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Sharp Quantum versus Classical Query
Complexity Separations1

J. Niel de Beaudrap,2 Richard Cleve,2 and John Watrous2

Abstract. We obtain the strongest separation between quantum and classical query complexity known to
date—specifically, we define a black-box problem that requires exponentially many queries in the classical
bounded-error case, but can be solved exactly in the quantum case with a single query (and a polynomial
number of auxiliary operations). The problem is simple to define and the quantum algorithm solving it is also
simple when described in terms of certain quantum Fourier transforms (QFTs) that have natural properties
with respect to the algebraic structures of finite fields. These QFTs may be of independent interest, and we
also investigate generalizations of them to noncommutative finite rings.
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1. Introduction. Shor’s algorithm [17] for factoring integers in polynomial-time on
a quantum computer evolved from a series of quantum algorithms in the query model.
This model appears to be useful for exploring the computational power of quantum
information. In the query model the input data is embodied in a black-box and the goal
is to deduce some property of the black-box efficiently. Efficiency is measured in terms
of the number of queries made to the black-box. A secondary measure of efficiency is
also considered: the number of auxiliary operations that must be performed to generate
the input to the queries and process the output. We implicitly require that the number of
auxiliary operations scales polynomially with the number of bits/qubits input to each
query.

The first instance of a quantum algorithm outperforming a classical algorithm in the
query model was due to Deutsch [10], where a quantum algorithm is able to solve a
2-bit query problem with one query (see also [7]), whereas any classical algorithm for
the problem requires two queries. (A k-bit query is one that takes k bits/qubits as input
and returns k bits/qubits as output.) This was extended by Deutsch and Jozsa [11], who
defined an (n + 1)-bit query problem that can be solved exactly with one query by a
quantum algorithm whereas it requires �(2n) queries to solve exactly classically. In
spite of the apparent strength of this separation, the problem is only hard in the classical
setting if the algorithm must be exact, meaning that no probability of error is tolerated.
A bounded-error algorithm is one that is allowed to err, provided that for any black-box
instance its error probability is bounded below some constant smaller than 1

2 . There is a
classical algorithm that solves the problem in [11] with bounded error using only O(1)

queries.
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Subsequent work by Bernstein and Vazirani [3] included an (n+1)-bit query problem
that can be solved exactly with a quantum algorithm making one query, whereas any
bounded-error classical algorithm for it requires n queries. They also showed that a recur-
sively defined version of this problem results in a �(n)-bit query problem whose exact
quantum and bounded-error classical query complexities are O(n log n) and n�(log n),
respectively. This was improved by Simon [18], who gives a fairly simple O(n) versus
�(2n/2) bounded-error quantum versus bounded-error classical query separation. Bras-
sard and Høyer [5] later showed that the problem considered by Simon can in fact be
solved exactly in the quantum setting with O(n) queries.

When cast in the query model, Shor’s factoring algorithm can be viewed as an ex-
tension of Simon’s work—it is a quantum algorithm that solves a 3n-bit query problem
with bounded-error with O(1) quantum queries, while any classical algorithm for this
problem requires �(2n/3/

√
n) queries (the lower bound is proved in [6]).

What is the sharpest quantum versus classical query complexity separation possible?
For problems that can be solved exactly with a single quantum query, it appears that
the maximum classical bounded-error query complexity previously known for such a
problem is n [3]. However, if the efficiency and performance of the quantum algorithm
are relaxed to allow O(1) queries and a bounded-error result, then there is a problem
whose classical bounded-error query complexity is exponential [17], [6].

Presently, we show that the best of the above two scenarios is possible by exhibiting
a 2n-bit query problem such that:

• In the quantum setting, a single query suffices to solve the problem exactly. Moreover,
the auxiliary operations are very simple; they consist of O(n)Hadamard gates followed
by O(n2) classical gate operations that can occur after a measurement is made.

• In the classical setting, �(2n/2) queries to the black-box are necessary to solve the
problem with bounded error.

