
1

Introduction to Introduction to 
Quantum Information ProcessingQuantum Information Processing

CS 467 / CS 667CS 467 / CS 667
Phys 667 / Phys 767Phys 667 / Phys 767
C&O 481 / C&O 681C&O 481 / C&O 681

Richard Cleve 
DC 2117
cleve@cs.uwaterloo.ca

Lecture 4 (2008)



2

Classical computations as circuits
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Classical (Classical (booleanboolean logic) gateslogic) gates

NOT gate a ¬a ¬a ¬a

ΛAND gate
b
a a Λ b

a

b
a Λ b

“old” notation “new” notation

Note: an OR gate can be simulated by one AND gate 
and three NOT gates (since  a V b = ¬(¬a Λ ¬b) )
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Models of computationModels of computation
Classical 
circuits:

|0〉

|1〉
|1〉
|0〉

|1〉

1
0
1
0
1

Quantum 
circuits:

1
0

Λ
Λ

Λ

¬

¬

¬

Λ

Λ

Λ

Λ

Λ
1

1
0
1

Λ

¬

0

1
1

1

0

¬

Λ

Λ

¬

Λ
1

Λ

data flow
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Multiplication problemMultiplication problem

• “Grade school” algorithm costs O(n2)
• Best currently-known classical algorithm costs 

O(n log n loglog n)

• Best currently-known quantum method: same

Input: two n-bit numbers (e.g. 101 and 111)

Output: their product (e.g. 100011)
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Factoring problemFactoring problem

• Trial division costs  ≈ 2n/2

• Best currently-known classical algorithm costs  ≈ 2n⅓

• Hardness of factoring is the basis of the security of many 
cryptosystems (e.g. RSA)

• Shor’s quantum algorithm costs ≈ n2

• Implementation would break RSA and many other 
cryptosystems

Input: an n-bit number (e.g. 100011)

Output: their product (e.g. 101, 111)
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Simulating classical circuits 
with quantum circuits
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(Sometimes called a “controlled-controlled-NOT” gate)

|(a Λ b)⊕c 〉

|b〉

|a〉|a〉

|b〉

|c〉

ToffoliToffoli gategate

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

01000000
10000000
00100000
00010000
00001000
00000100
00000010
00000001

Matrix representation:

In the computational basis, it 
negates the third qubit iff the 
first two qubits are both |0〉
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Quantum simulation of classical Quantum simulation of classical 
Theorem: a classical circuit of size s can be simulated by a 
quantum circuit of size O(s)

Idea: using Toffoli gates, one can simulate: 

AND gates

|a Λ b〉

|b〉

|a〉|a〉

|b〉

|0〉

NOT gates

|¬a〉

|1〉

|1〉|1〉

|1〉

|a〉
garbage

This garbage will have to be reckoned with later on …
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Simulating probabilistic algorithmsSimulating probabilistic algorithms
Since quantum gates can simulate AND and NOT, the 
outstanding issue is how to simulate randomness

To simulate “coin flips”, 
one can use the circuit:

It can also be done without intermediate measurements:

|0〉 H random bit

|0〉

|0〉 use in place of coin flip

isolate this qubit

H

Exercise: prove that this works
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Simulating quantum circuits 
with classical circuits
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Classical simulation of quantumClassical simulation of quantum
Theorem: a quantum circuit of size s acting on n qubits can 
be simulated by a classical circuit of size O(sn22n) = O(2cn)
Idea: to simulate an n-qubit state, use an array of size 2n 

containing values of all 2n amplitudes within precision 2−n

α000

α001

α010

α011
:

α111

Can adjust this state vector whenever a unitary 
operation is performed at cost O(n22n)

From the final amplitudes, can determine how to 
set each output bit

Exercise: show how to do the simulation using 
only a polynomial amount of space (memory) 
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Some complexity classesSome complexity classes
• P (polynomial time): problems solved by O(nc)-size 

classical circuits (decision problems and uniform circuit 
families)

• BPP (bounded error probabilistic polynomial time):
problems solved by O(nc)-size probabilistic circuits that 
err with probability ≤ ¼

• BQP (bounded error quantum polynomial time):
problems solved by O(nc)-size quantum circuits that err 
with probability ≤ ¼

• EXP (exponential time): problems solved by O(2nc )-size 
circuits.
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Summary of basic containmentsSummary of basic containments

P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP

P

BPP

BQP

PSPACE

EXP

This picture will be fleshed 
out more later on
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Simple quantum algorithms 
in the query scenario
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Query scenarioQuery scenario
Input: a function f, given as 
a black box (a.k.a. oracle) fx f (x)

Goal: determine some information about  f making as few 
queries to  f (and other operations) as possible

Example: polynomial interpolation

Let: f (x) = c0 + c1x + c2 x2 + ... + cd xd

Goal: determine c0 , c1 , c2 , ... , cd

Question: How many f-queries does one 
require for this?

