Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 4 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

Classical computations as circuits

Classical (boolean logic) gates

"old" notation

"new" notation

Note: an **OR** gate can be simulated by one **AND** gate and three **NOT** gates (since $a \lor b = \neg(\neg a \land \neg b)$)

Models of computation

Classical circuits:

data flow

Quantum $|0\rangle$ $|0\rangle$ $|1\rangle$ $|1\rangle$ <

Multiplication problem

Input: two *n*-bit numbers (e.g. 101 and 111)

Output: their product (e.g. 100011)

- "Grade school" algorithm costs $O(n^2)$
- Best currently-known *classical* algorithm costs
 O(n log n loglog n)
- Best currently-known *quantum* method: same

Factoring problem

Input: an *n*-bit number (e.g. 100011)

Output: their product (e.g. 101, 111)

- Trial division costs $\approx 2^{n/2}$
- Best currently-known *classical* algorithm costs $\approx 2^{n^{\frac{1}{3}}}$
- Hardness of factoring is the basis of the security of many cryptosystems (e.g. RSA)
- Shor's *quantum* algorithm costs $\approx n^2$
- Implementation would break RSA and many other cryptosystems

Simulating *classical* circuits with *quantum* circuits

Toffoli gate

(Sometimes called a "controlled-controlled-NOT" gate)

In the computational basis, it negates the third qubit iff the first two qubits are both $|0\rangle$

Matrix representation:

(1	0	0	0	0	0	0	0)
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1
$\left(0\right)$	0	0	0	0	0	1	0

Quantum simulation of classical

Theorem: a classical circuit of size *s* can be simulated by a quantum circuit of size O(s)

Idea: using Toffoli gates, one can simulate:

AND gates

NOT gates

This garbage will have to be reckoned with later on ...

Simulating probabilistic algorithms

Since quantum gates can simulate **AND** and **NOT**, the outstanding issue is how to simulate randomness

To simulate "coin flips", one can use the circuit:

$$|0\rangle - H$$
 random bit

It can also be done without intermediate measurements:

Exercise: prove that this works

Simulating *quantum* circuits with *classical* circuits

Classical simulation of quantum

Theorem: a quantum circuit of size *s* acting on *n* qubits can be simulated by a classical circuit of size $O(sn^22^n) = O(2^{cn})$

Idea: to simulate an *n*-qubit state, use an array of size 2^n containing values of all 2^n amplitudes within precision 2^{-n}

 $egin{array}{c} lpha_{000} \ lpha_{001} \ lpha_{010} \ lpha_{011} \ lpha_{011} \ dots \ \ dots \ \dots \ \ \$

Can adjust this state vector whenever a unitary operation is performed at cost $O(n^2 2^n)$

From the final amplitudes, can determine how to set each output bit

Exercise: show how to do the simulation using only a polynomial amount of *space* (memory)

Some complexity classes

- P (polynomial time): problems solved by O(n^c)-size classical circuits (decision problems and uniform circuit families)
- BPP (bounded error probabilistic polynomial time): problems solved by O(n^c)-size probabilistic circuits that err with probability ≤ ¼
- BQP (bounded error quantum polynomial time): problems solved by O(n^c)-size quantum circuits that err with probability ≤ ¼
- **EXP (exponential time)**: problems solved by $O(2^{n^c})$ -size circuits.

Summary of basic containments

Simple quantum algorithms in the query scenario

Query scenario

Input: a function *f*, given as a black box (a.k.a. oracle)

Goal: determine some information about f making as few queries to f (and other operations) as possible

Example: polynomial interpolation

Let:
$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_d x^d$$

Goal: determine c_0 , c_1 , c_2 , ..., c_d

Question: How many *f*-queries does one require for this?

Deutsch's problem

Deutsch's problem

Let $f: \{0,1\} \rightarrow \{0,1\}$

There are *four* possibilities:

Goal: determine whether or not f(0) = f(1) (i.e. $f(0) \oplus f(1)$)

Any classical method requires *two* queries

What about a quantum method?

To be continued ...

Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 5 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

Deutsch's problem (continued)

Reversible black box for f

alternate

notation:

2 queries + 1 auxiliary operation

Quantum algorithm for Deutsch

1 query + 4 auxiliary operations

 $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

How does this algorithm work?

Each of the three H operations can be seen as playing a different role ...

