Introduction to
 Quantum Information Processing CS 467 I CS 667 Phys 667 I Phys 767 C\&O 481 / C\&O 681

 Lecture 4 (2008)Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Classical computations as circuits

Classical (boolean logic) gates

"old" notation

AND gate

"new" notation

NOT gate

Note: an OR gate can be simulated by one AND gate and three NOT gates (since $a \vee b=\neg(\neg a \wedge \neg b)$)

Models of computation

Classical circuits:

data flow
Quantum circuits:

Multiplication problem

Input: two n-bit numbers (e.g. 101 and 111)
Output: their product (e.g. 100011)

- "Grade school" algorithm costs $O\left(n^{2}\right)$
- Best currently-known classical algorithm costs
$O(n \log n \log \log n)$
- Best currently-known quantum method: same

Factoring problem

Input: an n-bit number (e.g. 100011)
Output: their product (e.g. 101, 111)

- Trial division costs $\approx 2^{n / 2}$
- Best currently-known classical algorithm costs $\approx 2^{n^{1 / 3}}$
- Hardness of factoring is the basis of the security of many cryptosystems (e.g. RSA)
- Shor's quantum algorithm costs $\approx n^{2}$
- Implementation would break RSA and many other cryptosystems

Simulating classical circuits

 with quantum circuits
Toffoli gate

(Sometimes called a "controlled-controlled-NOT" gate)

In the computational basis, it negates the third qubit iff the first two qubits are both $|0\rangle$

Matrix representation:
$\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Quantum simulation of classical

Theorem: a classical circuit of size s can be simulated by a quantum circuit of size $O(s)$

Idea: using Toffoli gates, one can simulate: AND gates

NOT gates

This garbage will have to be reckoned with later on ...

Simulating probabilistic algorithms

Since quantum gates can simulate AND and NOT, the outstanding issue is how to simulate randomness

To simulate "coin flips", one can use the circuit:

It can also be done without intermediate measurements:

Exercise: prove that this works

Simulating quantum circuits with classical circuits

Classical simulation of quantum

Theorem: a quantum circuit of size s acting on n qubits can be simulated by a classical circuit of size $O\left(s n^{2} 2^{n}\right)=O\left(2^{c n}\right)$ Idea: to simulate an n-qubit state, use an array of size 2^{n} containing values of all 2^{n} amplitudes within precision 2^{-n}

α_{000}
α_{001}
α_{010}
α_{011}
$:$
α_{111}

Can adjust this state vector whenever a unitary operation is performed at $\operatorname{cost} O\left(n^{2} 2^{n}\right)$

From the final amplitudes, can determine how to set each output bit

Exercise: show how to do the simulation using only a polynomial amount of space (memory)

Some complexity classes

- P (polynomial time): problems solved by $O\left(n^{c}\right)$-size classical circuits (decision problems and uniform circuit families)
- BPP (bounded error probabilistic polynomial time): problems solved by $O\left(n^{c}\right)$-size probabilistic circuits that err with probability $\leq 1 / 4$
- BQP (bounded error quantum polynomial time): problems solved by $O\left(n^{C}\right)$-size quantum circuits that err with probability $\leq 1 / 4$
- EXP (exponential time): problems solved by $O\left(2^{n c}\right)$-size circuits.

Summary of basic containments

$P \subseteq B P P \subseteq B Q P \subseteq P S P A C E \subseteq E X P$

This picture will be fleshed out more later on

Simple quantum algorithms in the query scenario

Query scenario

Input: a function f, given as a black box (a.k.a. oracle)

Goal: determine some information about f making as few queries to f (and other operations) as possible

Example: polynomial interpolation
Let: $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{d} x^{d}$
Goal: determine $c_{0}, c_{1}, c_{2}, \ldots, c_{d}$
Question: How many f-queries does one require for this?

