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Abstract

We show that quantum circuits cannot be made fault-
tolerant against a depolarizing noise level of θ̂ = (6 −
2
√

2)/7 ≈ 45%, thereby improving on a previous bound
of 50% (due to Razborov [18]). More precisely, the circuit
model for which we prove this bound contains perfect gates
from the Clifford group (CNOT, Hadamard, S, X , Y , Z)
and arbitrary additional one-qubit gates that are subject to
depolarizing noise θ̂. We prove that this set of gates can-
not be universal for arbitrary (even classical) computation,
from which the upper bound on the noise threshold for fault-
tolerant quantum computation follows.

1 Introduction

In the past decade, quantum computing has attracted
much attention because of its ability to efficiently solve
problems for which no efficient classical algorithms are
known. Significant research efforts are dedicated to phys-
ically realizing quantum computers. A fundamental prob-
lem is to cope with noise, which creates major difficulties
in storing and operating on quantum states reliably. A key
advance was the realization that quantum error correcting
codes [21, 24] exist and fault-tolerant quantum computa-
tion [22] is possible for a number of reasonable error mod-
els. Subsequent results have improved on the first fault-
tolerant schemes, proving better and better bounds on the
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noise tolerable in quantum computation (e.g. [6, 3]). Re-
cent results suggest that fault-tolerant quantum computation
is possible with gates that have as much as 3% of depolar-
izing errors [12], but there is no rigorous proof so far.

In this paper we will concentrate on the opposite task of
proving that, for certain noise levels, quantum computation
is impossible. Our main result is as follows: Let CLIFFORD
be the set of all (noiseless) Clifford gates

CNOT1
2 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1)

H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
.

The Gottesman-Knill Theorem says that this set of gates
can be efficiently simulated classically (see also [1]), so
they are probably not universal for quantum computation.
On the other hand, it is known that CLIFFORD together
with any other one-qubit gate, not generated by the gates
in CLIFFORD, form a universal set of gates for quantum
computation [23, 14]. We show however, that such ad-
ditional one-qubit gates should not be too noisy. More
precisely, let CLIFFORD∗ be CLIFFORD augmented with
arbitrary one-qubit gates with depolarizing error at least
θ̂ = (6 − 2

√
2)/7 ≈ 45%. Then this set of gates is no

longer capable of computing arbitrary functions and thus is
not universal. In other words, fault-tolerant quantum com-
putation cannot be performed if there is this level of noise.
Additionally we show that, among all one-qubit gates that
augment CLIFFORD, the so-called π/8-gate (see end of Sec-
tion 3) is the type of gate that requires the most noise to ren-
der it incapable of universal quantum computation by our
approach. That is, for other augmenting gates (e.g., π/16-
gates), our approach will yield stronger bounds on the tol-
erable level. Our results also yield a simple proof that not
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all classical functions can be computed using Clifford gates
(complementing results in [1]). In particular, in Corollary
1, we show that a boolean function which can be computed
by Clifford circuits can be written as the parity of a subset
of input bits.

The main idea of our approach is as follows. Assume
we have a Clifford circuit C with n classical input bits
x = x1, . . . , xn and one dedicated output qubit that, when
measured in the computational basis, yields the output of
the computation of C on x. Suppose now that the input is
partitioned over two parties, Alice and Bob, such that Alice
has k bits of x and Bob has n − k bits. We first show how
Alice, with the help of Bob, can compute the value of C on
x with just a single classical bit of communication (Lemma
1). From this it follows that Clifford circuits can at the very
best compute only those functions that require for any par-
tition of the inputs a single bit of communication, and it is
well known that many functions require more than one bit
of communication. Next, we show in Lemma 2 how prob-
abilistic mixtures of Clifford gates can be used to simulate
any single qubit unitary gate, that has noise θ̂(≈ 45%). The
proof of our Lemma relies on solving an optimization prob-
lem related to the Clifford polytope, defined as the convex
hull of the set C ⊆ R3×3 of Clifford rotation matrices in
R3. Here, the matrices C are essentially the one-qubit Clif-
ford gates in Bloch sphere representation.

Combining Lemmas 1 and 2, we get that all circuits with
CLIFFORD∗-gates and with respect to any distribution of the
inputs can be computed by Alice and Bob with a single bit
of communication (Lemma 3). Using the fact that there are
functions which require communication more than one bit,
we get our main result (Theorem 1): The set of gates in
CLIFFORD∗ cannot be universal. We also generalize our
result to the case that the inputs are quantum states.

The idea that a noisy 1-qubit gate can be simulated by a
probabilistic mixture of Clifford appeared first in Virmani
et al. [26]. The approach we take here though is an exten-
sion to quantum fault tolerant computation of the work by
Brassard et al [4], where they exhibit an upper bound on the
noise threshold for classical fault tolerant computation, us-
ing lower bounds on quantum communication complexity
and the non-local CHSH correlation.

