niques for Order Optimization. In Proceedings of the 1996 ACM SIGMOD Inter-
national Conference on Management of Data, pages 57–67, 1996.

32. David Toman and Grant E. Weddell. On Attributes, Roles, and Dependencies in
Description Logics and the Ackermann Case of the Decision Problem. In Proceed-
ings of Description Logics, CEUR-WS, vol.49, pages 76–85, 2001.

33. Grant E. Weddell. Reasoning about Functional Dependencies Generalized for Se-
mantic Data Models. TODS, 17(1):32–64, 1992.

A Adding Roles to DLF reg

Traditionally, description logics allow roles—binary relations between concepts.
However, while general Ackermann formulae allow arbitrary arity relations in
their matrix, they still require the use of a single universal (∀) quantifier in their
prefix. This prevents a direct formulation of the ∀R.D concept since two ∀’s are
needed (then adding unary function symbols leads to undecidable theories [6]).

Therefore we use a less direct formulation by modeling roles in DLFR via
attributes. The essential problem is that ∃R.Di concepts can force a single object
to be related via a role R to multiple objects satisfying different constraints
Di, that, in general, may be disjoint. However, as all concept descriptions are
essentially monadic predicates, one can syntactically determine the maximal
number of such objects needed for a given implication problem.

Definition 25 (∃-rank) Let T |= C be a DLFR implication problem. The
number of distinct occurrences of ∃R.D in T ∪ {C} is denoted Rank(T , C).

Now let T and C be fixed, and ρ and δ0, . . . , δl, where l = Rank(T , C), be function
symbols neither in T nor in C. We model a role R by a monadic predicate PR.
The fact that (o, o′) ∈ (R)I , for o, o′ ∈ ∆, is captured by asserting PR(δi(o)) and
o′ = ρ(δi(o)) for some 0 ≤ i ≤ l. The new predicates PR (and function symbols δi
and ρ) are constrained to simulate the behavior of the ∀R.D and ∃R.D concepts
by the following assertions:

110 D. Toman and G. Weddell

ΠDLFR = ΠDLFreg ∪
{
∀x.P∃R.D(x)↔

∨l
j=0 [PR(δj(x)) ∧ PD(ρ(δj(x)))]

∀x.P∀R.D(x)↔
∧l
j=0 [PR(δj(x))→ PD(ρ(δj(x)))]

}
.

For any fixed implication problem of size n the size of the assertions is O(n2).

Theorem 26 Let T and C be a DLFR terminology and inclusion dependency.
Then T |= C ⇐⇒ ΠDLFR∪ΠT ∪ΠC is not satisfiable. The later can be decided
in DEXPTIME.

Note the similarity with the tree models for DLR: essentially, one can convert
a dag induced by roles into a tree by replacing (o1, o2) ∈ (R)I by (o1, o

′
2) and

(o′
1, o2) where o1 and o′

1 (o2 and o′
2, respectively) belong to the same concepts.

Such an interpretation is still a model.

A.1 Role Inverses and Other Role Constructs

To model an inverse role R−1, we need to modify the definitions for P∀R.D and
P∃R.D to take account of the fact that if a parent of an object (i.e., the argument
of the function simulating the role) is related to a ∀R.D object via an inverse
R−1, then this object must be related to the parent via the original role R. Thus
the parent must satisfy D (the ∃R.D argument is similar). These observations
are captured by the assertions (similarly for P∀R−1.D and P∃R−1.D):

∀x.P∃R.D(x) ↔
∨l
j=0 [PR(δj(x)) ∧ PD(ρ(δj(x)))] for x �= ρ(δi(y))

∀x.P∃R.D(ρ(δi(x)))↔
∨l
j=0 [PR(δj(ρ(δi(x)))) ∧ PD(ρ(δj(ρ(δi(x)))))]
∨ [PR−1(δi(x)) ∧ PD(x)] otherwise

∀x.P∀R.D(x) ↔
∧l
j=0 [PR(δj(x))→ PD(ρ(δj(x)))] for x �= ρ(δi(y))

∀x.P∀R.D(ρ(δi(x)))↔
∧l
j=0 [PR(δj(ρ(δi(x))))→ PD(ρ(δj(ρ(δi(x)))))]
∧ [PR−1(δi(x))→ PD(x)] otherwise

Note that the x �= ρ(δi(y)) condition can be eliminated by enumerating all
terms that do not have the above form (i.e., do not start with ρδi). Such an
enumeration is finite (still O(n2)). Theorem 26 and its proof naturally extend to
this setting. Other constructs that involve roles, such as numerical restrictions,
role hierarchies, role constructors, roles with arity ≥ 2, and their combinations,
can be similarly captured by appropriate assertions over the monadic predicates
that model roles as long as the DL dialect itself has a tree model property [11,
20].

	Introduction
	Related Work and Outline

	Definitions
	Decision Procedures and Complexity Bounds
	${cal DLF}_{@mathrm {reg}}$: Lower Bounds
	A Decision Procedure for ${cal DLF}_{@mathrm {reg}}$
	Adding Regular Functional Dependencies: ${cal DLFD}_{@mathrm {reg}}$

	Structural Equality in XML
	Summary
	Future Work

	Adding Roles to ${cal DLF}_{@mathrm {reg}}$
	Role Inverses and Other Role Constructs

