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The Lo-Chau key exchange protocol: 

easier to analyze, though harder to 

implement
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Sufficiency of Bell states

If Alice and Bob can somehow generate a series of Bell 

states between them, such as ++...+, then it suffices 

for them to measure these states to obtain a secret key 

Intuitively, this is because there is nothing that Eve can 

―know‖ about + = (1/2)(00 + 11) that will permit her to 

predict a future measurement that she has no access to

Eve

?
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Key distribution protocol based on +

Preliminary idea: Alice creates several + states and sends 

the second qubit of each one to Bob

If they knew that that they possessed state ++ ... +

then they could simply measure each qubit pair (say, in the 

computational basis) to obtain a shared private key

We might as well assume that Eve is supplying the qubits to 

Alice and Bob, who somehow test whether they’re +

Since Eve can access the qubit channel, she can measure, 

or otherwise disturb the state in transit (e.g., replace by 00)

Question: how can Alice and Bob test the validity of 

their states?
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Testing 00 + 11 states I
Alice and Bob can pick a random subset of their + states 

(say half of them) to test, and then forfeit those

+ + + + + + + +

Test and discard 

these pairs+ + + +

How do Alice and Bob “test” the pairs in this subset?

Due to Eve, they can’t use the quantum channel to actually 

measure them in the Bell basis ... but they can do individual 

measurements and compare results via the classical channel
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Testing 00 + 11 states II

The Bell state + = 00 + 11 has the following properties:

Therefore, 

(c) if both qubits are measured in the Hadamard basis the 

resulting bits will still be the same

(a) if both qubits are measured in the computational basis

the resulting bits will be the same (i.e., 00 or 11)

(b) it does not change if HH is applied to it

Moreover, + is the only two-qubit state that satisfies 

properties (a) and (c)

Question: Why?
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Testing 00 + 11 states III

For example, if Eve slips in a state 00 and then Alice & Bob 

measure this pair in the Hadamard basis, result is the same bit 

with probability only ½ (so it’s detected with probability ¼)

Problem: they can only measure in one of these two bases

Solution: they pick the basis randomly among the two types  

(Alice decides by flipping a coin and announcing the result 

to Bob on the read-only classical channel)

+

–

+

–

0               0

0               1

1               0

1               1

ab           ab
Basis:  computational Hadamard

00 = + +    –1
2

1
2

In general, undetected 

with probability  

1 + fidelity2

2
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Testing 00 + 11 states IV
Suppose there are n purported + states and Alice and Bob 

test m of them

Suppose Eve slips in just one 00 state

Then the probability of Eve

• succeeding in corrupting the key is  (n–m)/n

• being undetected is (n–m)/4n

Setting m = n–1,  reduces Eve’s is success/undetected 

probability to  1/4n

This permits at least one secure key to be created (already 

something that cannot be done with classical information)
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Better testing I
Think of a related (simpler) classical problem: detect if a 

binary array contains at least one 1

0 0 0 0 1 0 0 0

If one is confined to examining individual bits, this is difficult 

to do with very high probability making few tests

If one can test parities of subsets of bits then the following 

procedure exposes a 1 with probability ½:

pick a random r  {0,1}n and test if rx = 0

If x  00...0  then this test detects this with probability ½  

Testing k such parities detects with probability 1– (½)k
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Better testing II

The previous idea can be translated into the context of 

testing whether pairs Bell states are all + or not

+ + + + + + + +

1. Alice picks a random r  {0,1}n and sends it to Bob

2. Alice and Bob perform various bilateral CNOT operations 

on their qubits

For r = 1011

―parity‖ of 

positions 1, 3, 4
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Better testing III
Call: 

+ = õ,õ

– = õ, ĩ

+ = ĩ,õ

– = ĩ, ĩ

Then bilateral CNOT gates cause 

ã1,ẽ1ã2,ẽ2 to become 

ã1ã2,ẽ1ã1,ẽ1ẽ2

If the states are not all + = õ,õ then there is either:

a ĩ in the first slot or a ĩ in the second slot

A measurement of bit parities will detect the former, and 

this measurement in the Hadamard basis will detect the 

latter—in either case a series of bilateral CNOTs will 

cause this parity information to appear in a single pair of 

qubits that can be measured

(Example: õ,õĩ,õ becomes ĩ,õĩ,õ)
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Net result

By sacrificing say half the qubit pairs, Alice and Bob can 

establish with probability exponentially close to 1 that all 

remaining qubit pairs are in state + from which a 

secret key can be directly obtained

Note 2: the Shor-Preskill [2000] security proof for BB84 is 

shown by reducing BB84 security to Lo-Chau security 

(and uses CSS codes to establish the reduction)

Note 1: unlike BB84, this protocol requires Alice and Bob to 

have quantum computers—to perform nontrivial operations 

on several qubits
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