We want to point out that section 3 can be read inde-
pendently of the preceding section. It shows that gates
from CLIFFORD∗, together with all stabilizer operations and
classical co-processing are classically simulatable and thus
probably not quantum-universal.

1.1 Related work

There are only a few other results concerning the lim-
its of fault-tolerant computation. These are not all strictly
comparable to each other and our result; nevertheless, we

review them and make some comparisons. See the intro-
duction of [18] for some remarks that motivate the analysis
of thresholds for fault-tolerant quantum computation.

The first results on upper bounds of the threshold deco-
herence rate were obtained by showing that quantum com-
puters with faulty gates can be simulated efficiently on a
classical computer. The first to prove one of these results
were Aharonov and Ben-Or [2], with the value 97% for the
noise. Later Harrow and Nielsen [11] showed that if 74%
of depolarizing noise is applied to each output qubit of each
gate, then (faulty) two-qubit gates cannot produce entangle-
ment. They concluded that circuits containing only one- and
two-qubit gates with depolarizing noise at least 74% can be
simulated efficiently on a classical computer.

An improvement of this is due to Virmani et al. [26]
who show that the set consisting of CNOT with depolarizing
noise at least 67% and arbitrary 1-qubit gates is efficiently
simulatable classically. In this paper they also introduce the
interesting idea that sufficiently noisy 1-qubit gates can be
simulated by Clifford gates; we build on and extend this
idea in this paper. We note however, that their strongest
results are for a restricted class of gates (ones which are di-
agonal in the computational basis) and dephasing or worst-
case noise. They prove that (

√
2−1)/

√
2 ≈ 29% dephasing

noise is enough to make these diagonal gates a mixture of
Clifford operations1. We extend their results by consider-
ing all 1-qubit gates. Note also that dephasing noise is only
symmetric around the z-axis, which is natural when con-
sidering diagonal gates. Our noise bounds are with respect
to depolarizing noise, which is symmetric in all directions,
and hence appropriate when considering arbitrary one-qubit
unitaries.

Note that all these results do not exclude the possibility
that quantum circuits with high noise can still do universal
classical computations; our results imply this.

The only prior result of this latter type is due to Razborov
[18], where a 50% upper bound on the noise threshold
for depolarizing noise on qubits for circuits with two-qubit
gates is obtained (and a weaker bound for k-qubit gates).
The argument in [18] is essentially that, at this noise level,
any superlogarithmic-depth quantum circuit (with constant
error rate per qubit per time step) will be overwhelmed
by the noise and produce a statistically meaningless out-
come. Thus, under the complexity theoretic assumption
BQP 6= QNC1, there are sets in BQP which can be
computed with this noise level. We note that it is shown
in [8] that in fact log-depth quantum circuits can perform
interesting feats, including efficient integer factorization
(if combined by classical polynomial-time pre- and post-
processing). Our error model is in most respects weaker
than that of [18] (since our qubit errors are only occurring
at the completion of non-CLIFFORD gates) and our bound of

1They define dephasing noise as ρ 7→ 1/2(ρ + ZρZ).
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≈ 45% is below 50%. In fairness, there is a sense in which
the bound in [18] is stronger: it permits arbitrary (noisy)
two-qubit gates; whereas, our only two-qubit gates are (per-
fect) CNOT gates.

Finally, we note that our work is related to, and partly
stimulated by, the circle of ideas surrounding measurement-
based quantum computation that was largely initiated by
[10, 17].

2 Preliminaries and notation

Eij is the all-zero matrix, except for the entry i, j which
is equal to 1. We also write + for +1 and − for −1. For
matrices A,B ∈ R3×3 we define the inner product 〈A,B〉
as:

〈A,B〉 = tr(ATB) =
∑

i,j∈{1,2,3}

aijbij .

The following fact is used repeatedly: 〈A,BC〉 =
〈BTA,C〉 for A,B,C ∈ R3×3.

By A∗ we denote the conjugate transpose of matrix A.
An n-qubit state (or density matrix) ρ is a matrix ρ ∈

C2n×2n

with the properties tr(ρ) = 1, ρ = ρ∗ (Hermiticity)
and ρ is positive semi-definite. An n-qubit operation (or
gate) is a unitary matrix U ∈ C2n×2n

, i.e., U∗U = I. For
such n-qubit state ρ and n-qubit operation U the application
of U to ρ results in the state UρU∗.

2.1 Bloch-vector representation

In our further analysis it will be convenient to use the
Bloch-sphere representation of 1-qubit states and 1-qubit
operations, which we review now (see e.g. Section 4.2 and
Chapter 8 in [15]).

