Introduction to
 Quantum Information Processing CS 667 I PH 767 I CO 681 I AM 871

Lecture 22 (2009)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Brief remarks about fault-tolerant computing

A simple error model

At each qubit there is an \times error per unit of time, that denotes the following noise:

$$
\begin{cases}I & \text { with probability } 1-\varepsilon \\ X & \text { with probability } \varepsilon / 3 \\ Y & \text { with probability } \varepsilon / 3 \\ Z & \text { with probability } \varepsilon / 3\end{cases}
$$

Threshold theorem

If ε is very small then this is okay - a computation of size* less than $1 /(10 \varepsilon)$ will still succeed most of the time

But, for every constant value of ε, the size of the maximum computation possible is constant

Threshold theorem: There is a fixed constant $\varepsilon_{0}>0$ such that any computation of size T can be translated into one of size $O\left(T \log ^{c}(T)\right)$ that is robust against the error model with parameter ε_{0}
(The proof is omitted here)

* where size $=(\#$ qubits $) x(\#$ time steps $)$

Comments about the threshold theorem

Idea is to use a quantum error-correcting code at the start and then perform all the gates on the encoded data
At regular intervals, an error-correction procedure is performed, very carefully, since these operations are also subject to errors!

The 7-qubit CSS code has some nice properties that enable some (not all) gates to be directly peformed on the encoded data: H and $C N O T$ gates act "transversally" in the sense that:

Also, codes applied recursively become stronger

Quantum key distribution

Private communication

- Suppose Alice and Bob would like to communicate privately in the presence of an eavesdropper Eve
- A provably secure (classical) scheme exists for this, called the one-time pad
- The one-time pad requires Alice \& Bob to share a secret key: $k \in\{0,1\}^{n}$, uniformly distributed (secret from Eve)

Private communication

One-time pad protocol:

- Alice sends $c=m \oplus k$ to Bob
- Bob receives computes $c \oplus k$, which is $(m \oplus k) \oplus k=m$

This is secure because, what Eve sees is c, and c is uniformly distributed, regardless of what m is

Key distribution scenario

- For security, Alice and Bob must never reuse the key bits
- E.g., if Alice encrypts both m and m^{\prime} using the same key k then Eve can deduce $m \oplus m^{\prime}=c \oplus c^{\prime}$
- Problem: how do they distribute the secret key bits in the first place?
- Presumably, there is some trusted preprocessing stage where this is set up (say, where Alice and Bob get together, or where they use a trusted third party)
- Key distribution problem: set up a large number of secret key bits

Key distribution based on computational hardness

- The RSA protocol can be used for key distribution:
- Alice chooses a random key, encrypts it using Bob's public key, and sends it to Bob
- Bob decrypts Alice's message using his secret (private) key
- The security of RSA is based on the presumed computational difficulty of factoring integers
- More abstractly, a key distribution protocol can be based on any trapdoor one-way function
- Most such schemes are breakable by quantum computers

Quantum key distribution (QKD)

- A protocol that enables Alice and Bob to set up a secure* secret key, provided that they have:
- A quantum channel, where Eve can read and modify messages
- An authenticated classical channel, where Eve can read messages, but cannot tamper with them (the authenticated classical channel can be simulated by Alice and Bob having a very short classical secret key)
- There are several protocols for QKD, and the first one proposed is called "BB84" [Bennett \& Brassard, 1984]:
- BB84 is "easy to implement" physically, but "difficult" to prove secure
- [Mayers, 1996]: first true security proof (quite complicated)
- [Shor \& Preskill, 2000]: "simple" proof of security
* Information-theoretic security

BB84

- First, define: $\left|\psi_{00}\right\rangle=|0\rangle$

- Alice begins with two random n-bit strings $a, b \in\{0,1\}^{n}$
- Alice sends the state $|\psi\rangle=\left|\psi_{a_{1} b_{1}}\right\rangle\left|\psi_{a_{2} b_{2}}\right\rangle \ldots\left|\psi_{a_{n} b_{n}}\right\rangle$ to Bob
- Note: Eve may see these qubits (and tamper wth them)
- After receiving $|\psi\rangle$, Bob randomly chooses $b^{\prime} \in\{0,1\}^{n}$ and measures each qubit as follows:
- If $b_{i}^{\prime}=0$ then measure qubit in basis $\{|0\rangle,|1\rangle\}$, yielding outcome a_{i}^{\prime}
- If $b_{i}^{\prime}=1$ then measure qubit in basis $\{|+\rangle,|-\rangle\}$, yielding outcome a_{i}^{\prime}

BB84

- Note:
- If $b_{i}^{\prime}=b_{i}$ then $a_{i}^{\prime}=a_{i}$
- If $b_{i}^{\prime} \neq b_{i}$ then $\operatorname{Pr}\left[a_{i}^{\prime}=a_{i}\right]=1 / 2$
- Bob informs Alice when he has performed
 his measurements (using the public channel)
- Next, Alice reveals b and Bob reveals b^{\prime} over the public channel
- They discard the cases where $b_{i}^{\prime} \neq b_{i}$ and they will use the remaining bits of a and a^{\prime} to produce the key
- Note:
- If Eve did not disturb the qubits then the key can be just a (= a^{\prime})
- The interesting case is where Eve may tamper with $|\psi\rangle$ while it is sent from Alice to Bob