Answer: d +1
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Deutsch’s problem
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Deutsch’s problemDeutsch’s problem
Let  f : {0,1} {0,1} f
There are four possibilities:

x f1(x)
0
1

0
0

x f2(x)
0
1

1
1

x f3(x)
0
1

0
1

x f4(x)
0
1

1
0

Goal: determine whether or not  f(0) = f(1)  (i.e. f(0) ⊕ f(1)) 

Any classical method requires two queries

What about a quantum method?
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To be continued …
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Deutsch’s problem
(continued)
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ReversibleReversible black box for black box for ff

Uf

a

b

a

b⊕ f(a)

falternate 
notation:

A classical algorithm: 
(still requires 2 queries)

f f0

0

1

f(0) ⊕ f(1)

2 queries + 1 auxiliary operation
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Quantum algorithm for Deutsch Quantum algorithm for Deutsch 

H f

H

H

|1〉

|0〉 f(0) ⊕ f(1)

1 query + 4 auxiliary operations ⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

2
1H1

2 3

How does this algorithm work?

Each of the three H operations can be seen as playing 
a different role ...
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Quantum algorithm (Quantum algorithm (11) ) 
H f

H

H

|1〉

|0〉

1

2 3

1. Creates the state |0〉 – |1〉, which is an eigenvector of

NOT with eigenvalue –1 
I with eigenvalue +1

This causes f  to induce a phase shift of (–1) f(x) to |x〉

f

|0〉 – |1〉

|x〉 (–1) f(x)|x〉

|0〉 – |1〉
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Quantum algorithm (Quantum algorithm (22) ) 
2. Causes  f to be queried in superposition (at |0〉 + |1〉)

f

|0〉 – |1〉

|0〉 (–1) f(0)|0〉 + (–1) f(1)|1〉

|0〉 – |1〉

H

x f1(x)
0
1

0
0

x f2(x)
0
1

1
1

x f3(x)
0
1

0
1

x f4(x)
0
1

1
0

±(|0〉 + |1〉) ±(|0〉 – |1〉)
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Quantum algorithm (Quantum algorithm (33) ) 
3. Distinguishes between  ±(|0〉 + |1〉)  and  ±(|0〉 – |1〉)

H

±(|0〉 + |1〉)                 ±|0〉

±(|0〉 – |1〉)                 ±|1〉

H
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Summary of  Deutsch’s algorithm Summary of  Deutsch’s algorithm 

H f

H

H

|1〉

|0〉 f(0) ⊕ f(1)

1

2 3

constructs eigenvector so f-queries 
induce phases: |x〉 (–1) f(x)|x〉

produces superpositions
of inputs to f :  |0〉 + |1〉

extracts phase differences from

(–1) f(0)|0〉 + (–1) f(1)|1〉

Makes only one query, whereas two are needed classically 
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One-out-of-four search
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OneOne--outout--ofof--four searchfour search
Let  f : {0,1}2 {0,1} have the property that there is exactly 
one x ∈ {0,1}2 for which f (x) = 1

Four possibilities: x f00(x)
00
01
10
11

1
0
0
0

Goal: find x ∈ {0,1}2 for which f (x) = 1

x f01(x)
00
01
10
11

0
1
0
0

x f10(x)
00
01
10
11

0
0
1
0

x f11(x)
00
01
10
11

0
0
0
1

What is the minimum number of queries classically? ____

Quantumly? ____
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Quantum algorithm (I)Quantum algorithm (I)

f
|x1〉
|x2〉
|y〉

|x2〉
|x1〉

|y ⊕ f(x1,x2)〉

Black box for 1-4 search:

((–1) f(00)|00〉 + (–1) f(01)|01〉 + (–1) f(10)|10〉 + (–1) f(11)|11〉)(|0〉 – |1〉)
Output state of query?