For r ∈ R3 define r · σ = rxX + ryY + rzZ, where
σ = (X,Y, Z) is the vector of Pauli matrices

X =
(

0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

Then, all 1-qubit density matrices ρ can be uniquely written
in the form

ρ =
I + r · σ

2
=

I + rxX + ryY + rzZ

2
,

where r ∈ R3 and ||r|| =
√
r2x + r2y + r2z ≤ 1. We call r

the Bloch vector of ρ.
For n ∈ R3 with ||n|| = 1 and θ ∈ R we define

Un(θ) = exp(−iθn · σ/2) = cos(θ/2)I− i sin(θ/2)n · σ.

We first note that Un(θ)Un(θ)∗ = I, i.e., Un(θ) is unitary.
Second, let the result of the quantum operation Un(θ) ap-
plied to state ρ = I/2 + r · σ/2 be ρ′ = Un(θ)∗ρUn(θ) =

I/2 + r′ · σ/2. Then r′ is the image of rotating r around n
by an angle θ. Third, all 1-qubit unitaries U can be written
as

U = Un(θ)

with n ∈ R3, θ ∈ R and ||n|| = 1 (ignoring an unimportant
phase factor α ∈ C with |α| = 1).

Thus, one-qubit states and unitaries are isomorphic to
vectors ,resp., rotations in R3. The set of all rotations in
R3 is the group SO(3).2 We introduce some notation re-
flecting this isomorphism. For unitary U ∈ C2×2 we let
RU ∈ SO(3) be the corresponding rotation matrix. We
get a reverse operation (up to phase factors) by fixing one
mapping f : SO(3) → C2×2 with the property that for all
unitary U ∈ C2×2 it holds f(RU ) = αU for some α ∈ C,
|α| = 1. We then write UR = f(R).

This can be extended to probabilistic mixtures of quan-
tum operations. Let {pi} be a probability distribution,
i.e.,

∑
i pi = 1 and 0 ≤ pi, and let Ui ∈ C2×2 be

a 1-qubit unitary with corresponding Bloch representation
Ri ∈ R3×3. Then the quantum operation E in which each
Ui is applied with probability pi has Bloch-representation
RE =

∑
i piRi.

2.2 Noise

There are several models of noise considered in the lit-
erature. The most common one, which we consider too, is
depolarizing noise. A 1-qubit state ρ to which depolarizing
noise p is applied, becomes

(1− p)ρ+ pI/2.

Thus, with probability 1 − p the state is not changed and
with probability p the state is replaced with the completely
mixed state.

It is not hard to see that applying depolarizing noise p
to ρ = I/2 + r · σ/2 yields ρ′ = I/2 + r′ · σ/2, with
r′ = (1 − p)r. So, this noise shrinks the Bloch vector of a
state to (1− p) of its original length.

We say that a 1-qubit gate implements the unitary U with
noise p if it transforms states ρ into

(1− p)UρU∗ + pI/2. (2)

This quantum operation can be seen as a two-stage process,
in which first U and then depolarizing noise is applied. Let
RU ∈ R3×3 be the rotation matrix corresponding to the
unitary U . Then this noisy quantum operation has Bloch-
representation (1− p)RU , i.e., it rotates a Bloch vector and
scales it by a factor 1− p.

For 1-qubit gates and depolarizing noise, the two rep-
resentations are (up to unimportant global phase factors)
equivalent. (See Section 8.3 in [15] for more details.)

2This group will play a prominent role in the proof of Lemma 2, where
some more notation can be found.
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2.3 Clifford group

The (n-qubit) Clifford group contains all unitary opera-
tions that can be written as a product of tensor products of
S,H and CNOT (see Eq. (1)). The Clifford group con-
tains also all Pauli operators X,Y, Z. We let CLIFFORD be
the set of all Clifford gates. Let CLIFFORD∗ be the set of
gates consisting of CLIFFORD and arbitrary 1-qubit gates
which have depolarizing noise at least θ̂ = (6− 2

√
2)/7.

For a state with Bloch vector r we get:

S

(
1
2

I +
rx
2
X +

ry
2
Y +

rz
2
Z

)
S∗ =

1
2

I− ry
2
X +

rx
2
Y +

rz
2
Z

Let RS be the Bloch representation of S. Then RS rotates
Bloch vectors around the z-axis by π/2. In particular, the
x-axis is mapped to−y and y to x. For the Hadamard-gates
we similarly have

H

(
1
2

I +
rx
2
X +

ry
2
Y +

rz
2
Z

)
H∗ =

1
2

I +
rz
2
X − ry

2
Y +

rx
2
Z.

