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Definition of the quantum 
Fourier transform (QFT)
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Quantum Fourier transformQuantum Fourier transform
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where ω = e2πi/N (for n qubits, N = 2n)

This is unitary and F2 = H, the Hadamard transform

This generalization of H is an important component of 
several interesting quantum algorithms …
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Discrete log problem
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Discrete logarithm problem (Discrete logarithm problem (DLPDLP))
Input: p (prime),  g (generator of Z*p),  a ∈ Z*p

Output: r ∈ Zp−1 such that g r mod p = a

Example: p = 7,  Z*7 = {1, 2, 3, 4, 5, 6} = {30, 32, 31, 34, 35, 33} 
(hence 3 is a generator of Z*7)

For a = 6, since 33 = 6, the output should be r = 3

Note: No efficient classical algorithm for DLP is known 
(and cryptosystems exist whose security is predicated on 
the computational difficulty of DLP)

Efficient quantum algorithm for DLP? 
(Hint: it can be made to look like Simon’s problem!)
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Quantum algorithm for Quantum algorithm for DLPDLP (1)(1)
Clever idea (of Shor): define  f : Zp−1× Zp−1 Z*p as 
f (x1 , x2) = g x1 a−x2 mod p   (can be efficiently computed)

We know  a = g r for some r, so  f (x1 , x2) = g x1 − rx2 mod p

When is  f (x1 , x2) = f (y1, y2)?

Thus,  f (x1 , x2) = f (y1, y2) iff x1− rx2 ≡ y1 − ry2   (mod p− 1)

iff (x1, x2)⋅(1, − r) ≡ (y1, y2)⋅(1, − r)   (mod p− 1)

iff ((x1, x2)− (y1, y2))⋅(1, − r) ≡ 0  (mod p− 1)

iff (x1, x2)− (y1, y2) ≡ k(r, 1) (mod p− 1)

Zp−1× Zp−1

(1,− r)

(r, 1)

Recall Simon’s: f(x) = f(y) iff x−y = kr (mod 2)
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Quantum algorithm for Quantum algorithm for DLPDLP (2)(2)
f : Zp−1× Zp−1 Z*p defined as f (x1 , x2) = g x1 a−x2 mod p

f (x1 , x2) = f (y1, y2) iff (x1 , x2)− (y1, y2) ≡ k(r, 1) (mod p− 1)

Recall Simon’s: f(x) = f(y) iff x−y = kr (mod 2)

fF

|0〉

|0〉
F|0〉

|0〉

F†

F† result is a random (s , t) such that 
(s , t)⋅(r, 1) ≡ 0  (mod p− 1)

if gcd(s, p− 1) = 1 then r can be 
computed as r = − ts−1 mod p− 1

Why?

Why?
Details need to be filled in, but this is a sketch of how 
to efficiently solve DLP on a quantum computer
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Computing the QFT
for N = 2n
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Computing the Computing the QFTQFT for for N = 2n (1)(1)
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Quantum circuit for F32:

Gates:

For F2n costs O(n2) gates

reverse order 
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Computing the Computing the QFTQFT for for N = 2n (2)(2)

One way on seeing why this circuit works is to first note that

F2n|a1a2…an〉

= (|0〉+e2πiφ(0.an)|1〉)…(|0〉+e2πiφ(0.a2…an)|1〉)(|0〉+e2πiφ(0.a1a2…an)|1〉)

It can then be checked that the circuit produces these states 
(with qubits in reverse order) for all computational basis 
states  |a1a2…an〉

Exercise: (a) prove the above equation from the definition of 
the QFT; (b) confirm that the circuit produces these states
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ContentsContents

Loose ends in the
discrete log algorithm
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Quantum algorithm for Quantum algorithm for DLPDLP (3)(3)
Input: p (n-bit prime),  g (generator of Z*p),  a ∈ Z*p

Output: r ∈ Zp−1 such that g r mod p = a

Example: p = 7,  Z*7 = {1, 2, 3, 4, 5, 6} = {30, 32, 31, 34, 35, 33} 
(hence 3 is a generator of Z*7)

Define f : Zp−1× Zp−1 Z*p as  f (x , y) = gx a−y mod p

Then  f (x1 , x2) = f (y1, y2) iff (x1 , x2)− (y1, y2) ≡ k(r, 1) (mod p− 1)

fF

|0〉

|0〉
F|0〉

|0〉

F†

F†
produces a random (s , t) such that 
(s , t)⋅(r, 1) ≡ 0  (mod p− 1)

sr + t ≡ 0  (mod p− 1)