Answer: $d+1$

Deutsch's problem

Deutsch's problem

Let $f:\{0,1\} \rightarrow\{0,1\}$

There are four possibilities:

x	$f_{1}(x)$			
0	0			
1	0	\quad	x	$f_{2}(x)$
:---	:---			
	0			
1	1			

x	$f_{3}(x)$
0	0
1	1

x	$f_{4}(x)$
0	1
1	0

Goal: determine whether or not $f(0)=f(1)$ (i.e. $f(0) \oplus f(1))$
Any classical method requires two queries
What about a quantum method?

To be continued ...

Introduction to
 Quantum Information Processing
 CS 467 I CS 667
 Phys 667 I Phys 767
 C\&O 481 / C\&O 681

Lecture 5 (2008)
Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Deutsch's problem

(continued)

Reversible black box for \boldsymbol{f}

A classical algorithm: (still requires 2 queries)

2 queries + $\mathbf{1}$ auxiliary operation

Quantum algorithm for Deutsch

How does this algorithm work?
Each of the three H operations can be seen as playing a different role ...

Quantum algorithm (1)

1. Creates the state $|0\rangle-|1\rangle$, which is an eigenvector of $\left\{\begin{array}{cc}\text { NOT } \text { with eigenvalue }-1 \\ \boldsymbol{I} & \text { with eigenvalue }+1\end{array}\right.$
This causes f to induce a phase shift of $(-1)^{f(x)}$ to $|x\rangle$

$$
\begin{array}{r}
|x\rangle-f-(-1)^{f(x)|x\rangle} \\
|0\rangle-|1\rangle-\wp-|0\rangle-|1\rangle
\end{array}
$$

Quantum algorithm (2)

2. Causes f to be queried in superposition (at $|0\rangle+|1\rangle$)

x	$f_{3}(x)$
0	0
1	1

x	$f_{4}(x)$
0	1
1	0

$$
\pm(|0\rangle+|1\rangle)
$$

$$
\pm(|0\rangle-|1\rangle)
$$

Quantum algorithm (3)

3. Distinguishes between $\pm(|0\rangle+|1\rangle)$ and $\pm(|0\rangle-|1\rangle)$

$$
\begin{aligned}
& \pm(|0\rangle+|1\rangle) \stackrel{H}{\longleftrightarrow} \pm|0\rangle \\
& \pm(|0\rangle-|1\rangle) \longleftrightarrow H
\end{aligned}+|1\rangle
$$

Summary of Deutsch's algorithm

 Makes only one query, whereas two are needed classically

One-out-of-four search

One-out-of-four search

Let $f:\{0,1\}^{2} \rightarrow\{0,1\}$ have the property that there is exactly one $x \in\{0,1\}^{2}$ for which $f(x)=1$
Four possibilities:

x	$f_{00}(x)$	x	$f_{01}(x)$	x	$f_{10}(x)$	x	$f_{11}(x)$
00	1	00	0	00	0	00	0
01	0	01	1	01	0	01	0
10	0	10	0	10	1	10	0
11	0	11	0	11	0	11	1

Goal: find $x \in\{0,1\}^{2}$ for which $f(x)=1$
What is the minimum number of queries classically? \qquad
Quantumly?

Quantum algorithm (I)

Black box for 1-4 search:

Start by creating phases in superposition of all inputs to f :

$$
\begin{aligned}
& \text { Input state to query? } \\
& (|00\rangle+|01\rangle+|10\rangle+|11\rangle)(|0\rangle-|1\rangle)
\end{aligned}
$$

Output state of query?
$\left((-1)^{f(00)}|00\rangle+(-1)^{f(01)}|01\rangle+(-1)^{f(10)}|10\rangle+(-1)^{f(11)}|11\rangle\right)(|0\rangle-|1\rangle)$

Quantum algorithm (II)

Output state of the first two qubits in the four cases:
Case of $f_{00} ? \quad\left|\psi_{00}\right\rangle=-|00\rangle+|01\rangle+|10\rangle+|11\rangle$
Case of $f_{01} ? \quad\left|\psi_{01}\right\rangle=+|00\rangle-|01\rangle+|10\rangle+|11\rangle$
Case of $f_{10} ? \quad\left|\psi_{10}\right\rangle=+|00\rangle+|01\rangle-|10\rangle+|11\rangle$
Case of $f_{11} ? \quad\left|\psi_{11}\right\rangle=+|00\rangle+|01\rangle+|10\rangle-|11\rangle$
What noteworthy property do these states have? Orthogonal!
Challenge Exercise: simulate the above U in terms of H, Toffoli, and NOT gates

one-out-of- N search?