So the Bloch representation RH of H negates the y-
coordinate of a Bloch vector and swaps the x and z-
coordinates, i.e., it is a rotation by π around the axis
1/
√

2(1, 0, 1).
We define C as the set of matrices which can be generated

from RS and RH . A C ∈ C is called a Clifford (rotation)
matrix. It is not hard to see that C contains exactly those
rotations which map axes to axes (or their opposite). Those
C have in each row and column exactly one non-zero entry,
which must be either +1 or −1, and det(C) = 1. Note that
C, being isomorphic to the 1-qubit Clifford group, is a group
under matrix multiplication. Examples of Clifford matrices
are 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 −1 0
0 0 −1

 ,

 1 0 0
0 0 1
0 −1 0


2.4 Communication complexity

The setting for this is the following: Assume two sep-
arated parties, Alice and Bob, where Alice is given x ∈
{0, 1}mA and Bob y ∈ {0, 1}mb , want to compute f(x, y)
for some fixed function f : {0, 1}mA ×{0, 1}mB → {0, 1}.
We want that at least one party learns the result f(x, y). In
order to achieve this they can communicate bits, accord-
ing to a predefined protocol. The deterministic communica-
tion complexity Cf (n) of f is the smallest number c such

that each protocol which always computes the correct re-
sult, needs at least c bits of communication for at least one
input x, y ∈ {0, 1}n.

It is well-known that there are functions f where Cf (n)
is n, for example the inner product function (see [13]).
The above can be extended to randomized communication,
where the parties are additionally provided with a source
which sends a sequence of random bits to Alice and the
same sequence to Bob. The final result only has to be cor-
rect with some probability 1− ε for ε < 1/2. The minimum
number of bits needed to be communicated such that the
output is correct with probability at least 1− ε is denoted by
Cε

f (n). However, also in this randomized setting there are
“hard” functions. For example, it is known that the inner
product function has randomized communication complex-
ity n − O(log(1/δ)), if the outputs have to be correct with
probability at least 1/2− δ (see also [13]).

For functions f : {0, 1}n → {0, 1} which depend only
on one input string and any S ⊆ {1, . . . , n} let Cf (n, S) be
the communication complexity of f if the bits with indices
in S are given to Alice and all others to Bob. As in [13] we
then define the worst-case partition communication com-
plexity as Cf (n) = maxS⊆{1,...,n} Cf (n, S). In [25] this is
called symmetric communication complexity.

3 The power of Clifford circuits

We are now ready to explain the idea of simulating Clif-
ford circuits.

Lemma 1. Let f : {0, 1}n → {0, 1} be a function that is
computable with unbounded error3 by a quantum circuit C
that uses only gates from CLIFFORD , ancillas initialized to
|0〉 and one single-qubit measurement in the computational
basis, which determines the output. Then the deterministic
communication complexity Cf (n) is at most one bit.

Proof. We begin by noting that each qubit can be repre-
sented by two shares: a classical share consisting of two
bits, and a quantum share consisting of one qubit . When
the classical share is ab and the quantum share |ψ〉, then the
logical qubit that the shares encode is XaZb|ψ〉.

Assuming that a set of qubits is encoded in this man-
ner, the operations H , S, and CNOT can be applied to the
logical qubits by separately performing operations on the
shares that encode them (i.e., the logical qubits do not have
to be reconstructed). The reason why this works is because
for any Clifford operation C = H,S,CNOT1

2 and any ten-
sor product of Pauli operators P1 there is a tensor product of
Pauli operators P2 withCP1 = P2C. For example, to apply
H to a logical qubit, the two bits that make up its classical

3That means, that the output is only correct with probability strictly
greater than 1/2.
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share are swapped and H is applied to its quantum share.
This works correctly because

HXaZb|ψ〉 = HXaHHZbHH|ψ〉 (3)
= ZaXbH|ψ〉
= (−1)a∧bXbZaH|ψ〉,

and (−1)a∧b is an irrelevant global phase.
To apply S to a logical qubit, the b-part of the classical

share is updated to b := a⊕b and S is applied to its quantum
share. This case can be verified by noting that

SXaZb|ψ〉 = iaXaSZaZb|ψ〉 (4)
= iaXaZa⊕bS|ψ〉,

where we note that ia is a global phase.
To simulate the application of CNOT1

2 gate4 on two log-
ical qubits, with classical shares a1b1 and a2b2, we update
a2 := a1 ⊕ a2, b1 := b1 ⊕ b2 and CNOT1

2 is applied to the
two quantum shares. In this case, we omit the details but
note that the correctness can be verified using the identities

CNOT1
2(X ⊗ I) = (X ⊗X)CNOT1

2 (5)
CNOT1

2(I ⊗X) = (I ⊗X)CNOT1
2

CNOT1
2(Z ⊗ I) = (Z ⊗ I)CNOT1

2

CNOT1
2(I ⊗ Z) = (Z ⊗ Z)CNOT1

2.