1. Creates the state $|0\rangle - |1\rangle$, which is an eigenvector of $\begin{cases}
NOT & \text{with eigenvalue } -1 \\
I & \text{with eigenvalue } +1
\end{cases}$

This causes f to induce a **phase shift** of $(-1)^{f(x)}$ to $|x\rangle$

$$|x\rangle - f - (-1)^{f(x)}|x\rangle$$
$$|0\rangle - |1\rangle - 0 - |1\rangle$$

Quantum algorithm (2)

2. Causes f to be queried **in superposition** (at $|0\rangle + |1\rangle$)

Quantum algorithm (3)

3. Distinguishes between $\pm (|0\rangle + |1\rangle)$ and $\pm (|0\rangle - |1\rangle)$

$$\pm (|0\rangle + |1\rangle) \xleftarrow{H} \pm |0\rangle$$

$$\pm (|0\rangle - |1\rangle) \xleftarrow{H} \pm |1\rangle$$

Summary of Deutsch's algorithm

Makes only one query, whereas two are needed classically

One-out-of-four search

One-out-of-four search

Let $f: \{0,1\}^2 \rightarrow \{0,1\}$ have the property that there is exactly one $x \in \{0,1\}^2$ for which f(x) = 1

Goal: find $x \in \{0,1\}^2$ for which f(x) = 1

What is the minimum number of queries *classically?*

Quantumly?

Quantum algorithm (I)

Black box for 1-4 search:

Start by creating phases in superposition of all inputs to f:

Input state to query? $(|00\rangle + |01\rangle + |10\rangle + |11\rangle)(|0\rangle - |1\rangle)$

Output state of query?

 $((-1)^{f(00)}|00\rangle + (-1)^{f(01)}|01\rangle + (-1)^{f(10)}|10\rangle + (-1)^{f(11)}|11\rangle)(|0\rangle - |1\rangle)$

Output state of the first two qubits in the four cases:

Case of f_{00} ? $|\psi_{00}\rangle = -|00\rangle + |01\rangle + |10\rangle + |11\rangle$ Case of f_{01} ? $|\psi_{01}\rangle = + |00\rangle - |01\rangle + |10\rangle + |11\rangle$ Case of f_{10} ? $|\psi_{10}\rangle = + |00\rangle + |01\rangle - |10\rangle + |11\rangle$ Case of f_{11} ? $|\psi_{11}\rangle = + |00\rangle + |01\rangle + |10\rangle - |11\rangle$

What noteworthy property do these states have? Orthogonal!

Challenge Exercise: simulate the above U in terms of H, Toffoli, and NOT gates

one-out-of-N search?

Natural question: what about search problems in spaces larger than *four* (and without uniqueness conditions)?

For spaces of size *eight* (say), the previous method breaks down—the state vectors will not be orthogonal

Later on, we'll see how to search a space of size N with $O(\sqrt{N})$ queries ...

Constant vs. balanced

Constant vs. balanced

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be either constant or balanced, where

- **constant** means f(x) = 0 for all x, or f(x) = 1 for all x
- **balanced** means $\Sigma_x f(x) = 2^{n-1}$

Goal: determine whether f is constant or balanced

How many queries are there needed *classically?*_____

Example: if f(0000) = f(0001) = f(0010) = ... = f(0111) = 0then it still could be either

Quantumly?

[Deutsch & Jozsa, 1992]

Quantum algorithm

Constant case: $|\psi\rangle = \pm \sum_{x} |x\rangle$

Balanced case: $|\psi\rangle$ is *orthogonal* to $\pm \sum_{\chi} |\chi\rangle$ *Why?* How to distinguish between the cases? What is $H^{\otimes n}|\psi\rangle$? Constant case: $H^{\otimes n}|\psi\rangle = \pm |00...0\rangle$ Balanced case: $H^{\otimes n}|\psi\rangle$ is orthogonal to $|0...00\rangle$

Why?

Last step of the algorithm: if the measured result is 000 then output "constant", otherwise output "balanced" 35

Probabilistic *classical* algorithm solving constant vs balanced

But here's a classical procedure that makes only **2** queries and performs fairly well probabilistically:

- 1. pick $x_1, x_2 \in \{0,1\}^n$ randomly
- 2. <u>if</u> $f(x_1) \neq f(x_2)$ <u>then</u> output balanced <u>else</u> output constant

What happens if f is constant? The algorithm always succeeds What happens if f is balanced? Succeeds with probability $\frac{1}{2}$

By repeating the above procedure k times: 2k queries and one-sided error probability $(\frac{1}{2})^k$

Therefore, for large n, $<< 2^n$ queries are likely sufficient

Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 6 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

