Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871

Lecture 22 (2009)

Richard Cleve

DC 2117

cleve@cs.uwaterloo.ca

Brief remarks about fault-tolerant computing

A simple error model

At each qubit there is an × error per unit of time, that denotes

the following noise:

I with probability 1–ε
 X with probability ε/3
 Y with probability ε/3
 Z with probability ε/3

Threshold theorem

If ϵ is very small then this is okay—a computation of size* less than $1/(10\epsilon)$ will still succeed most of the time

But, for every constant value of ϵ , the size of the maximum computation possible is constant

Threshold theorem: There is a fixed constant $\varepsilon_0 > 0$ such that any computation of size T can be translated into one of size $O(T \log^c(T))$ that is robust against the error model with parameter ε_0

(The proof is omitted here)

^{*} where size = (# qubits)x(# time steps)

Comments about the threshold theorem

Idea is to use a quantum error-correcting code at the start and then perform all the gates *on the encoded data*

At regular intervals, an error-correction procedure is performed, very carefully, since these operations are also subject to errors!

The 7-qubit CSS code has some nice properties that enable some (not all) gates to be directly performed on the encoded data: H and CNOT gates act "transversally" in the sense that:

Quantum key distribution

Private communication

- Suppose Alice and Bob would like to communicate privately in the presence of an eavesdropper Eve
- A provably secure (classical) scheme exists for this, called the one-time pad
- The one-time pad requires Alice & Bob to share a **secret** key: $k \in \{0,1\}^n$, uniformly distributed (secret from Eve)

Private communication

One-time pad protocol:

- Alice sends $c = m \oplus k$ to Bob
- Bob receives computes $c \oplus k$, which is $(m \oplus k) \oplus k = m$

This is secure because, what Eve sees is c, and c is uniformly distributed, regardless of what m is

Key distribution scenario

- For security, Alice and Bob must never reuse the key bits
 - E.g., if Alice encrypts both m and m' using the same key k then Eve can deduce $m \oplus m' = c \oplus c'$
- Problem: how do they distribute the secret key bits in the first place?
 - Presumably, there is some trusted preprocessing stage where this is set up (say, where Alice and Bob get together, or where they use a trusted third party)
- Key distribution problem: set up a large number of secret key bits

Key distribution based on computational hardness

- The RSA protocol can be used for key distribution:
 - Alice chooses a random key, encrypts it using Bob's public key, and sends it to Bob
 - Bob decrypts Alice's message using his secret (private) key
- The security of RSA is based on the presumed computational difficulty of factoring integers
- More abstractly, a key distribution protocol can be based on any trapdoor one-way function
- Most such schemes are breakable by quantum computers

Quantum key distribution (QKD)

- A protocol that enables Alice and Bob to set up a secure* secret key, provided that they have:
 - A quantum channel, where Eve can read and modify messages
 - An authenticated classical channel, where Eve can read messages, but cannot tamper with them (the authenticated classical channel can be simulated by Alice and Bob having a very short classical secret key)
- There are several protocols for QKD, and the first one proposed is called "BB84" [Bennett & Brassard, 1984]:
 - BB84 is "easy to implement" physically, but "difficult" to prove secure
 - [Mayers, 1996]: first true security proof (quite complicated)
 - [Shor & Preskill, 2000]: "simple" proof of security

• First, define: $|\psi_{00}\rangle = |0\rangle$

$$|\psi_{10}\rangle = |1\rangle$$

$$|\psi_{11}\rangle = |-\rangle = |0\rangle - |1\rangle$$

$$|\psi_{01}\rangle = |+\rangle = |0\rangle + |1\rangle$$

- Alice begins with two random n-bit strings $a, b \in \{0,1\}^n$
- Alice sends the state $|\psi\rangle = |\psi_{a_1b_1}\rangle |\psi_{a_2b_2}\rangle \dots |\psi_{a_nb_n}\rangle$ to Bob
- Note: Eve may see these qubits (and tamper wth them)
- After receiving $|\psi\rangle$, Bob randomly chooses $b' \in \{0,1\}^n$ and measures each qubit as follows:
 - If b'_i = 0 then measure qubit in basis { $|0\rangle$, $|1\rangle$ }, yielding outcome a'_i
 - If b'_{i} = 1 then measure qubit in basis { $|+\rangle$, $|-\rangle$ }, yielding outcome a'_{i}

Note:

- If $b'_i = b_i$ then $a'_i = a_i$
- If $b'_i \neq b_i$ then $Pr[a'_i = a_i] = \frac{1}{2}$
- Bob informs Alice when he has performed his measurements (using the public channel)

- Next, Alice reveals b and Bob reveals b' over the public channel
- They discard the cases where b'_i≠b_i and they will use the remaining bits of a and a' to produce the key

Note:

- If Eve did not disturb the qubits then the key can be just a = a'
- The *interesting* case is where Eve may tamper with $|\psi\rangle$ while it is sent from Alice to Bob

Intuition:

- Eve cannot acquire information about $|\psi\rangle$ without disturbing it, which will cause **some** of the bits of a and a' to disagree
- It can be proven* that: the more information Eve acquires about a, the more bit positions of a and a' will be different
- From Alice and Bob's remaining bits, a and a' (where the positions where $b'_i \neq b_i$ have already been discarded):
 - They take a random subset and reveal them in order to estimate the fraction of bits where a and a' disagree
 - If this fraction is not too high then they proceed to distill a key from the bits of a and a' that are left over (around n/4 bits)

- If the error rate between a and a' is below some threshold (around 11%) then Alice and Bob can produce a good key using techniques from classical cryptography:
 - **Information reconciliation** ("distributed error correction"): to produce shorter a and a' such that (i) a = a', and (ii) Eve doesn't acquire much information about a and a' in the process
 - **Privacy amplification:** to produce shorter a and a' such that Eve's information about a and a' is very small
- There are already commercially available implementations of BB84, though assessing their true security is a subtle matter (since their physical mechanisms are not ideal)

Schmidt decomposition

Schmidt decomposition

Theorem:

Let $|\psi\rangle$ be **any** bipartite quantum state:

$$|\psi\rangle = \sum_{a=1}^{m} \sum_{b=1}^{n} \alpha_{a,b} |a\rangle \otimes |b\rangle$$
 (where we can assume $n \leq m$)

Then there exist orthonormal states

$$|\mu_1\rangle, |\mu_2\rangle, ..., |\mu_n\rangle$$
 and $|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_n\rangle$ such that

•
$$|\psi\rangle = \sum_{c=1}^{n} \sqrt{p_c} |\mu_c\rangle \otimes |\varphi_c\rangle$$

• $|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_n\rangle$ are the eigenvectors of $\text{Tr}_1|\psi\rangle\langle\psi|$

Schmidt decomposition: proof (I)

The density matrix for state $|\psi\rangle$ is given by $|\psi\rangle\langle\psi|$

Tracing out the first system, we obtain the density matrix of the second system, $\rho = Tr_1 |\psi\rangle\langle\psi|$

Since ρ is a density matrix, we can express $\rho = \sum_{c=1}^{n} p_c |\varphi_c\rangle\langle\varphi_c|$, where $|\varphi_1\rangle, |\varphi_2\rangle, ..., |\varphi_n\rangle$ are orthonormal eigenvectors of ρ

Now, returning to $|\psi\rangle$, we can express $|\psi\rangle = \sum_{c=1}^{n} |v_c\rangle \otimes |\varphi_c\rangle$, where $|v_1\rangle, |v_2\rangle, ..., |v_n\rangle$ are *just some arbitrary vectors* (not necessarily valid quantum states; for example, they might not have unit length, and we cannot presume they're orthogonal)

Schmidt decomposition: proof (II)

Claim:
$$\langle v_c | v_{c'} \rangle = \begin{cases} p_c & \text{if } c = c' \\ 0 & \text{if } c \neq c' \end{cases}$$

Proof of Claim: Compute the partial trace Tr_1 of $|\psi\rangle\langle\psi|$ from

$$|\psi\rangle\!\langle\psi| = \left(\sum_{c=1}^{n} |\nu_{c}\rangle \otimes |\varphi_{c}\rangle\right) \left(\sum_{c'=1}^{n} \langle\nu_{c'}| \otimes \langle\varphi_{c'}|\right) = \sum_{c=1}^{n} \sum_{c'=1}^{n} |\nu_{c}\rangle\!\langle\nu_{c'}| \otimes |\varphi_{c}\rangle\!\langle\varphi_{c'}|$$

Note that: $\operatorname{Tr}_1(A \otimes B) = \operatorname{Tr}(A) \cdot B$ Example: $\operatorname{Tr}_1(\rho \otimes \sigma) = \sigma$

$$\operatorname{Tr}_{1}\left(\sum_{c=1}^{n}\sum_{c'=1}^{n}\left|v_{c}\right\rangle\left\langle v_{c'}\right|\otimes\left|\varphi_{c}\right\rangle\left\langle \varphi_{c'}\right|\right) = \sum_{c=1}^{n}\sum_{c'=1}^{n}\operatorname{Tr}(\left|v_{c}\right\rangle\left\langle v_{c'}\right|)\left|\varphi_{c}\right\rangle\left\langle \varphi_{c'}\right| \text{ (linearity)}$$

$$= \sum_{c=1}^{n}\sum_{c'=1}^{n}\left\langle v_{c'}\right|v_{c}\right\rangle\left|\varphi_{c}\right\rangle\left\langle \varphi_{c'}\right|$$