We first describe a probabilistic communication protocol
for f . Alice operates on the classical shares while Bob op-
erates on the quantum shares. The initial shares are easy to
construct: for each of Alice’s input qubits |xj〉, Alice sets
her classical share to aj := xj ,bj := 0 and Bob sets his
quantum share to |0〉; for each of Bob’s input bits yj , Alice
sets her classical share to aj = bj := 0 and Bob sets his
quantum share to |yj〉. In this manner, Alice and Bob can
simulate the execution of circuit C on input |x〉|y〉|0 . . . 0〉
without any communication to obtain the shares of the out-
put qubits of C. For Bob to obtain the measured output
qubit, Alice sends the first bit of her classical share, a1, to
Bob, who applies Xa1 to his quantum share and measures
it (Alice need not send b1, the second bit of the classical
share, since Bob is performing a measurement in the com-
putational basis).

Finally, to obtain a deterministic communication proto-
col for f , we note that Bob need not actually manipulate
quantum information; rather, he can simulate his quantum
registers and his operations with high enough precision on
a classical computer. Then, upon receipt of the classical
bit from Alice, he can exactly determine the output proba-
bilities of his measurement to determine which outcome is
more likely.

4control qubit 1, target qubit 2

The next Corollary characterizes exactly all functions
computable by Clifford circuits. From Lemma 1 we get that
this set is very limited and far from being universal.

Corollary 1. All functions f : {0, 1}n → {0, 1} which can
be computed by a Clifford circuit, can be written in the form

f(x1 . . . xn) = c⊕
⊕
j∈S

xj ,

where S ⊆ [n] is a subset of the input bits not depending on
the input bits and c ∈ {0, 1}.

Proof. It is clear that all functions f of this form can be
computed by a Clifford circuit. We now also prove the re-
verse.

Let f : {0, 1}n → {0, 1} be a function which can be
computed by a Clifford circuit C. Then we can simulate
this circuit as in Lemma 1, where we give Alice the whole
input, i.e., mA = n and mB = 0.

Inspecting the proof of Lemma 1 we see that in each
step Alice always updates her ai’s and bi’s by computing
the parity of two bits. So, the final bit she sends over, say
ai, is just the parity of some of the input bits. Thus we
can write ai =

⊕
j∈S xj , for some S ⊆ [n]. Bob initial-

izes all his quantum bits to |0〉, so he starts with the state
|ψ0〉 = |0 . . . 0〉. Further, Bob just applies the circuit C to
his state and measures the i-th qubit of XaiC|ψ0〉 in the
computational basis.

It is known that the probability for measuring 1 in a Clif-
ford circuits is either 0, 1/2 or 1 (see [15] page 463). It
cannot be 1/2 in our case, because that would mean that the
circuit does not compute f . So, measuring the i-th bit of
C|ψ0〉 yields a bit c ∈ {0, 1} with certainty. But this means
that f(x) = c⊕ ai = c⊕

⊕
j∈S xj .

We mention that Aaronson and Gottesman proved [1]
that there is a log-space machine which transforms a Clif-
ford circuit C into a classical circuit C ′ consisting only of
CNOT and NOT gates, with the property that C accepts the
all zero state |0〉⊗n iff C ′ accepts the (classical) all zero in-
put. Our corollary extends this slightly: For every Clifford
circuit C computing a boolean function, there is an equiv-
alent (for classical inputs) classical circuit which uses only
NOT- and CNOT-gates. Using the result from [1] we see
that we can compute the bit c in the proof of Corollary 1 in
log-space and it is also clear that the circuit Alice uses to
compute ai can be computed in log-space.

Remark 1. It is straightforward to extend Lemma 1 to func-
tions with m output bits, if the communication complexity
of the function is also higher than m, resulting in a scheme
that uses m bits of communication.
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4 Simulating unitaries

We want to extend Lemma 1, by replacing CLIFFORD
with CLIFFORD∗. To do that we first show how one can
simulate arbitrary 1-qubit gates with depolarizing noise θ̂ =
(6 − 2

√
2)/7 with a probabilistic mixture of Clifford oper-

ations.

Lemma 2. Let U be a 1-qubit unitary and EU be the fol-
lowing noisy version of it

ρ 7→ EU (ρ) = (1− θ̂)UρU∗ + θ̂I/2,

for any ρ ∈ C2×2. Then there is a probability distribution
{pC} over C such that for all ρ ∈ C2×2 we have

EU (ρ) =
∑
C∈C

pCUCρU
∗
C

andUC is a Clifford operation corresponding to the Clifford
rotation matrix C.

Proof. Using Section 2.1 the lemma can be reformulated
equivalently in Bloch representation: For any S ∈ SO(3)
there is a probability distribution {pC} over C such that

(1− θ̂)S =
∑
C∈C

pCC.

We will prove this latter statement. Define the Clifford poly-
tope as P := conv(C), i.e.