The problem that achieves the above, which we call the hidden linear structure problem,
is defined over the field GF(2n) as follows. Assume elements of the finite field GF(2n) are
identified with strings in the set {0, 1}n . Let π be an arbitrary permutation on GF(2n) and
let s ∈ GF(2n). Define the black-box B as computing the mapping from GF(2n)×GF(2n)

to itself defined as B(x, y) = (x, π(y + sx)). The goal of the query problem is to
determine the value of s.

It should be noted that this problem is related to, but different from, the hidden linear
function problem considered by Boneh and Lipton [4]. In our problem the linear struc-
ture occurs over the field GF(2n) (and involves the multiplicative structure of GF(2n)),
whereas for the hidden linear function problem of Boneh and Lipton the linear structure
is of certain periodic functions from the additive group Z

k to some arbitrary range. This
does not result in the quantum versus classical query complexity separation that we
obtain.

It should also be noted that our hidden linear structure problem is a special case of
the hidden subgroup problem defined by Brassard and Høyer [5] and Mosca and Ekert
[16]. (This relationship was pointed out to us by Hallgren [14].) However, using standard
techniques for the hidden subgroup problem results in a quantum algorithm solving the
hidden linear structure problem with �(n) queries, as opposed to a single query as
required by our algorithm.
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Finally, one may also consider a variant of our hidden linear structure problem defined
over a finite ring (such as Z2n ) rather than a field. However, the exponential classical
query complexity lower bound depends on the field structure and does not always hold
for finite rings. For example, in the case of Z2n , the classical query complexity is n + 1
rather than exponential (this is explained in Section 3).

Our single-query quantum algorithm for the hidden linear structure problem is based
on an extension of the quantum Fourier transform (QFT) to finite fields whose behavior
has natural properties with respect to the field structure. This QFT is motivated and
defined in Section 2, where an efficient quantum algorithm for it is also given. The
quantum algorithm and classical lower bound for the hidden linear structure problem are
given in Section 3. In Section 4 the QFT is generalized to rings of matrices over finite
fields.

Related work. Van Dam and Hallgren have independently proposed a definition for
QFTs over finite fields that is similar to ours, and have applied these transforms in the
context of black-box problems called the “shifted quadratic character problems.” Their
work first appeared as [9] and the preliminary version of this paper appeared as [2].

2. Quantum Fourier Transforms for Finite Fields. In this section we propose a def-
inition for QFTs over finite fields, whose behavior has natural properties with respect to
a given field’s structure. We also show how to compute these transformations efficiently.

We assume the reader is familiar with basic concepts regarding finite fields and
computations over finite fields (see, for instance, [8], [12], and [15]). As usual, we let
GF(q) denote the finite field having q = pn elements for some prime p. We assume
that an irreducible polynomial f (Z) = Zn − ∑n−1

j=0 aj Z j over GF(p) is fixed, and
that elements of GF(q) are represented as polynomials over GF(p) modulo f in the
usual way. We write x = (x0, . . . , xn−1) to denote the field element corresponding to
x0+x1 Z+· · ·+xn−1 Zn−1, and we identify x with the column vector �x = [x0, . . . , xn−1]T.

DEFINITION 2.1. Let ϕ: GF(q) → GF(p) be any nonzero linear mapping (viewing
elements of GF(q) as n-dimensional vectors over GF(p) as above). Then we define the
quantum Fourier transform (QFT) over GF(q) relative to ϕ (denoted Fq,ϕ) as follows.
For each x ∈ GF(q),

Fq,ϕ : |x〉 �→ 1√
q

∑
y∈GF(q)

ωϕ(xy)|y〉

for ω = e2π i/p, and let Fq,ϕ be extended to arbitrary quantum states by linearity.

A natural choice for ϕ is the trace, since this gives a transform independent of the choice
of f . However, we do not require this property, and so we allow ϕ to be arbitrary. It
should be noted that, for any prime q, the above Fourier transform is essentially identical
in form to the conventional cyclic Fourier transform modulo q.