Start by creating phases in superposition of all inputs to f:

Input state to query?fH
H

H|1〉

|0〉
|0〉 (|00〉 + |01〉 + |10〉 + |11〉)(|0〉 – |1〉)
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Quantum algorithm (II)Quantum algorithm (II)

Output state of the first two qubits in the four cases:

fH
H

H|1〉

|0〉
|0〉

Case of f00?
|ψ01〉 = + |00〉 – |01〉 + |10〉 + |11〉
|ψ10〉 = + |00〉 + |01〉 – |10〉 + |11〉
|ψ11〉 = + |00〉 + |01〉 + |10〉 – |11〉

What noteworthy property do these states have?

U

Challenge Exercise: simulate the above U in terms of H, 
Toffoli, and NOT gates

|ψ00〉 = – |00〉 + |01〉 + |10〉 + |11〉
Case of f01?
Case of f10?
Case of f11?

Orthogonal!

Apply the U that maps 
|ψ00〉, |ψ01〉, |ψ10〉, |ψ11〉 to 
|00〉, |01〉, |10〉, |11〉 (resp.)
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one-out-of-N search?

Natural question: what about search problems in spaces 
larger than four (and without uniqueness conditions)?

For spaces of size eight (say), the previous method breaks 
down—the state vectors will not be orthogonal

Later on, we’ll see how to search a space of size N with 
O(√N ) queries ...
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Constant vs. balanced
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Constant vs. balancedConstant vs. balanced
Let  f : {0,1}n {0,1} be either constant or balanced, where
• constant means f (x) = 0 for all x, or f (x) = 1 for all x
• balanced means Σx f (x) = 2n−1 

Goal: determine whether  f is constant or balanced

How many queries are there needed classically? ____

Quantumly? ____

Example: if  f (0000) = f (0001) = f (0010) = ... = f (0111) = 0 
then it still could be either

[Deutsch & Jozsa, 1992]
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Quantum algorithmQuantum algorithm

f
H
H

H|1〉

|0〉
|0〉

H|0〉

Constant case: |ψ〉 = ± Σx |x〉 Why?

How to distinguish between the cases? What is H⊗n|ψ〉?

Last step of the algorithm: if the measured result is 000 then 
output “constant”, otherwise output “balanced”  

|ψ〉

Constant case: H⊗n|ψ〉 = ± |00...0〉
Balanced case: H⊗n |ψ〉 is orthogonal to |0...00〉

H
f

H
H

H|1〉

|0〉
|0〉

H|0〉
H
H

Balanced case: |ψ〉 is orthogonal to  ± Σx |x〉 Why?
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Probabilistic Probabilistic classicalclassical algorithm algorithm 
solving constant solving constant vsvs balancedbalanced

But here’s a classical procedure that makes only 2 queries 
and performs fairly well probabilistically:

1. pick  x1, x2 ∈{0,1}n randomly
2. if f(x1) ≠ f(x2) then output balanced else output constant

What happens if  f is constant?

Succeeds with probability ½ 

By repeating the above procedure k times:
2k queries and one-sided error probability (½)k

Therefore, for large n, << 2n queries are likely sufficient

The algorithm always succeeds

What happens if  f is balanced?
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H⊗H⊗ ... ⊗H
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About  About  HH⊗⊗HH⊗⊗ ... ... ⊗⊗H = HH = H⊗⊗nn

{ }
yxH

n,y
/n

yxn ∑ −=
∈

⋅⊗

10
2 )1(

2
1Theorem: for  x ∈ {0,1}n,

Thus,  H⊗n|x1 ... xn〉 = (Σy1
(–1)x1y1|y1〉) ... (Σyn

(–1)xnyn|yn〉)
Pf: For all x ∈ {0,1}n,  H |x〉 = |0〉 + (–1) x|1〉 = Σy (–1)xy|y〉

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−+
−−++
−+−+
++++

=⊗

1111
1111
1111
1111

2
1HHExample:

where x·y = x1y1 ⊕ ... ⊕ xnyn

= Σy (–1) x1y1 ⊕ ... ⊕ xnyn|y1 ... yn〉 █
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Simon’s problem
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Quantum vs. classical separationsQuantum vs. classical separations

black-box problem quantum classical

Simon’s problem

constant vs. balanced 1 (query) 2 (queries)
1-out-of-4 search 1 3
constant vs. balanced 1 ½ 2n + 1 (only for exact)