(for some k)
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Quantum algorithm for Quantum algorithm for DLPDLP (4)(4)

fF

|0〉

|0〉
F|0〉

|0〉

F†

F† produces a random (s , t) such that 
sr + t ≡ 0  (mod p− 1)

If gcd(s, p− 1) = 1 then r can be computed as r = − ts−1 mod p−1

The probability that this occurs is φ(p−1)/(p−1), where φ is 
Euler’s totient function

It is known that φ(N) = Ω(N/ loglogN), which implies that the 
above probability is at least Ω(1/ loglog p) = Ω(1/ log n)
Therefore, O( log n) repetitions are sufficient

… this is not bad—but things are actually better than that …
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Quantum algorithm for Quantum algorithm for DLPDLP (5)(5)
We obtain a random (s , t) such that sr + t ≡ 0  (mod p− 1)

Therefore, a constant number of repetitions suffices

Note that each s ∈ {0,…, p− 2} occurs with equal probability

Therefore, if we run the algorithm twice: we obtain two 
independent samples s1, s2 ∈ {0,…,p− 2}

Question: what is the probability that gcd(s1,s2) = 1?

[ ] [ ] ∑∑ >−>−
prime

22
prime
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qq
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If it happens that gcd(s1,s2) = 1 then (by Euclid) there exist 
integers a and b such that as1 + bs2 = 1 r = − (at1 + bt2)
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Quantum algorithm for Quantum algorithm for DLPDLP (6)(6)
Another loose end: our algorithm uses QFTs modulo p− 1, 
whereas we have only seen how to compute QFTs modulo 2n

A variation of our QFT algorithm would work for moduli of the 
form 3n, and, more generally, all smooth numbers (those that 
are products of “small” primes)
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Quantum algorithm for Quantum algorithm for DLPDLP (7)(7)

Shor just used a modulus close to p− 1, and, using careful 
error-analysis, showed that this was good enough ...

In fact, for the case where p− 1 is smooth, there already exist 
polynomial-time classical algorithms for discrete log!

It’s only the case where p− 1 is not smooth that is interesting

There are also ways of attaining good approximations of  
QFTs for arbitrary moduli—which we will see later on (so 
this loose end is not yet resolved)
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On simulating black boxes
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How How notnot to simulate a black boxto simulate a black box
Given an explicit function, such as f (x) = g x1 a−x2 mod p, over 
some finite domain, simulate f-queries over that domain

Easy to compute mapping |x〉|y〉|00...0〉 |x〉|y⊕f (x)〉|g(x)〉, 
where the third register is “work space” with accumulated 
“garbage” (e.g., two such bits arise when a Toffoli gate is 
used to simulate an AND gate)

If  f is queried in superposition then the resulting state can be 
Σx αx |x〉|y⊕f (x)〉|g(x)〉 can we just discard the third register?

No ... there could be entanglement ...

This works fine as long as  f is not queried in superposition
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How How toto simulate a black boxsimulate a black box
Simulate the mapping |x〉|y〉|00...0〉 |x〉|y⊕f (x)〉|00...0〉, 
(i.e., clean up the “garbage”)

To do this, use an additional register and:
1. compute |x〉|y〉|00...0〉|00...0〉 |x〉|y〉|f (x)〉|g(x)〉

(ignoring the 2nd register in this step)
2. compute |x〉|y〉|f (x)〉|g(x)〉 |x〉|y⊕f (x)〉|f (x)〉|g(x)〉

(using CNOT gates between the 2nd and 3rd registers)
3. compute |x〉|y⊕f (x)〉|f (x)〉|g(x)〉 |x〉|y⊕f (x)〉|00...0〉|00...0〉

(by reversing the procedure in step 1)

Total cost: around twice the classical cost of computing  f, 
plus n auxiliary gates 
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The “hidden subgroup” framework
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Hidden subgroup problem (1)Hidden subgroup problem (1)
Let G be a known group and H be an unknown subgroup of G

Let  f : G T have the property f (x) = f (y) iff x− y∈ H 
(i.e., x and y are in the same right coset of H )