Natural question: what about search problems in spaces larger than four (and without uniqueness conditions)?

For spaces of size eight (say), the previous method breaks down-the state vectors will not be orthogonal

Later on, we'll see how to search a space of size N with $O(\sqrt{ } N)$ queries ...

Constant vs. balanced

Constant vs. balanced

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be either constant or balanced, where

- constant means $f(x)=0$ for all x, or $f(x)=1$ for all x
- balanced means $\Sigma_{x} f(x)=2^{n-1}$

Goal: determine whether f is constant or balanced
How many queries are there needed classically? \qquad
Example: if $f(0000)=f(0001)=f(0010)=\ldots=f(0111)=0$ then it still could be either

Quantumly?

[Deutsch \& Jozsa, 1992]

Quantum algorithm

Constant case: $|\psi\rangle= \pm \sum_{X}|X\rangle \quad$ Why?
Balanced case: $|\psi\rangle$ is orthogonal to $\pm \sum_{\chi}|x\rangle \quad$ Why? How to distinguish between the cases? What is $H^{\otimes n}|\psi\rangle$?
Constant case: $H^{\otimes n}|\psi\rangle= \pm|00 \ldots 0\rangle$
Balanced case: $H^{\otimes n}|\psi\rangle$ is orthogonal to $|0 \ldots 00\rangle$
Last step of the algorithm: if the measured result is 000 then output "constant", otherwise output "balanced"

Probabilistic classical algorithm solving constant vs balanced

But here's a classical procedure that makes only $\mathbf{2}$ queries and performs fairly well probabilistically:

1. pick $x_{1}, x_{2} \in\{0,1\}^{n}$ randomly
2. if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ then output balanced else output constant

What happens if f is constant? The algorithm always succeeds What happens if f is balanced? Succeeds with probability $1 / 2$

By repeating the above procedure k times:
$2 k$ queries and one-sided error probability $(1 / 2)^{k}$
Therefore, for large $n, \ll 2^{n}$ queries are likely sufficient

Introduction to
 Quantum Information Processing
 CS 467 I CS 667
 Phys 667 I Phys 767
 C\&O 481 / C\&O 681

Lecture 6 (2008)
Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

About $\boldsymbol{H \otimes} \boldsymbol{H} \otimes \ldots \otimes \boldsymbol{H}=\boldsymbol{H}^{\otimes \boldsymbol{n}}$

Theorem: for $x \in\{0,1\}^{n}, H^{\otimes n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle$ where $x \cdot y=x_{1} y_{1} \oplus \ldots \oplus x_{n} y_{n}$

Example: $H \otimes H=\frac{1}{2}\left[\begin{array}{llll}+1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1\end{array}\right]$
Pf: For all $x \in\{0,1\}^{n}, \quad H|x\rangle=|0\rangle+(-1)^{x}|1\rangle=\Sigma_{y}(-1)^{x y}|y\rangle$
Thus, $H^{\otimes n}\left|x_{1} \ldots x_{n}\right\rangle=\left(\sum_{y_{1}}(-1)^{x_{1} y_{1}}\left|y_{1}\right\rangle\right) \ldots\left(\sum_{y_{n}}(-1)^{x_{n} y_{n}}\left|y_{n}\right\rangle\right)$

$$
=\Sigma_{y}(-1)^{x_{1} y_{1} \oplus \ldots \oplus x_{n} y_{n}\left|y_{1} \ldots y_{n}\right\rangle}
$$