P =

{
S | S =

∑
C∈C

pCC, pC ≥ 0,
∑
C∈C

pC = 1

}
(6)

as the convex hull of the 24 Clifford rotation matrices in
R3×3. We have to prove

(1− θ̂)S ∈ P for any S ∈ SO(3). (7)

For this we use the fact that the Clifford polytope can be
alternatively described by its facet description:

P =
{
S ∈ R3×3 | 〈F, S〉 ≤ 1 for all F ∈ F

}
, (8)

where

F :=
{
C1BC2|C1, C2 ∈ C, B ∈ {B1, B

T
1 , B2}

}
,

B1 :=

 1 0 0
1 0 0
1 0 0

 , B2 :=

 1 −1 0
1 1 0
0 0 −1

 .

One can use the software from [9] for computing the facet
description (8); we will give a proof in the paper version. In
view of (8), our claim (7) is equivalent to

(1− θ̂)〈F, S〉 ≤ 1 for all S ∈ SO(3), F ∈ F . (9)

Let F ∈ F of the form F = C1BC2 where C1, C2 ∈ C.
As 〈F, S〉 = 〈CT

1 SC
T
2 , B〉 and CT

1 SC
T
2 ∈ SO(3), (9) is

equivalent to

〈S,B〉 ≤ 1

1− θ̂
= 2

√
2− 1 (10)

for all B ∈ {B1, B2}, S ∈ SO(3). The case B = B1 is
easy to handle: For S ∈ SO(3), 〈S,B1〉 =

∑3
i=1 Si1 ≤√

3 < 2
√

2 − 1. We now show (10) for B = B2. Write
S ∈ R3×3 as

S =

 a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

Well-known necessary and sufficient conditions for S ∈
SO(3) are

aT b = 0, c = a× b, aT a = 1, bT b = 1, (11)

where × denotes the vector product, defined as

a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)T .

Recall that, for a,b, c as in (11), a = b× c and b = c×a.
Using c3 = a1b2 − a2b1, we obtain 〈B,S〉 = a1 − a2 +
b1 + b2 − a1b2 + a2b1. Therefore our task is now to prove
that the optimum value of the program

max f := a1 − a2 + b1 + b2 − a1b2 + a2b1
s.t. g1 := a2

1 + a2
2 + a2

3 = 1
g2 := b21 + b22 + b23 = 1
g3 := a1b1 + a2b2 + a3b3 = 0

(12)

is at most 2
√

2−1; we in fact show that max f = 2
√

2−1.
For this, consider a global maximizer (a, b) to the program
(12). Then, the Karush-Kuhn-Tucker conditions have to be
satisfied, since the gradient vectors {∇gi(a, b) | i = 1, 2, 3}
are linearly independent; see, e.g., Theorem 12.1 in [16].
(Here, the gradient vector ∇gi(a, b) consists of the par-
tial derivatives with respect to the six variables a1, . . . , b3.)
That is, there exist scalars λ1, λ2, λ3 for which

∇f(a, b) +
∑

i=1,2,3

λi∇gi(a, b) = 0.

Equivalently, considering the partial derivatives first with
respect to (a1, a2, a3) and then with respect to (b1, b2, b3) 1− b2

−1 + b1
0

 + 2λ1a + λ3b = 0 1 + a2

1− a1

0

 + 2λ2b + λ3a = 0.

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00  © 2006



Multiplying the first and the second line by cT = (a× b)T

(recall that c ⊥ a,b) we get

0 = c1(1− b2) + c2(−1 + b1) = c1 − c2 + a3

0 = c1(1 + a2) + c2(1− a1) = c1 + c2 + b3.

Adding (resp. subtracting) these equations yields 2c1 =
−a3 − b3 and 2c2 = a3 − b3. Squaring these two equations
and then adding them gives 2a2

3+2b23 = 4c21+4c22. Since the
rows and columns in S are normalized, we get 2(1− c23) =
4(1 − c23), from which we conclude c23 = 1 and, therefore,
a3 = b3 = c1 = c2 = 0. This implies a2

1+b
2
1 = 1 = a2

1+a
2
2

and thus |b1| = |a2|. Similarly one can establish |a1| = |b2|.
On the basis of this observation we distinguish three cases.

1. a1 = b2 = 0. Then, |a2| = |b1| = 1 and f = −a2 +
b1 + a2b1 ≤ 1.

2. a1 6= 0 and a1 = −b2. From aT b = 0 we have a1(b1−
a2) = 0, which gives a2 = b1. Then, f = a1 − a2 +
a2 − a1 + a2

1 + a2
2 = 1.

3. a1 6= 0 and a1 = b2. From aT b = 0 we have a1(b1 +
a2) = 0, which gives a2 = −b1. Then, f = a1− a2−
a2 + a1− a2

1− a2
2 = 2(a1− a2)− 1, which (under the

condition a2
1 + a2

2 = 1) is clearly maximized by a1 =
−a2 = 1/

√
2. Therefore, we find max f = 2

√
2− 1.