Problem: given a black-box for computing  f, determine H

Example 1: G = (Z2)n (the additive group) and H = {0,r}

Example 2: G = (Zp−1)2 and 
H = {(0,0), (r,1), (2r,2), …, ((p−2)r, p−2)}

Example 3: G = Z and H = rZ
(Shor’s factoring algorithm can be viewed this way)
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Hidden subgroup problem (2)Hidden subgroup problem (2)
Example 4: G = Sn (the symmetric group, consisting 
of all permutations on n objects—which is not abelian) 
and H is any subgroup of G

A quantum algorithm for this instance of HSP would 
lead to an efficient quantum algorithm for the graph 
isomorphism problem …

… yet no efficient quantum has been found for this 
instance of HSP, despite significant effort by many 
people
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Eigenvalue estimation problem
(a.k.a. phase estimation)

Note: this is a major component of Shor’s factoring algorithm
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A simplified exampleA simplified example
U is an unknown unitary operation on n qubits

|ψ〉 is an eigenvector of U, with eigenvalue λ = +1 or –1

Output: the eigenvalue λ

Input: a black-box for a controlled-U

U n qubitsand a copy of the state |ψ〉

Exercise: solve this making a single query to the controlled-U
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GeneralizedGeneralized controlledcontrolled--UU gatesgates
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Example: |1101〉|0101〉 |1101〉U 1101|0101〉
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EigenvalueEigenvalue estimation problemestimation problem
U is a unitary operation on n qubits

|ψ〉 is an eigenvector of U, with eigenvalue e2πiφ

(0 ≤ φ < 1)

Output: φ (m-bit approximation)

Input: black-box for

U n qubits

m qubits
and a copy of |ψ〉
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Algorithm for Algorithm for eigenvalueeigenvalue estimation (1)estimation (1)

U|ψ〉

H
H
H

|0〉
|0〉

Starts off as:
|0〉

(|0〉 + |1〉) (|0〉 + |1〉) …(|0〉 + |1〉) |ψ〉
= (|000〉 + |001〉 + |010〉 + |011〉 + … + |111〉) |ψ〉
= (|0〉 + |1〉 + |2〉 + |3〉 + … + |2m −1〉) |ψ〉

|00 … 0〉|ψ〉

(|0〉+e2πiφ|1〉+ (e2πiφ)2|2〉+ (e2πiφ)3|3〉+…+ (e2πiφ)2m−1|2m−1〉) |ψ〉

|a〉|b〉 |a〉Ua|b〉

|ψ〉
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Algorithm for Algorithm for eigenvalueeigenvalue estimation (2)estimation (2)
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Therefore, applying 
the inverse of FM 

yields the digits of φ
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Algorithm for Algorithm for eigenvalueeigenvalue estimation (3)estimation (3)

If φ = 0.a1a2…am then the aabove procedure yields 
|a1a2…am〉 (from which φ can be deduced exactly)

What φ if is not of this nice form?

Example: φ = ⅓ = 0.0101010101010101…

U|ψ〉

H
H
H

|0〉
|0〉
|0〉

|ψ〉
FM

|a1a2…am〉
–1
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Algorithm for Algorithm for eigenvalueeigenvalue estimation (4)estimation (4)
What if φ is not of the nice form φ = 0.a1a2…am?
Example: φ = ⅓ = 0.0101010101010101…

Let’s calculate what the previously-described procedure does:
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Let a/2m = 0.a1a2…am be an m-bit approximation of φ, 
in the sense that φ = a/2m + δ , where |δ| ≤ 1/2m+1
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What is the 
amplitude of
|a1a2…am〉 ?
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Algorithm for Algorithm for eigenvalueeigenvalue estimation (5)estimation (5)
geometric

series!

The amplitude of |y〉 , for y = a is ∑
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Numerator:
1
e2πiδ

lower bounded by 
2πiδ2m(2/π) > 4δ2m

Denominator:
1

e2πiδ2m

upper bounded by 2πδ

Therefore, the absolute value of the amplitude of |y〉 is at least 
the quotient of (1/2m)(numerator/denominator), which is 2/π
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Algorithm for Algorithm for eigenvalueeigenvalue estimation (6)estimation (6)
Therefore, the probability of measuring an m-bit approximation 
of φ is always at least 4/π2 ≈ 0.4

For example, when φ = ⅓ = 0.01010101010101… , the outcome 
probabilities look roughly like this:

4
π2

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1000 1101 1110 1111

φ
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