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Brief remarks about 
fault-tolerant computing
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At each qubit there is an × error per unit of time, that denotes 
the following noise:

A simple error model
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I with probability 1−ε
X with probability ε/3
Y with probability ε/3
Z with probability ε/3
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Threshold theorem
If ε is very small then this is okay — a computation of size* 
less than 1/(10ε) will still succeed most of the time

* where size = (# qubits)x(# time steps)

But, for every constant value of ε, the size of the maximum 
computation possible is constant

Threshold theorem: There is a fixed constant ε0 > 0 such 
that any computation of size T can be translated into one of 
size  O(T logc(T ))  that is robust against the error model with 
parameter ε0

(The proof is omitted here)
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Comments about the threshold theorem
Idea is to use a quantum error-correcting code at the start  
and then perform all the gates on the encoded data
At regular intervals, an error-correction procedure is performed, 
very carefully, since these operations are also subject to errors!

The 7-qubit CSS code has some nice properties that enable 
some (not all) gates to be directly peformed on the encoded 
data: H and CNOT gates act “transversally” in the sense that:

H
H
H
H
H
H
H

H

are equivalent to

encoded qubit

Also, codes applied recursively become stronger
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Quantum key distribution
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Private communicationPrivate communication

• Suppose Alice and Bob would like to communicate privately 
in the presence of an eavesdropper Eve

• A provably secure (classical) scheme exists for this, called 
the one-time pad

• The one-time pad requires Alice & Bob to share a secret 
key: k ∈ {0,1}n, uniformly distributed (secret from Eve)

Alice Bob

k1k2 … kn
k1k2 … kn

Eve
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Private communicationPrivate communication

• Alice sends c = m⊕k to Bob 
• Bob receives computes c⊕k, which is (m⊕k)⊕k = m

k1k2 … kn
k1k2 … kn

One-time pad protocol:

This is secure because, what Eve sees is c, and c is uniformly 
distributed, regardless of what m is

m1m2…mn
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Key distribution scenarioKey distribution scenario
• For security, Alice and Bob must never reuse the 

key bits
– E.g., if Alice encrypts both  m and  m'  using the same 

key k  then Eve can deduce m⊕m' = c⊕c' 
• Problem: how do they distribute the secret key bits 

in the first place?
– Presumably, there is some trusted preprocessing stage 

where this is set up (say, where Alice and Bob get 
together, or where they use a trusted third party)

• Key distribution problem: set up a large number 
of secret key bits
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Key distribution based on Key distribution based on 
computational hardnesscomputational hardness

• The RSA protocol can be used for key distribution: 
– Alice chooses a random key, encrypts it using Bob’s public key, 

and sends it to Bob
– Bob decrypts Alice’s message using his secret (private) key

• The security of RSA is based on the presumed 
computational difficulty of factoring integers

• More abstractly, a key distribution protocol can be based 
on any trapdoor one-way function

• Most such schemes are breakable by quantum computers
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Quantum key distribution (Quantum key distribution (QKDQKD))
• A protocol that enables Alice and Bob to set up a secure*

secret key, provided that they have:
– A quantum channel, where Eve can read and modify messages
– An authenticated classical channel, where Eve can read 

messages, but cannot tamper with them (the authenticated classical 
channel can be simulated by Alice and Bob having a very short
classical secret key)

• There are several protocols for QKD, and the first one 
proposed is called “BB84” [Bennett & Brassard, 1984]:
– BB84 is “easy to implement” physically, but “difficult” to prove secure
– [Mayers, 1996]: first true security proof (quite complicated)
– [Shor & Preskill, 2000]: “simple” proof of security

∗ Information-theoretic security
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BB84BB84
• First, define:

• Alice begins with two random n-bit strings a, b ∈ {0,1}n

• Alice sends the state  |ψ〉 = |ψa1b1
〉|ψa2b2

〉 … |ψanbn
〉 to Bob

• Note: Eve may see these qubits (and tamper wth them)
• After receiving  |ψ〉,  Bob randomly chooses b' ∈ {0,1}n and 

measures each qubit as follows:
– If b'i = 0 then measure qubit in basis {|0〉, |1〉}, yielding outcome a'i
– If b'i = 1 then measure qubit in basis {|+〉, |−〉}, yielding outcome a'i

|ψ00〉 = |0〉
|ψ10〉 = |1〉

|ψ01〉 = |+〉 = |0〉 + |1〉
|ψ11〉 = |−〉 = |0〉 − |1〉

|ψ00〉

|ψ10〉
|ψ01〉

|ψ11〉
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BB84BB84• Note:
– If b'i = bi then a'i = ai