An important property of these transformations is illustrated in Figure 1, where F
denotes the QFT and the two-register gate labeled by s ∈ GF(q) denotes the mapping
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Fig. 1. The control/target inversion property.

|x〉|y〉 �→ |x〉|y + sx〉. We refer to the latter gate as a controlled-ADDs gate, with its
first input called the control register and its second input called the target register. The
property illustrated in the figure is referred to as the control/target inversion property.
In words, conjugating a controlled-ADDs gate by F ⊗ F† switches its control and target
registers. In the special case of GF(2), F is the Hadamard gate and the two-qubit gate is
the controlled-NOT gate (when s = 1).

THEOREM 1. For q = pn and any nonzero linear mapping ϕ: GF(q) → GF(p), Fq,ϕ

is unitary and satisfies the control/target inversion property of Figure 1.

PROOF. First we show that F†
q,ϕ Fq,ϕ|x〉 = |x〉 for every x ∈ GF(q). We have

F†
q,ϕ Fq,ϕ|x〉 = F†

q,ϕ

1√
q

∑
y∈GF(q)

ωϕ(xy)|y〉 = 1

q

∑
y∈GF(q)

∑
z∈GF(q)

ωϕ(xy)−ϕ(yz)|z〉

=
∑

z∈GF(q)

(
1

q

∑
y∈GF(q)

ωϕ(y(x−z))

)
|z〉 = |x〉,

following from the fact that ϕ(w) must be uniformly distributed over GF(p) as w ranges
over GF(q) (since ϕ is linear and not identically zero).

Next we verify that the control/target inversion property holds, namely that for As

and Bs defined by As |x〉|y〉 = |x〉|y + sx〉 and Bs |x〉|y〉 = |x + sy〉|y〉 we have

(F†
q,ϕ ⊗ Fq,ϕ)As(Fq,ϕ ⊗ F†

q,ϕ) = Bs .

To prove this relation holds, we define

|ψx 〉 = Fq,ϕ|x〉 = 1√
q

∑
y∈GF(q)

ωϕ(xy)|y〉

for each x ∈ GF(q), and note that for Pw defined by Pw|x〉 = |x + w〉 we have

Pw|ψ−x 〉 = 1√
q

∑
y∈GF(q)

ω−ϕ(xy)|y + w〉 = 1√
q

∑
y∈GF(q)

ω−ϕ(xy−xw)|y〉 = ωϕ(xw)|ψ−x 〉.
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Now, for each x, y ∈ GF(q) we have

(F†
q,ϕ ⊗ Fq,ϕ)As(Fq,ϕ ⊗ F†

q,ϕ)|x〉|y〉

= (F†
q,ϕ ⊗ Fq,ϕ)As

(
1√
q

∑
z∈GF(q)

ωϕ(xz)|z〉|ψ−y〉
)

= (F†
q,ϕ ⊗ Fq,ϕ)

(
1√
q

∑
z∈GF(q)

ωϕ(xz)ωϕ(ysz)|z〉|ψ−y〉
)

= (F†
q,ϕ ⊗ Fq,ϕ)|ψx+sy〉|ψ−y〉

= |x + sy〉|y〉
= Bs |x〉|y〉

as required.

Next we describe quantum circuits for performing Fq,ϕ and analyze their complexity.
Let C(p, ε) denote the minimum size of a quantum circuit approximating the QFT
modulo p to within accuracy ε. Note that C(p, 0) ∈ O(p2 log p) [1] and, for ε > 0,
C(p, ε) ∈ O(log p log log p + log p log 1/ε) when ε ∈ �(1/p) [13].

THEOREM 2. For q = pn and any nonzero linear mapping ϕ: GF(q) → GF(p),
Fq,ϕ can be performed with accuracy ε by a quantum circuit of size O(n2(log p)2) +
nC(p, ε/n).

Thus, when p = 2 (or any constant), the QFT circuit size is O(n2) in the exact case.

PROOF OF THEOREM 2. For any choice of ϕ (linear and nonzero), there exists a uniquely
determined n × n matrix Mϕ over GF(p) such that ϕ(xy) = �xT Mϕ �y. We show how to
obtain efficiently such a matrix Mϕ explicitly for any given ϕ below. The quantum circuit
performing Fq,ϕ will depend on Mϕ , and we note that Mϕ must be invertible.