Since
$$\sum_{c=1}^{n} \sum_{c'=1}^{n} \langle v_{c'} | v_c \rangle \otimes | \varphi_c \rangle \langle \varphi_{c'} | = \sum_{c=1}^{n} p_c | \varphi_c \rangle \langle \varphi_c |$$
 the claim follows

19

Schmidt decomposition: proof (III)

Normalize the
$$|v_c\rangle$$
 by setting $|\mu_c\rangle = \frac{1}{\sqrt{p_c}}|v_c\rangle$

Then
$$\langle \mu_c | \mu_{c'} \rangle = \begin{cases} 1 & \text{if } c = c' \\ 0 & \text{if } c \neq c' \end{cases}$$

and
$$|\psi\rangle = \sum_{c=1}^{n} \sqrt{p_c} |\mu_c\rangle \otimes |\varphi_c\rangle$$

The story of bit commitment

Bit-commitment

- Alice has a bit b that she wants to commit to Bob:
- After the *commit* stage, Bob should know nothing about
 b, but Alice should not be able to change her mind
- After the *reveal* stage, either:
 - Bob should learn b and accept its value, or
 - Bob should reject Alice's reveal message, if she deviates from the protocol

Simple physical implementation

- Commit: Alice writes b down on a piece of paper, locks it in a safe, sends the safe to Bob, but keeps the key
- Reveal: Alice sends the key to Bob, who then opens the safe
- Desirable properties:
 - Binding: Alice cannot change b after commit
 - Concealing: Bob learns nothing about b until reveal

Question: why should anyone care about bit-commitment?

Answer: it is a useful primitive operation for other protocols, such as coin-flipping, and "zero-knowledge proof systems"

Complexity-theoretic implementation

Based on a *one-way function** $f: \{0,1\}^n \rightarrow \{0,1\}^n$ and a *hard-predicate* $h: \{0,1\}^n \rightarrow \{0,1\}$ for f

Commit: Alice picks a random $x \in \{0,1\}^n$, sets y = f(x) and $c = b \oplus h(x)$ and then sends y and c to Bob

Reveal: Alice sends x to Bob, who verifies that y = f(x) and then sets $b = c \oplus h(x)$

This is (i) perfectly binding and (ii) computationally concealing, based on the hardness of predicate h

^{*} should be one-to-one

Quantum implementation

- Inspired by the success of QKD, one can try to use the properties of quantum mechanical systems to design an information-theoretically secure bit-commitment scheme
- One simple idea:
 - To **commit** to 0, Alice sends a random sequence from $\{|0\rangle, |1\rangle\}$
 - To **commit** to 1, Alice sends a random sequence from $\{|+\rangle, |-\rangle\}$
 - Bob measures each qubit received in a random basis
 - To reveal, Alice tells Bob exactly which states she sent in the commitment stage (by sending its index 00, 01, 10, or 11), and Bob checks for consistency with his measurement results
- A paper appeared in 1993 proposing a quantum bitcommitment scheme and a proof of security

Impossibility proof I

- Not only was the 1993 scheme shown to be insecure, but it was later shown that no such scheme can exist!
- To understand the impossibility proof, recall the Schmidt decomposition:

Let $|\psi\rangle$ be any bipartite quantum state:

$$|\psi\rangle = \sum_{a=1}^{n} \sum_{b=1}^{n} \alpha_{a,b} |a\rangle |b\rangle$$

Then there exist orthonormal states

$$|\mu_1\rangle, |\mu_2\rangle, ..., |\mu_n\rangle$$
 and $|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_n\rangle$ such that $|\psi\rangle = \sum_{c}^{n} \beta_c |\mu_c\rangle |\phi_c\rangle$

$$|\psi\rangle = \sum_{c=1}^{n} \beta_c |\mu_c\rangle |\phi_c\rangle$$

Impossibility proof II

- **Corollary:** if $|\psi_0\rangle$, $|\psi_1\rangle$ are two bipartite states such that ${\rm Tr}_1|\psi_0\rangle\langle\psi_0|={\rm Tr}_1|\psi_1\rangle\langle\psi_1|$ then there exists a unitary U (acting on the first register) such that $(U\otimes I)|\psi_0\rangle=|\psi_1\rangle$
- Proof:

$$|\psi_0\rangle = \sum_{c=1}^n \beta_c |\mu_c\rangle |\phi_c\rangle$$
 and $|\psi_1\rangle = \sum_{c=1}^n \beta_c |\mu'_c\rangle |\phi_c\rangle$

We can define U so that $U|\mu_c\rangle = |\mu'_c\rangle$ for c = 1,2,...,n

- Protocol can be "purified" so that Alice's commit states are $|\psi_0\rangle \& |\psi_1\rangle$ (where she sends the second register to Bob)
- By applying U to her register, Alice can change her commitment from b=0 to b=1 (by changing $|\psi_0\rangle$ to $|\psi_1\rangle$)