BB84

- Intuition:
- Eve cannot acquire information about $|\psi\rangle$ without disturbing it, which will cause some of the bits of a and a^{\prime} to disagree
- It can be proven* that: the more information Eve acquires about a, the more bit positions of a and a^{\prime} will be different
- From Alice and Bob's remaining bits, a and a^{\prime} (where the positions where $b_{i}^{\prime} \neq b_{i}$ have already been discarded):
- They take a random subset and reveal them in order to estimate the fraction of bits where a and a^{\prime} disagree
- If this fraction is not too high then they proceed to distill a key from the bits of a and a^{\prime} that are left over (around $n / 4$ bits)
* To prove this rigorously is nontrivial

BB84

- If the error rate between a and a^{\prime} is below some threshold (around 11\%) then Alice and Bob can produce a good key using techniques from classical cryptography:
- Information reconciliation ("distributed error correction"): to produce shorter a and a^{\prime} such that (i) $a=a^{\prime}$, and (ii) Eve doesn't acquire much information about a and a^{\prime} in the process
- Privacy amplification: to produce shorter a and a^{\prime} such that Eve's information about a and a^{\prime} is very small
- There are already commercially available implementations of BB84, though assessing their true security is a subtle matter (since their physical mechanisms are not ideal)

Schmidt decomposition

Schmidt decomposition

Theorem:

Let $|\psi\rangle$ be any bipartite quantum state:
$|\psi\rangle=\sum_{a=1}^{m} \sum_{b=1}^{n} \alpha_{a, b}|a\rangle \otimes|b\rangle$ (where we can assume $n \leq m$)
Then there exist orthonormal states
$\left|\mu_{1}\right\rangle,\left|\mu_{2}\right\rangle, \ldots,\left|\mu_{n}\right\rangle$ and $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle$ such that

- $|\psi\rangle=\sum_{c=1}^{n} \sqrt{p_{c}}\left|\mu_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle$
- $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle$ are the eigenvectors of $\operatorname{Tr}_{1}|\psi\rangle\langle\psi|$

Schmidt decomposition: proof (I)

The density matrix for state $|\psi\rangle$ is given by $|\psi\rangle\langle\psi|$
Tracing out the first system, we obtain the density matrix of the second system, $\rho=\operatorname{Tr}_{1}|\psi\rangle\langle\psi|$

Since ρ is a density matrix, we can express $\rho=\sum_{c=1}^{n} p_{c}\left|\varphi_{c}\right\rangle\left\langle\varphi_{c}\right|$, where $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle$ are orthonormal eigenvectors of ρ

Now, returning to $|\psi\rangle$, we can express $|\psi\rangle=\sum_{c=1}^{n}\left|v_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle$, where $\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle$ are just some arbitrary vectors (not necessarily valid quantum states; for example, they might not have unit length, and we cannot presume they're orthogonal)

Schmidt decomposition: proof (II)

Claim: $\left\langle v_{c} \mid v_{c^{\prime}}\right\rangle=\left\{\begin{array}{cc}p_{c} & \text { if } c=c^{\prime} \\ 0 & \text { if } c \neq c^{\prime}\end{array}\right.$
Proof of Claim: Compute the partial trace Tr_{1} of $|\psi\rangle\langle\psi|$ from $|\psi\rangle\langle\psi|=\left(\sum_{c=1}^{n}\left|v_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle\right)\left(\sum_{c^{\prime}=1}^{n}\left\langle v_{c^{\prime}}\right| \otimes\left\langle\varphi_{c^{\prime}}\right|\right)=\sum_{c=1}^{n} \sum_{c=1}^{n}\left|v_{c}\right\rangle\left\langle\nu_{c^{\prime}}\right| \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|$
Note that: $\operatorname{Tr}_{1}(A \otimes B)=\operatorname{Tr}(A) \cdot B \quad$ Example: $\operatorname{Tr}_{1}(\rho \otimes \sigma)=\sigma$

$$
\begin{aligned}
\operatorname{Tr}_{1}\left(\sum_{c=1}^{n} \sum_{c=1}^{n}\left|v_{c}\right\rangle\left\langle v_{c^{\prime}}\right| \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|\right) & =\sum_{c=1}^{n} \sum_{c^{\prime}=1}^{n} \operatorname{Tr}\left(\left|v_{c}\right\rangle\left\langle v_{c^{\prime}}\right|\right)\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right| \text { (linearity) } \\
& =\sum_{c=1}^{n} \sum_{c^{\prime}=1}^{n}\left\langle v_{c^{\prime}} \mid v_{c}\right\rangle\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|
\end{aligned}
$$