We have

Fq,ϕ|x〉 = 1√
q

∑
y∈GF(q)

ω�xT Mϕ �y |y〉

= 1√
q

∑
y∈GF(q)

ω�xT �y |M−1
ϕ �y〉 = 1√

q

∑
y∈GF(q)

ω(MT
ϕ �x)T �y |y〉.

From this we conclude that

Fq,ϕ = M−1
ϕ (Fp ⊗ · · · ⊗ Fp) = (Fp ⊗ · · · ⊗ Fp)MT

ϕ ,

where Fp denotes the usual QFT modulo p and, for A ∈ {M−1
ϕ , MT

ϕ }, we identify A
with the reversible operation that maps each |�x〉 to |A�x〉. This relation is illustrated in
Figure 2.
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Fig. 2. Equivalent circuits for Fq,ϕ .

The upper bound of O(n2(log p)2) + nC(p, ε/n) now follows from the observation
that in order to implement Fq,ϕ with accuracy ε it suffices to implement each circuit for
Fp with accuracy ε/n (contributing nC(p, ε/n) gates to the final circuit) and to imple-
ment the circuit for multiplication by either MT

ϕ or M−1
ϕ exactly. Let A ∈ {M−1

ϕ , MT
ϕ }.

Multiplication of an n-dimensional vector v by A can be done with O(n2) arithmetic
operations in GF(p), each of which can be performed by a circuit of size O((log p)2),
resulting in a circuit of size O(n2(log p)2). In order to implement this transformation
reversibly within the same size bound, it suffices to be able to invert the computation in
this size bound. Inverting this computation is simply multiplication by A−1, which can
be performed in precisely the same size bound. (Note that the circuit itself does not need
to invert A, but rather information about A and A−1 is pre-computed and “hard-coded”
into the appropriate circuit for Fq,ϕ .)

Now we return to the question of determining the matrix Mϕ corresponding to a given
ϕ. First, note that multiplication of field elements satisfies

(z0, . . . , zn−1) = (x0, . . . , xn−1) · (y0, . . . , yn−1),

where

zi = �xT Bi �y(1)

for a certain sequence of n × n matrices B0, . . . , Bn−1 over GF(p).
Let us explicitly construct a sequence B0, . . . , Bn−1 that satisfies (1). To do this, it

will be helpful to review the notion of Hankel matrices. An n × n Hankel matrix A is a
matrix of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0 t1 t2 · · · tn−1

t1 t2 t3 · · · tn
t2 t3 t4 · · · tn+1

...
...

...
. . .

...

tn−1 tn tn+1 · · · t2n−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.(2)

That is, the “anti-diagonals” each contain only one element (or, equivalently, A[i, j]
depends only on i+ j). The Hankel matrix in (2) will be denoted Hankel(t0, t1, . . . , t2n−2).
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Recall that we have

Zn ≡
n−1∑
j=0

aj Z j (mod f (Z)),

where f is as described at the beginning of the current section. Write a(0)
j = aj for

j = 0, . . . , n−1. We actually need numbers a(k)
j (for j = 0, . . . , n−1, k = 0, . . . , n−2)

such that

Zn+k ≡
n−1∑
j=0

a(k)
j Z j (mod f (Z)).

These numbers are easy to obtain. Define an n × n matrix V as follows:

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2

...
...

. . .
...

...

0 0 · · · 1 an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then

[a(k)
0 , . . . , a(k)

n−1]T = V k [a0, . . . , an−1]T = V k+1 [0, . . . , 0, 1]T .

Finally, we can describe the matrices B0, . . . , Bn−1. For each i = 0, . . . , n − 1,

Bi = Hankel(δ0,i , δ1,i , . . . , δn−1,i , a(0)
i , a(1)

i , . . . , a(n−2)
i ).

(Here, δi, j is the Kronecker-δ symbol.) A straightforward computation reveals that
this choice for B0, . . . , Bn−1 satisfies (1). It is also not hard to show that these ma-
trices B0, . . . , Bn−1 are the only matrices satisfying (1), and that each Bi is necessarily
invertible.