About $H \otimes H \otimes ... \otimes H = H^{\otimes n}$

Theorem: for $x \in \{0,1\}^n$, $H^{\otimes n} |x\rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$ where $x \cdot y = x_1 y_1 \oplus ... \oplus x_n y_n$

Example: $H \otimes H = \frac{1}{2} \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$

Pf: For all $x \in \{0,1\}^n$, $H|x\rangle = |0\rangle + (-1)^x |1\rangle = \sum_y (-1)^{xy} |y\rangle$ Thus, $H^{\otimes n}|x_1 \dots x_n\rangle = \left(\sum_{y_1} (-1)^{x_1y_1} |y_1\rangle\right) \dots \left(\sum_{y_n} (-1)^{x_ny_n} |y_n\rangle\right)$ $= \sum_y (-1)^{x_1y_1 \oplus \dots \oplus x_ny_n} |y_1 \dots y_n\rangle$

Simon's problem

Quantum vs. classical separations

black-box problem	quantum	classical	
constant vs. balanced	1 (query)	2 (queries)	
1-out-of-4 search	1	3	
constant vs. balanced	1	¹ / ₂ 2 ⁿ + 1	(only for exact)
Simon's problem			(probabilistic)

Simon's problem

Let $f: {\mathbf{0},\mathbf{1}}^n \rightarrow {\mathbf{0},\mathbf{1}}^n$ have the property that there exists an $r \in {\mathbf{0},\mathbf{1}}^n$ such that f(x) = f(y) iff $x \oplus y = r$ or x = y

Example:

x	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

What is r is this case?

Answer: *r* = 101

A classical algorithm for Simon

Search for a *collision*, an $x \neq y$ such that f(x) = f(y)

1. Choose $x_1, x_2, ..., x_k \in \{0,1\}^n$ randomly (independently)

2. For all $i \neq j$, if $f(x_i) = f(x_j)$ then output $x_i \oplus x_j$ and halt

A hard case is where *r* is chosen randomly from $\{0,1\}^n - \{0^n\}$ and then the "table" for f is filled out randomly subject to the structure implied by *r*

How big does k have to be for the probability of a collision to be a constant, such as $\frac{3}{4}$?

Answer: order $2^{n/2}$ (each (x_i, x_j) collides with prob. $O(2^{-n})$)

Classical lower bound

Theorem: *any* classical algorithm solving Simon's problem must make $\Omega(2^{n/2})$ queries

Proof is omitted here—note that the performance analysis of the previous algorithm does *not* imply the theorem

... how can we know that there isn't a *different* algorithm that performs better?

A quantum algorithm for Simon I

Not clear what *eigenvector* of target registers is ...

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?

45

A quantum algorithm for Simon II

Answer: the output state is

$$\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$$

Let $T \subseteq {\{0,1\}}^n$ be such that **one** element from each matched pair is in T (assume $r \neq 00...0$)

Example: could take $T = \{000, 001, 011, 111\}$

Then the output state can be written as:

$$\sum_{x \in T} |x\rangle |f(x)\rangle + |x \oplus r\rangle |f(x \oplus r)\rangle$$

$$= \sum_{x \in T} \left(\left| x \right\rangle + \left| x \oplus r \right\rangle \right) \left| f(x) \right\rangle$$

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle + |x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain **some** information about r?

Try applying $H^{\otimes n}$ to the state, yielding:

$$\sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} |y\rangle + \sum_{y \in \{0,1\}^n} (-1)^{(x \oplus r) \bullet y} |y\rangle$$

$$= \sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} (1 + (-1)^{r \bullet y}) | y \rangle$$

Measuring this state yields y with prob. $\begin{cases} (1/2)^{n-1} & \text{if } r \cdot y = 0 \\ 0 & \text{if } r \cdot y \neq 0 \end{cases}$

A quantum algorithm for Simon IV

Executing this algorithm k = O(n) times yields random $y_1, y_2, ..., y_k \in \{0,1\}^n$ such that $r \cdot y_1 = r \cdot y_2 = ... = r \cdot y_n = 0$

How does this help?

This is a system of k linear equations:

$$\begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{k1} & y_{k2} & \cdots & y_{kn} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra) 48

Conclusion of Simon's algorithm

- Any classical algorithm has to query the black box Ω(2^{n/2}) times, even to succeed with probability ³/₄
- There is a quantum algorithm that queries the black box only O(n) times, performs only O(n³) auxiliary operations (for the Hadamards, measurements, and linear algebra), and succeeds with probability ³/₄