Since $\sum_{c=1}^{n} \sum_{c^{\prime}=1}^{n}\left\langle v_{c^{\prime}} \mid v_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|=\sum_{c=1}^{n} p_{c}\left|\varphi_{c}\right\rangle\left\langle\varphi_{c}\right|$ the claim follows

Schmidt decomposition: proof (III)

Normalize the $\left|v_{c}\right\rangle$ by setting $\left|\mu_{c}\right\rangle=\frac{1}{\sqrt{p_{c}}}\left|v_{c}\right\rangle$
Then $\left\langle\mu_{c} \mid \mu_{c^{\prime}}\right\rangle= \begin{cases}1 & \text { if } c=c^{\prime} \\ 0 & \text { if } c \neq c^{\prime}\end{cases}$
and $|\psi\rangle=\sum_{c=1}^{n} \sqrt{p_{c}}\left|\mu_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle$

The story of bit commitment

Bit-commitment

bit b

- Alice has a bit b that she wants to commit to Bob:
- After the commit stage, Bob should know nothing about b, but Alice should not be able to change her mind
- After the reveal stage, either:
- Bob should learn b and accept its value, or
- Bob should reject Alice's reveal message, if she deviates from the protocol

Simple physical implementation

- Commit: Alice writes b down on a piece of paper, locks it in a safe, sends the safe to Bob, but keeps the key
- Reveal: Alice sends the key to Bob, who then opens the safe
- Desirable properties:
- Binding: Alice cannot change b after commit
- Concealing: Bob learns nothing about b until reveal

Question: why should anyone care about bit-commitment?
Answer: it is a useful primitive operation for other protocols, such as coin-flipping, and "zero-knowledge proof systems"

Complexity-theoretic implementation

Based on a one-way function* $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and a hard-predicate $h:\{0,1\}^{n} \rightarrow\{0,1\}$ for f

Commit: Alice picks a random $x \in\{0,1\}^{n}$, sets $y=f(x)$ and $c=b \oplus h(x)$ and then sends y and c to Bob

Reveal: Alice sends x to Bob, who verifies that $y=f(x)$ and then sets $b=c \oplus h(x)$

This is (i) perfectly binding and (ii) computationally concealing, based on the hardness of predicate h

* should be one-to-one

Quantum implementation

- Inspired by the success of QKD, one can try to use the properties of quantum mechanical systems to design an information-theoretically secure bit-commitment scheme
- One simple idea:
- To commit to 0 , Alice sends a random sequence from $\{|0\rangle,|1\rangle\}$
- To commit to 1, Alice sends a random sequence from $\{|+\rangle,|-\rangle\}$
- Bob measures each qubit received in a random basis
- To reveal, Alice tells Bob exactly which states she sent in the commitment stage (by sending its index 00, 01, 10, or 11), and Bob checks for consistency with his measurement results
- A paper appeared in 1993 proposing a quantum bitcommitment scheme and a proof of security

Impossibility proof I

- Not only was the 1993 scheme shown to be insecure, but it was later shown that no such scheme can exist!
- To understand the impossibility proof, recall the Schmidt decomposition:

Let $|\psi\rangle$ be any bipartite quantum state:
$|\psi\rangle=\sum_{a=1}^{n} \sum_{b=1}^{n} \alpha_{a, b}|a\rangle|b\rangle$
Then there exist orthonormal states
$\left|\mu_{1}\right\rangle,\left|\mu_{2}\right\rangle, \ldots,\left|\mu_{n}\right\rangle$ and $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle$ such that
$|\psi\rangle=\sum_{c=1}^{n} \beta_{c}\left|\mu_{c}\right\rangle\left|\phi_{c}\right\rangle$

[Mayers '96][Lo \& Chau '96]
Eigenvectors of $\mathbf{T r}_{1}|\psi\rangle\langle\psi|$

Impossibility proof II

- Corollary: if $\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle$ are two bipartite states such that $\operatorname{Tr}_{1}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|=\operatorname{Tr}_{1}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|$ then there exists a unitary U (acting on the first register) such that $(U \otimes I)\left|\psi_{0}\right\rangle=\left|\psi_{1}\right\rangle$
- Proof:

$$
\left|\psi_{0}\right\rangle=\sum_{c=1}^{n} \beta_{c}\left|\mu_{c}\right\rangle\left|\phi_{c}\right\rangle \quad \text { and } \quad\left|\psi_{1}\right\rangle=\sum_{c=1}^{n} \beta_{c}\left|\mu_{c}^{\prime}\right\rangle\left|\phi_{c}\right\rangle
$$

We can define U so that $U\left|\mu_{c}\right\rangle=\left|\mu^{\prime}{ }_{c}\right\rangle$ for $c=1,2, \ldots, n$

- Protocol can be "purified" so that Alice's commit states are $\left|\psi_{0}\right\rangle \&\left|\psi_{1}\right\rangle$ (where she sends the second register to Bob)
- By applying U to her register, Alice can change her commitment from $b=0$ to $b=1$ (by changing $\left|\psi_{0}\right\rangle$ to $\left|\psi_{1}\right\rangle$)