Now, since ϕ: GF(q) → GF(p) is linear and not identically zero, we must have
ϕ(x) = ∑n−1

i=0 λi xi for each x ∈ GF(q) for some choice of λ0, . . . , λn−1 ∈ GF(p) (not
all 0). At this point we see that ϕ(xy) = �xT Mϕ �y for Mϕ = ∑n−1

i=0 λi Bi . Equivalently, we
have

Mϕ = Hankel

(
λ0, . . . , λn−1,

n−1∑
i=0

λi a
(0)
i , . . . ,

n−1∑
i=0

λi a
(n−2)
i

)
.

In the previous theorem, we have ignored the issue of circuit uniformity. However,
it follows from the proof that each circuit for Fq,ϕ can be generated in polynomial time
under a similar assumption on the circuits for performing Fp.

3. The Hidden Linear Structure Problem. For a prime power q, define the hidden
linear structure problem over GF(q) as follows. In the classical version, one is given a
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black-box that maps (x, y) ∈ GF(q)×GF(q) to (x, π(y + sx)), where π is an arbitrary
permutation on the elements of GF(q) and s ∈ GF(q). Analogously, in the quantum
case, one is given a black-box performing the unitary transformation that maps |x〉|y〉
(x, y ∈ GF(q)) to |x〉|π(y + sx)〉. The goal is to determine the value of s.

In this section we give a sharp quantum versus classical query complexity separation
for the hidden linear structure problem. First, in the classical case, �(

√
q) queries are

necessary to solve this problem, even with bounded error. Second, in the quantum case,
a single quantum query is sufficient to solve the hidden linear structure problem exactly,
provided that one can compute the QFTs Fq,ϕ and F†

q,ϕ . In the case where q = 2n , the
QFT can be performed exactly with only O(n2) basic operations (Hadamard gates and
controlled-NOT gates). The result is a single-query exact quantum algorithm to extract s
with O(n2) auxiliary operations. Moreover, in this case the algorithm can be streamlined
to consist of O(n) Hadamard gates, the single query, and O(n2) classical post-processing
after a measurement is made. In the case where q is an n-bit prime, our results are weaker,
since the best procedure that we are aware of for performing the QFT exactly in that case
is O(p2 log p) = O(n4n).

It should be noted that if the finite fields are relaxed to finite rings then, for the anal-
ogous hidden linear structure problem, the quantum versus classical query complexity
separation may be much weaker. This is because the classical query complexity of the
problem can become much smaller. For example, for the ring Z2n , there is a simple
classical procedure solving the hidden linear structure problem with only n + 1 queries.
It begins by querying (0, 0) and (2n−1, 0), yielding π(0) and π(s2n−1), respectively.
If π(0) = π(s2n−1), then s is even; otherwise s is odd. Thus, two queries reduce the
number of possibilities for s by a factor of 2. If s is even, then the next query is (2n−2, 0),
yielding π(s2n−2), which determines whether s mod 4 is 0 or 2. If s is odd, then the next
query is (2n−2, 2n − 2n−2), yielding π(2n − 2n−2 + s2n−2), which determines whether
s mod 4 is 1 or 3. This process can be continued to deduce s after n + 1 queries. For
this reason, our attention is focused on the hidden linear structure problem over fields
(though we do consider QFTs for some noncommutative rings in the next section).

We proceed with the classical lower bound.

THEOREM 3. �(
√

q) queries are necessary to solve the hidden linear structure problem
over GF(q) within error probability 1

2 .