(probabilistic)
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Simon’s problemSimon’s problem
Let f : {0,1}n {0,1}n have the property that there exists 
an r ∈ {0,1}n such that f (x) = f (y) iff x⊕y = r or x = y

x f (x)
000
001
010
011
100
101
110
111

011
101
000
010
101
011
010
000

Example:
What is r is this case? ________

Answer: r = 101
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A classical algorithm for SimonA classical algorithm for Simon
Search for a collision, an x ≠ y such that  f (x) = f (y) 

A hard case is where r is chosen randomly from {0,1}n– {0n} 
and then the “table” for f is filled out randomly subject to the
structure implied by r

1. Choose x1, x2 ,..., xk ∈ {0,1}n randomly (independently)

2. For all i ≠ j, if f (xi) = f (xj) then output xi⊕xj and halt

How big does k have to be for the probability of a collision 
to be a constant, such as ¾?

Answer: order 2n/2 (each (xi , xj) collides with prob. O(2–n))



44

Classical lower boundClassical lower bound

Theorem: any classical algorithm solving Simon’s problem 
must make  Ω(2n/2) queries

Proof is omitted here—note that the performance analysis 
of the previous algorithm does not imply the theorem

… how can we know that there isn’t a different algorithm 
that performs better?
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A A quantumquantum algorithm for Simon Ialgorithm for Simon I

|x2〉
|xn〉

|x1〉
f

|y2〉
|yn〉

|y1〉

|x2〉
|xn〉

|x1〉

|y⊕ f (x)〉

Queries: Not clear what eigenvector
of target registers is ...

Proposed start of quantum 
algorithm: query all values 
of  f in superposition

f
H
H

|0〉

|0〉
|0〉

H|0〉

|0〉
|0〉

What is the output state of 
this circuit?

?
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A quantum algorithm for Simon IIA quantum algorithm for Simon II
Answer: the output state is

{ }
∑
∈ n,x

xfx
10

)(

)()( rxfrxxfx
Tx

⊕⊕+∑
∈

Let T ⊆ {0,1}n be such that one element from 
each matched pair is in T (assume r ≠ 00...0)

x f (x)
000
001
010
011
100
101
110
111

011
101
000
010
101
011
010
000

Example: could take T = {000, 001, 011, 111}

Then the output state can be written as:

( )∑
∈

⊕+=
Tx

xfrxx )(
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A quantum algorithm for Simon IIIA quantum algorithm for Simon III
Measuring the second register yields  |x〉 + |x⊕r〉 in the first 
register, for a random  x ∈ T

How can we use this to obtain some information about r?

Try applying H⊗n to the state, yielding:

{ } { }
yy

n,yn,y

yrxyx ∑ −+∑ −
∈∈

•⊕•

1010

)()1()1(

{ }
y

n,y

yryx∑ −+−=
∈

⎟
⎠
⎞⎜

⎝
⎛ ••

10

)1(1)1(
(1/2)n–1 if r ·y = 0
0   if r ·y ≠ 0Measuring this state yields  y  with prob.  
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A quantum algorithm for Simon IVA quantum algorithm for Simon IV
Executing this algorithm  k = O(n) times 
yields random y1, y2 ,..., yk ∈ {0,1}n such 
that r ·y1 = r ·y2 = ... = r ·yn = 0 

f
H
H

|0〉

|0〉
|0〉

H|0〉

|0〉
|0〉

H
H
H

This is a system of  k linear equations:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0
0

2

1

21

22221

11211

MM

L

MOMM

L

K

nknkk

n

n

r

r
r

yyy

yyy
yyy

With high probability, there is a unique non-zero solution 
that is  r (which can be efficiently found by linear algebra) 

How does this help?
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Conclusion of  Simon’s algorithmConclusion of  Simon’s algorithm

• Any classical algorithm has to query the black box Ω(2n/2 )
times, even to succeed with probability ¾

• There is a quantum algorithm that queries the black box 
only O(n) times, performs only O(n3) auxiliary operations 
(for the Hadamards, measurements, and linear algebra), 
and succeeds with probability ¾
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