Thus, we have shown that the optimum value of the program
(12) is equal to 2

√
2− 1, which concludes the proof.

Lemma 3. Let f : {0, 1}mA × {0, 1}mB → {0, 1} be a
function and K a quantum circuit for f with error proba-
bility at most ε which uses only gates from CLIFFORD∗and
measurements in the computational basis. Then Cε

f ≤ 1.

Proof. From Lemma 1 we know how two parties, Alice and
Bob, can simulate perfect Clifford gates. From Lemma 2 we
know how they can jointly simulate the other noisy 1-qubit
gates in CLIFFORD∗, where they use shared randomness to
make sure that they always simulate the same Clifford gate.
Thus, Alice and Bob can just simulate the CLIFFORD∗ cir-
cuit for f , using one bit of communication in the end.

We can now prove an upper bound on the noise in fault-
tolerant quantum computation.

Theorem 1. The set of gates from CLIFFORD together with
1-qubit gates with depolarizing noise more than θ̂ and one
single-qubit measurement is not sufficient for arbitrary clas-
sical computation.

Proof. The result follows by Lemma 3 and the fact that
there are functions with communication complexity greater
than 1, for any bounded error.

In fact we have that none of the functions f with Cε
f > 1

can be computed by CLIFFORD∗ circuits with error at most
ε. From Corollary 1 we also get that functions computable
by CLIFFORD∗ are exactly those which can be written as
probabilistic mixtures of parity functions.

5 Discussion and extensions

Best gates From the proof of Lemma 2 we see that the
rotation matrix S which achieves the optimal value, is 1/

√
2 −1/

√
2 0

1/
√

2 1/
√

2 0
0 0 −1

 .

Multiplying from the right by the Clifford-matrix
diag(1,−1,−1) we get a rotation around the z-axis
by π/4. The π/8-gate

T =
(

exp(−iπ/8) 0
0 exp(iπ/8)

)
performs a rotation of π/4 around the z-axis. So, the π/8-
gate and its symmetric versions are the ones which need
the most depolarizing noise to be simulated by gates from
CLIFFORD.

Worst case noise In Lemma 2 we asked with how much
depolarizing noise all 1-qubit unitary gates are equivalent
to probabilistic mixtures of Clifford gates. Similarly to
[26] one can also ask how much arbitrary noise is needed
to make every gate a mixture of Cliffords. More precisely
what is the value θ̃ = supU∈SU(2) pU , where pU is the infi-
mum of all p such that there is a completely positive trace-
preserving 1-qubit quantum operation EU with the property
that the noisy implementation of U

U ′ : ρ 7→ (1− p)UρU∗ + pEU (ρ)

becomes a probabilistic mixture of Clifford operation.
In this section we will provide some bounds on θ̃. Let

K ∈ SU(2) be any operation that in Bloch representa-
tion maps the state X-eigenstate vX = (1, 0, 0) to u =
1√
3
(1, 1, 1). Note that a probabilistic mixture of 1-qubit

Clifford operations C =
∑

i piCi can map vX only into
the octahedronO spanned by vX = (1, 0, 0), vY = (0, 1, 0)
and vZ = (0, 0, 1) and their negatives−vX ,−vY ,−vZ (see
also [5]). Note that the state of O which is closest to u is
1
3 (1, 1, 1) = 1√

3
u and their distance is ||u − 1/

√
3u||2 =

1 − 1√
3

. The Bloch-state which is furthest away from u is
−u. All three of these states lie on a line. With this it is clear
that the state unoise which needs the smallest noise p, such
that (1−p)u+punoise is inside the octahedron is−u and the
optimal p is 1

2 (1− 1√
3
). This implies 21% ≈ 1

2 (1− 1√
3
) ≤ θ̃.
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To get an upper bound, recall that by Lemma 2 for any
gate U ∈ SU(2) the operation

U ′ : ρ 7→ (1− p)UρU∗ + pI/2

is a Clifford operation, if p ≥ θ̂. Setting
EU (ρ) = 1

3 (XUρU∗X + Y UρU∗Y + ZUρU∗Z) and
noting that for any 1-qubit density matrix it holds I/2 =
1
4 (ρ+XρX + Y ρY + ZρZ) we can rewrite the action of
U ′ also as

U ′ : ρ 7→ (1− 3
4
p)UρU∗ +

3
4
pEU (ρ).

Thus θ̃ ≤ 3
4 θ̂ ≈ 34%. Note that this is certainly not tight,

since all gates, apart from the π/8-gate (and its symmetric
versions), need less than θ̂ depolarizing noise to make it a
probabilistic mix of Clifford operations, which implies they
need less than 3

4 θ̂ worst case noise. However, as follows
from [26], the worst case noise for the π/8-gate(s) is only
1
2 −

1
2
√

2
≈ 15%.