PROOF. The lower bound proof is similar to that for Simon’s problem [18]. First, by a
game-theoretic argument [19], it suffices to consider deterministic algorithms where the
input data, embodied by the values of s and π , is probabilistic. Set both s ∈ GF(q) and
π (a permutation on GF(q)) randomly, according to the uniform distribution. Consider
the information obtained about s after k queries (x1, y1), . . . , (xk, yk) (without loss of
generality, the queries are all distinct). If, for some i 
= j , the outputs of the i th and
j th queries collide in that π(yi + sxi ) = π(yj + sxj ), then yi + sxi = yj + sxj , which
implies that the value of s can be determined as

s = yi − yj

xj − xi
(3)

(note that xj − xi 
= 0, since this would imply that (xi , yi ) = (xj , yj )). On the other
hand, if there are no collisions among the outputs of all k queries, then all that can be
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deduced about s is that

s 
= yi − yj

xj − xi
(4)

for all 1 ≤ i < j ≤ k. This leaves q − k(k − 1)/2 values for s, which are equally likely
by symmetry.

Now, consider the probability of a collision occurring at the kth query given that no
collisions have occurred in the previous k − 1 queries. After the first k − 1 queries, there
remain at least q − (k − 1)(k − 2)/2 > q − k2/2 possible values of s, equally likely by
symmetry. Of these values, at most k − 1 induce a collision between the kth query and
one of the k − 1 previous queries. Therefore, the probability of a collision occurring at
the kth query is at most

k − 1

q − k2/2
≤ 2k

2q − k2
.(5)

It follows that the probability of a collision occurring at all during the first l queries is
bounded above by

l∑
k=1

2k

2q − k2
≤ l2

2q − l2
.(6)

If this probability is to be greater than or equal to 1
2 , then l2/(2q −l2) ≥ 1

2 , which implies
that

l ≥
√

2q/3 ∈ �(
√

q).(7)

Next, we describe the quantum algorithm.

THEOREM 4. For a given field GF(q), if Fq,ϕ and F†
q,ϕ can be performed for some

nonzero linear mapping ϕ, then a single query is sufficient to solve the hidden linear
structure problem exactly.

PROOF. The quantum procedure is to initialize the state of two GF(q)-valued registers
to |0〉|1〉 (where 0 and 1 are respectively the additive and multiplicative identities of the
field) and perform the following operations (where F = Fq,ϕ):

1. Apply F ⊗ F†.
2. Query the black-box.
3. Apply F† ⊗ F .

Then the state of the first register is measured.
Tracing through the evolution of the state of the registers during the execution of the

above algorithm, the state after each step is:

1. (F |0〉)(F†|1〉),
2. (F |s〉)(Uπ F†|1〉),
3. |s〉(FUπ F†|1〉).
The transformation from step 1 to step 2 follows from the control/target inversion prop-
erty, as shown in Figure 1. It is clear that the output of the algorithm is s.
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As mentioned previously, the transformation F2n ,ϕ for any ϕ is particularly simple,
and yields the following algorithm:

1. Initialize the state of two GF(2n)-valued registers to the (classical) state |0〉|Mϕ
�1〉.

2. Apply a Hadamard transform to each qubit of each register.
3. Query the black-box.
4. Apply a Hadamard transform to each qubit of each register.
5. Measure the first register, yielding an n-bit string z.
6. Classically, compute (MT

ϕ )−1�z.

The result will be s.

4. Extension to Rings. It is natural to generalize the concept of controlled addition
as we have seen it to rings in general. So, one might ask whether, for all rings, there
exist operations corresponding to “quantum Fourier transforms” in the sense that they
perform control/target inversion on controlled-addition gates over that ring. While we do
not know the answer to this question, we will show that for any commutative ring R where
such a Fourier transform exists, it is possible to define QFTs for the noncommutative
ring of m×m matrices over R.

We introduce some notation. In this section all matrices are understood to be square
matrices. Given an m2 array of quantum registers {Ei j } over a commutative ring R,
we associate the state |xi j 〉 with the register Ei j . We also identify the m×m matrix X
given by

X =

⎡
⎢⎢⎢⎢⎣

x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xm1 xm2 . . . xmm

⎤
⎥⎥⎥⎥⎦

with the product state

|X〉 =
m⊗

i=1

m⊗
j=1

|xi j 〉 = |x11〉|x12〉 · · · |x1m〉|x21〉 · · · |xmm〉

of the states of the registers. We then make the following definition.