Simon's problem

Quantum vs. classical separations

black-box problem	quantum	classical
constant vs. balanced	$\mathbf{1}$ (query)	$\mathbf{2}$ (queries)
1-out-of-4 search	$\mathbf{1}$	$\mathbf{3}$
constant vs. balanced	$\mathbf{1}$	$11 / 2 \mathbf{2}^{\mathbf{n}}+\mathbf{1}$
Simon's problem		
(only for exact)		
(probabilistic)		

Simon's problem

Let $f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{n}$ have the property that there exists an $r \in\{\mathbf{0}, \mathbf{1}\}^{n}$ such that $f(x)=f(y)$ iff $x \oplus y=r$ or $x=y$

Example:

x	$f(x)$
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

What is r is this case?
Answer: $r=101$

A classical algorithm for Simon

Search for a collision, an $x \neq y$ such that $f(x)=f(y)$

1. Choose $x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n}$ randomly (independently)
2. For all $i \neq j$, if $f\left(x_{i}\right)=f\left(x_{j}\right)$ then output $x_{i} \oplus x_{j}$ and halt

A hard case is where r is chosen randomly from $\{\mathbf{0}, \mathbf{1}\}^{n}-\left\{\mathbf{0}^{n}\right\}$ and then the "table" for f is filled out randomly subject to the structure implied by r

How big does k have to be for the probability of a collision to be a constant, such as $3 / 4$?

Answer: order $2^{n / 2}$ (each $\left(x_{i}, x_{j}\right)$ collides with prob. $\left.O\left(2^{-n}\right)\right)$

Classical lower bound

Theorem: any classical algorithm solving Simon's problem must make $\Omega\left(2^{n / 2}\right)$ queries

Proof is omitted here-note that the performance analysis of the previous algorithm does not imply the theorem
... how can we know that there isn't a different algorithm that performs better?

A quantum algorithm for Simon I

Queries:

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?

Not clear what eigenvector of target registers is ...

A quantum algorithm for Simon II

 Answer: the output state is $\sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle$Let $T \subseteq\{\mathbf{0 , 1}\}^{n}$ be such that one element from each matched pair is in T (assume $r \neq 00 \ldots 0$)

Example: could take $T=\{000,001,011,111\}$
Then the output state can be written as:
$\sum_{x \in T}|x\rangle|f(x)\rangle+|x \oplus r\rangle|f(x \oplus r)\rangle$
$=\sum_{x \in T}(|x\rangle+|x \oplus r\rangle)|f(x)\rangle$

x	$f(x)$
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle+|x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain some information about r ?
Try applying $H^{\otimes n}$ to the state, yielding:

$$
\begin{aligned}
& \sum_{y \in\left\{0,11^{n}\right.}(-1)^{x \bullet y}|y\rangle+\sum_{y \in\{0,1\}^{n}}(-1)^{(x \oplus r) \bullet y}|y\rangle \\
= & \sum_{y \in\{0,1\}^{n}}(-1)^{x \bullet y}\left(1+(-1)^{r \bullet y}\right)|y\rangle
\end{aligned}
$$

Measuring this state yields y with prob. $\begin{cases}(1 / 2)^{n-1} & \text { if } r \cdot y=0 \\ 0 & \text { if } r \cdot y \neq 0\end{cases}$

A quantum algorithm for Simon IV

Executing this algorithm $k=O(n)$ times yields random $y_{1}, y_{2}, \ldots, y_{k} \in\{0,1\}^{n}$ such that $r \cdot y_{1}=r \cdot y_{2}=\ldots=r \cdot y_{n}=0$
How does this help?
This is a system of k linear equations:

$$
\left[\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{k 1} & y_{k 2} & \cdots & y_{k n}
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra)

Conclusion of Simon's algorithm

- Any classical algorithm has to query the black box $\Omega\left(2^{n / 2}\right)$ times, even to succeed with probability $3 / 4$
- There is a quantum algorithm that queries the black box only $O(n)$ times, performs only $O\left(n^{3}\right)$ auxiliary operations (for the Hadamards, measurements, and linear algebra), and succeeds with probability $3 / 4$