We leave it as an interesting open question to determine
the precise value of θ̂.

Different noise models The approach we have taken can
in principal also be applied to other noise models: For any
1-qubit noise operation E , with Bloch representation SE we
can compute the minimum value θ such that for all rotations
R ∈ R3×3 the noisy version (1 − θ)R + θSE is inside the
Clifford polytope P (6). However, the actual optimization
problems might not be as easy as for depolarizing noise,
since depolarizing noise with probability p corresponds to
multiplying with (1− p) in Bloch-representation.

In principal, a similar approach might be possible to cal-
culate how well one can approximate arbitrary (unitary)
gates given a gate set S other than CLIFFORD∗ under a cer-
tain noise model. If S is not universal, this will give new
noise bounds, too.

Classical co-processing Theorem 1 states that fault toler-
ant quantum computing is not possible if we have depolar-
izing noise at least θ̂ ≈ 45% on one qubit gates even if we
can use perfect gates from CLIFFORD in our fault tolerant
circuit design. Is this optimal? Could it be that with less
than θ̂ noise on the single qubit gates and perfect gates from
CLIFFORD still no fault tolerant circuit design is possible.
We leave this as an open question, but Ben Reichardt [19]
pointed out that when we allow perfect classical computa-
tion in addition to perfect gates from CLIFFORD and perfect
measurements in the computational basis, for any quantum
circuit one can build a fault tolerant quantum circuit, that
tolerates noise less than θ̂ on single qubit gates. This fault
tolerent implementation has only a constant factor slow-
down in time.

The argument builds upon magic-state distillation, intro-
duced in [5], and goes as follows. Assume we have at our
disposal noisy π/8-gates T ′, with depolarizing noise strictly
less than θ̃, i.e. T ′(ρ) = (1 − p)TρT ∗ + pI/2 with p < θ̂,
where T is the perfect π/8 gate. Then apply T ′ to the sec-
ond half of an EPR-pair and measure the observable Z⊗Z,
which can be implemented as a measurement in the com-
putation basis with additional gates from CLIFFORD. If the
outcome is −1 throw away the state and do the experiment
again. If the outcome is +1, apply a CNOT from the first to
the second qubit, which gives

1
2

(
I +

1− p

1− p/2
1√
2
X +

1− p

1− p/2
1√
2
Y

)
⊗ |0〉〈0|. (13)

Using the result from [20] an arbitrary supply of qubits in
the state of the first qubit of (13) can be used to distill magic
states in the H-direction, which together with stabilizer op-
erations is sufficient for quantum computation. We do not
know if this also holds for other than the π/8-gate.

Note that this is tight for the π/8-gate, since stabilizer
operations (Cliffords, measurements in the computational
basis and classical co-processing)together with π/8-gates
with depolarizing noise θ̂ can be efficiently simulated clas-
sically, as follows from our Lemma 2 and the Gottesman-
Knill Theorem.

Allowing some perfect unitaries Our threshold theorem
says the following. Let f be a function such that it requires
more than one bit of communication in order to compute
it, when the input bits are partitioned over Alice and Bob.
There is no quantum circuit consisting of perfect Clifford
operations and single qubit gates with noise θ̂ (≈ 45%)
that can compute f . We can strengthen this result to allow a
small amount of perfect single qubits as well. Assume that
f requires m bits of communication to be computed. There
is no quantum circuit that uses perfect Clifford operations, s
perfect single qubit gates, and single qubit gates with noise
θ̂ that computes f , for 2s + 1 < m. The reason we get
this strengthening is because in our simulation, Lemmas 1
and 2, Alice sends to Bob whenever he wants to perform a
perfect single qubit gate on some qubit, her classical share
a and b of that specific qubit. Bob can now perform the per-
fect qubit gate on that qubit and they proceed as in Lemma 1
and 2. By the end of the simulation Alice has sent 2s+1 bits
to Bob and he will be able to compute f , contradicting that
the communication complexity of f is at least m > 2s+ 1.

Quantum inputs Lemma 1 can actually be extended to
the case where Alice and Bob get quantum states as inputs
and they are provided with entanglement. It is no prob-
lem for Bob to start with a quantum state as an input. For
Alice we do the following. We let her teleport her quan-
tum input to Bob bit by bit, using the standard scheme for
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teleportation (see e.g. [15]). When Alice teleports a qubit,
which corresponds to the i-th input qubit of the circuit C to
be simulated, she measures two classical bits. Now, if she
does not send these to Bob, but rather initializes her ai, bi
with these bits, Alice and Bob obtain the correct representa-
tion for qubits of C as in Lemma 1. Since the inner product
function has communication complexity Ω(n) even in the
presence of entanglement [7] we see that Theorem 1 is also
true for quantum inputs.
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