DEFINITION 4.1. Let FR be a QFT over a commutative ring R. Then we define the QFT
over Rm×m by the following mapping for each matrix X = (xi j ) ∈ Rm×m :

FR,m : |X〉 �→
m⊗

i=1

m⊗
j=1

FR|xji 〉.

That is, the QFT of |X〉 is performed by applying the Fourier transform FR independently
to all the quantum registers used to represent X , and transposing those registers (or their
states) within the register array.
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Multiplication in matrix rings over R will, in general, be noncommutative. Therefore,
in working with matrices, we must distinguish between left and right multiplication
when defining the controlled addition operators. We define left-controlled addition with
parameter S (denoted by CS∗) and right-controlled addition with parameter S (denoted
by C∗S) by the following action on basis states:

CS∗: |X〉|Y 〉 �→ |X〉|Y + SX〉, C∗S: |X〉|Y 〉 �→ |X〉|Y + X S〉.

As well, we introduce left- and right-controlled addition operators with the roles of the
target and control registers reversed:

DS∗: |X〉|Y 〉 �→ |X + SY 〉|Y 〉, D∗S: |X〉|Y 〉 �→ |X + Y S〉|Y 〉.

As the order of multiplication becomes important for rings in general, we find it reason-
able to make the following expansion of the definition of control/target inversion: a gate
G performs control/target inversion on controlled addition gates over a given ring if the
following equality holds:

(G† ⊗ G)CS∗(G ⊗ G†) = D∗S.

That is, in addition to the roles of target and control being interchanged, the manner of
multiplication (left or right) is switched. In the case where the ring is commutative, this
reduces to the definition given previously (see Figure 1). We now show that the QFT
FR,m defined above has this property for m×m matrices over R, when FR is defined and
has the control/target inversion property on R.

For input matrices X and Y over R, we denote

|X〉 =
m⊗

i=1

m⊗
j=1

|xi j 〉, |Y 〉 =
m⊗

i=1

m⊗
j=1

|yi j 〉.

Let Ei j represent the register which stores the state |xi j 〉, and let Fi j represent the
register which stores the state |yi j 〉. Define the operator Ai j

ik(s) as a controlled-ADDs

gate which operates on a control register Eik and a target register Fi j , and Bi j
ik (s) as a

controlled-ADDs gate which operates on a control register Fik and a target register Ei j .
Then we can decompose CS∗ as the following product of operators:

CS∗ =
m∏

i=1

m∏
j=1

m∏
k=1

Aik
i j (sk j ).

This can be easily verified by testing the effect of this product on the i j th target register,
where we see that the effect (for basis states) is to add the term xiksk j for each 1 ≤ k ≤ m.
Control/target inversion is expressed for these gates in the following manner:

(FR
†⊗m2 ⊗ FR

⊗m2
)Aik

i j (sk j )(FR
⊗m2 ⊗ FR

†⊗m2

) = Bik
i j (sk j ).

Here, the QFTs cancel one another out on all registers except the i j th target register and
the ikth control register, where control/target inversion occurs.
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Using this decomposition, and applying QFTs to the individual registers before and
after this product of gates in the same manner as above, we obtain

(FR
†⊗m2 ⊗ FR

⊗m2
)CS∗(FR

⊗m2 ⊗ FR
†⊗m2

) =
m∏

i=1

m∏
j=1

m∏
k=1

Bik
i j (sk j )

=
m∏

i=1

m∏
k=1

m∏
j=1

Bik
i j (sk j )

=
m∏

i=1

m∏
j=1

m∏
k=1

Bi j
ik (sjk) = DST∗.

That is, the roles of the control and target registers are reversed, and although the manner
of multiplication is unchanged, the parameter matrix S is transposed.

Note that the QFT FR,m on m×m matrices over R can be decomposed into an appli-
cation of FR on each element of the matrix, and transposing the matrix (denoted by the
operator Tm), in any order:

FR,m = (FR
⊗m2

)Tm = Tm(FR
⊗m2

).