– If b'i≠ bi then Pr[a'i = ai] = ½

• Bob informs Alice when he has performed                        
his measurements (using the public channel)

• Next, Alice reveals b and Bob reveals b' over the public 
channel

• They discard the cases where b'i ≠ bi and they will use the 
remaining bits of a and a' to produce the key

• Note:
– If Eve did not disturb the qubits then the key can be just a (= a' )
– The interesting case is where Eve may tamper with  |ψ〉 while      

it is sent from Alice to Bob  

|ψ00〉

|ψ10〉
|ψ01〉

|ψ11〉
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BB84BB84
• Intuition:

– Eve cannot acquire information about  |ψ〉 without disturbing it, 
which will cause some of the bits of a and a' to disagree

– It can be proven* that: the more information Eve acquires about a, 
the more bit positions of a and a' will be different

• From Alice and Bob’s remaining bits, a and a' (where the 
positions where b'i ≠ bi have already been discarded):
– They take a random subset and reveal them in order to estimate 

the fraction of bits where a and a' disagree
– If this fraction is not too high then they proceed to distill a key from 

the bits of a and a' that are left over (around n /4 bits)

|ψ00〉

|ψ10〉
|ψ01〉

|ψ11〉

∗ To prove this rigorously is nontrivial
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BB84BB84
• If the error rate between a and a' is below some threshold 

(around 11%) then Alice and Bob can produce a good key 
using techniques from classical cryptography:
– Information reconciliation (“distributed error correction”): to produce 

shorter a and a' such that (i) a = a', and (ii) Eve doesn’t acquire much 
information about a and a' in the process

– Privacy amplification: to produce shorter a and a' such that Eve’s 
information about a and a' is very small

• There are already commercially available implementations of 
BB84, though assessing their true security is a subtle matter 
(since their physical mechanisms are not ideal)
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Schmidt decomposition
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Schmidt decomposition

Let |ψ〉 be any bipartite quantum state: 

|ψ〉 = (where we can assume n ≤ m)∑∑
= =

⊗
m

a

n

b
ba ba

1 1
,α

Then there exist orthonormal states 
|μ1〉, |μ2〉, …, |μn〉 and |ϕ1〉, |ϕ2〉, …, |ϕn〉 such that

• |ψ〉 =

• |ϕ1〉, |ϕ2〉, …, |ϕn〉 are the eigenvectors of Tr1|ψ〉〈ψ|

∑
=

⊗
n

c
cccp

1
ϕμ

Theorem:
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Schmidt decomposition: proof (I)

∑
=

n

c
cccp

1
ϕϕSince ρ is a density matrix, we can express  ρ = ,

where |ϕ1〉, |ϕ2〉, …, |ϕn〉 are orthonormal eigenvectors of ρ

The density matrix for state |ψ〉 is given by |ψ〉〈ψ|

Tracing out the first system, we obtain the density matrix 
of the second system, ρ = Tr1|ψ〉〈ψ|

Now, returning to |ψ〉, we can express |ψ〉 =                      , 
where |ν1〉, |ν2〉, …, |νn〉 are just some arbitrary vectors (not 
necessarily valid quantum states; for example, they might not 
have unit length, and we cannot presume they’re orthogonal)

∑
=

⊗
n

c
cc

1

ϕν
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Schmidt decomposition: proof (II)

∑∑∑∑
= ===
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''
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''

1

ϕϕννϕνϕνψψ

Claim: 〈νc|νc′ 〉 = pc     if c = c′
0 if c ≠ c′

Proof of Claim: Compute the partial trace Tr1 of |ψ〉〈ψ| from

( ) BABA ⋅=⊗ )(1 TrTr

(linearity)
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n

c

n

c
cccc

1 1'
'' ϕϕνν
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Note that: Example:

Since ∑∑
= =

⊗
n

c

n

c
cccc

1 1'
'' ϕϕνν ∑

=

=
n

c
cccp

1
ϕϕ the claim follows 
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Schmidt decomposition: proof (III)Schmidt decomposition: proof (III)

Normalize the |νc〉 by setting c
c

c p
νμ 1

=

∑
=

⊗
n

c
cccp

1
ϕμ

Then 〈μc|μc′ 〉 = 1 if c = c′
0 if c ≠ c′

and |ψ〉 =
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The story of bit commitment
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Bit-commitment

• Alice has a bit b that she wants to commit to Bob:
• After the commit stage, Bob should know nothing about 

b, but Alice should not be able to change her mind
• After the reveal stage, either: 

– Bob should learn b and accept its value, or 
– Bob should reject Alice’s reveal message, if she deviates from 

the protocol

commit stage

reveal stage

bit b
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Simple physical implementation
• Commit: Alice writes b down on a piece of paper, locks it in a 

safe, sends the safe to Bob, but keeps the key
• Reveal: Alice sends the key to Bob, who then opens the safe
• Desirable properties:

– Binding: Alice cannot change b after commit
– Concealing: Bob learns nothing about b until reveal

Question: why should anyone care about bit-commitment?

Answer: it is a useful primitive operation for other protocols, 
such as coin-flipping, and “zero-knowledge proof systems”
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Complexity-theoretic implementation

Based on a one-way function* f : {0,1}n {0,1}n and a 
hard-predicate h : {0,1}n {0,1}  for f

Commit: Alice picks a random x ∈{0,1}n, sets y = f(x) and 
c = b⊕h(x) and then sends y and c to Bob

Reveal: Alice sends x to Bob, who verifies that y = f(x) and 
then sets b = c⊕h(x)

This is (i) perfectly binding and (ii) computationally concealing, 
based on the hardness of predicate h

* should be one-to-one
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Quantum implementation
• Inspired by the success of QKD, one can try to use the 

properties of quantum mechanical systems to design an 
information-theoretically secure bit-commitment scheme

• One simple idea:
– To commit to 0, Alice sends a random sequence from {|0〉, |1〉}
– To commit to 1, Alice sends a random sequence from {|+〉, |−〉}
– Bob measures each qubit received in a random basis
– To reveal, Alice tells Bob exactly which states she sent in the 

commitment stage (by sending its index 00, 01, 10, or 11), and 
Bob checks for consistency with his measurement results

• A paper appeared in 1993 proposing a quantum bit-
commitment scheme and a proof of security
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Impossibility proof I
• Not only was the 1993 scheme shown to be insecure, 

but it was later shown that no such scheme can exist!
• To understand the impossibility proof, recall the 

Schmidt decomposition:

[Mayers ’96][Lo & Chau ’96]

Let |ψ〉 be any bipartite quantum state: 

|ψ〉 =

Then there exist orthonormal states 
|μ1〉, |μ2〉, …, |μn〉 and |ϕ1〉, |ϕ2〉, …, |ϕn〉 such that 

|ψ〉 =

∑∑
= =

n

a

n

b
ba ba

1 1
,α

∑
=

n

c
ccc

1
φμβ

Eigenvectors of Tr1|ψ〉〈ψ|
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Impossibility proof II
• Corollary: if |ψ0〉, |ψ1〉 are two bipartite states such that 

Tr1|ψ0〉〈ψ0| = Tr1|ψ1〉〈ψ1| then there exists a unitary U
(acting on the first register) such that (U⊗I )|ψ0〉 = |ψ1〉

• Proof:

• Protocol can be “purified” so that Alice’s commit states are 
|ψ0〉 & |ψ1〉 (where she sends the second register to Bob)

• By applying U to her register, Alice can change her 
commitment from b = 0 to b = 1 (by changing |ψ0〉 to |ψ1〉)

∑
=

=
n

c
ccc

1
0 φμβψ and

We can define U so that U |μc〉 = |μ′c〉 for c = 1,2,...,n █

∑
=

=
n

c
ccc

1
1 ' φμβψ
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