Clearly, Tm Tm = Im (the identity m×m matrix). Then we can verify that FR,m performs
control/target inversion on controlled addition gates over Rm×m :

(F†
R,m ⊗ FR,m)CS∗(FR,m ⊗ F†

R,m)|X〉|Y 〉

= (Tm ⊗ Tm)(F†
R

⊗m2

⊗ FR
⊗m2

)CS∗(FR
⊗m2 ⊗ F†

R
⊗m2

)(Tm ⊗ Tm)|X〉|Y 〉
= (Tm ⊗ Tm)DST∗|XT〉|Y T〉
= (Tm ⊗ Tm)|XT + STY T〉|Y T〉
= |X + Y S〉|Y 〉
= D∗S|X〉|Y 〉,

which is what we wished to show.
As for extending the hidden linear structure problem to arbitrary rings, it is not clear

for which rings R an exponential separation can be achieved. The ability to perform
control/target inversion for this problem when R = GF(pn)m×m (for example) indi-
cates that the problem can be solved in one query in the quantum case, but we do not
have strong classical lower bounds for this case. However, there do exist rings, such as
GF(pn)×GF(pn), where exponential separation can be shown, building on the proof
for GF(pn); thus, the strong separation in the case of finite fields is not an isolated case.
Considering the proofs of the classical upper bound for Zpn and lower bound for GF(pn),
it seems plausible that rings exhibiting a strong separation will have very few zero divi-
sors, or little additive structure among the zero divisors. Both of these statements hold
for GF(pn)×GF(pn), which has a ratio of O(1/pn) zero divisors among its elements,
and which only has two ideals which have only a trivial intersection.



Sharp Quantum versus Classical Query Complexity Separations 461

Acknowledgments. R.C. gratefully acknowledges the University of California at
Berkeley and the California Institute of Technology where some of the writing and
revisions to this paper occurred.

References

[1] A. Barenco, C. H. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and
H. Weinfurter. Elementary gates for quantum computation. Physical Review A, 52:3457–3467, 1995.

[2] J. N de Beaudrap, R. Cleve, and J. Watrous, Quantum Fourier transforms for extracting hidden linear
structures in finite fields. Los Alamos Preprint Archive quant-ph/0011065, 2000.

[3] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing, 26(5):1411–
1473, 1997.

[4] D. Boneh and R. Lipton. Quantum cryptanalysis of hidden linear functions. In Advances in Cryptology
– Crypto ’95, volume 963 of Lecture Notes in Computer Science, pages 242–437. Springer-Verlag,
Berlin, 1995.

[5] G. Brassard and P. Høyer. An exact quantum polynomial-time algorithm for Simon’s problem. In
Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems, pages 12–23, 1997.

[6] R. Cleve. The query complexity of order-finding. In Proceedings of the 15th Annual IEEE Conference
on Computational Complexity, pages 54–59, 2000.

[7] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Proceedings of the
Royal Society, London, Series A, 454:339–354, 1998.

[8] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, New York, 1993.
[9] W. van Dam and S. Hallgren. Efficient quantum algorithms for shifted quadratic character problems.

Los Alamos Preprint Archive quant-ph/0011067, 2000.
[10] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer. Pro-

ceedings of the Royal Society, London, Series A, 400:97–117, 1985.
[11] D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation. Proceedings of the

Royal Society, London, Series A, 439:553–558, 1992.
[12] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge,

1999.
[13] L. Hales and S. Hallgren. An improved quantum Fourier transform algorithm and applications. In

Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages 515–525,
2000.

[14] S. Hallgren. Personal communication, 2001.
[15] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications, revised edition.

Cambridge University Press, Cambridge, 1994.
[16] M. Mosca and A. Ekert. The hidden subgroup problem and eigenvalue estimation on a quantum com-

puter. In Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum
Communication, volume 1509 of Lecture Notes in Computer Science, pages 174–188. Springer-Verlag,
Berlin, 1999. Also available from the Los Alamos Preprint Archive quant-ph/9903071.

[17] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[18] D. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):1474–1483,
1997.

[19] A. C.-C. Yao. Lower bounds by probabilistic arguments. In Proceedings of the 24th Annual Symposium
on Foundations of Computer Science, pages 420–428, 1983.


