Introduction to
 Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C\&O 481 / C\&O 681 Lecture 1 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Moore's Law

Following trend ... atomic scale in 15-20 years
Quantum mechanical effects occur at this scale:

- Measuring a state (e.g. position) disturbs it
- Quantum systems sometimes seem to behave as if they are in several states at once
- Different evolutions can interfere with each other

Quantum mechanical effects

Additional nuisances to overcome?

or
 New types of behavior to make use of?

[Shor, 1994]: polynomial-time algorithm for factoring integers on a quantum computer

This could be used to break most of the existing public-key cryptosystems on the internet, such as RSA

Quantum algorithms

Classical deterministic:

Classical probabilistic:

Quantum:

Also with quantum information:

- Faster algorithms for combinatorial search [Grover '96]
- Unbreakable codes with short keys [Bennett, Brassard '84]
- Communication savings in distributed systems [C, Buhrman '97]
- More efficient "proof systems" [Watrous '99]
... and an extensive quantum information theory arises, which generalizes classical information theory

For example: a theory of quantum

This course covers the basics of quantum information processing

Topics include:

- Quantum algorithms and complexity theory
- Quantum information theory
- Quantum error-correcting codes
- Physical implementations*
- Quantum cryptography
- Quantum nonlocality and communication complexity

General course information

Background:

- classical algorithms and complexity
- linear algebra
- probability theory

Evaluation:

- 5 assignments (12\% each)
- project presentation (40\%)

Recommended texts:

An Introduction to Quantum Computation, P. Kaye, R. Laflamme, M. Mosca (Oxford University Press, 2007). Primary reference.

Quantum Computation and Quantum Information, Michael A. Nielsen and Isaac L. Chuang (Cambridge University Press, 2000). Secondary reference.

Basic framework of quantum information

Types of information

is quantum information digital or analog?

probabilistic digital:

- Can explicitly extract r
- Issue of precision for setting \& reading state
- Precision need not be perfect to be useful
- Issue of precision (imperfect ok)

Quantum (digital) information

- Amplitudes $\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1$
- Explicit state is $[\alpha]$ β]
- Cannot explicitly extract α and β (only statistical inference)
- Issue of precision (imperfect ok)

Dirac bra/ket notation

Ket: $|\psi\rangle$ always denotes a column vector, e.g. $\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{d}\end{array}\right]$

Bra: $\langle\psi|$ always denotes a row vector that is the conjugate transpose of $|\psi\rangle$, e.g. $\left[\begin{array}{llll}\alpha_{1}^{*} & \alpha^{*} & \ldots & \alpha_{d}^{*}\end{array}\right]$

Bracket: $\langle\varphi \mid \psi\rangle$ denotes $\langle\varphi| \cdot|\psi\rangle$, the inner product of $|\varphi\rangle$ and $|\psi\rangle$

Basic operations on qubits (I)

(0) Initialize qubit to $|0\rangle$ or to $|1\rangle$
(1) Apply a unitary operation $U\left(U^{\dagger} U=I\right)$

Examples:

Rotation: $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \quad$ NOT (bit flip): $\sigma_{x}=X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Hadamard: $H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Phase flip: $\quad \sigma_{z}=Z=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

Basic operations on qubits (II)

(3) Apply a "standard" measurement:

$$
\left\{\begin{array}{l}
0 \text { with prob }|\alpha|^{2} \\
1 \text { with prob }|\beta|^{2}
\end{array}\right.
$$

... and the quantum state collapses
(*) There exist other quantum operations, but they can all be "simulated" by the aforementioned types

Example: measurement with respect to a different orthonormal basis $\left\{|\psi\rangle,\left|\psi^{\prime}\right\rangle\right\}$

Distinguishing between two states

Let \square be in state $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ or $|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
Question 1: can we distinguish between the two cases?
Distinguishing procedure:

1. apply H
2. measure

This works because $H|+\rangle=|0\rangle$ and $H|-\rangle=|1\rangle$
Question 2: can we distinguish between $|0\rangle$ and $|+\rangle$?
Since they're not orthogonal, they cannot be perfectly distinguished ...

n－qubit systems

Probabilistic states：
$\forall x, p_{x} \geq 0$
$\sum_{x} p_{x}=1$\(\left[\begin{array}{c}p_{000}

p_{001}

p_{010}

p_{011}

p_{100}

p_{101}

p_{110}

p_{111}\end{array}\right] \quad\)| Quantum states： |
| :---: |
| $\forall x, \alpha_{x} \in \mathbb{C}$ |\(\left[\begin{array}{c}\alpha_{000}

\alpha_{001}

\alpha_{010}

\alpha_{011}

\alpha_{100}

\alpha_{101}

\alpha_{110}

\alpha_{111}\end{array}\right]\)

Dirac notation：｜000〉，｜001〉，｜010〉，．．．，｜111＞are basis vectors， so $|\psi\rangle=\sum_{x} \alpha_{x}|x\rangle$

Operations on \boldsymbol{n}-qubit states

Unitary operations: $\left(U^{\dagger} U=I\right)$

Measurements:

00

... and the quantum state collapses

Entanglement

Product state (tensor/Kronecker product):
$(\alpha|0\rangle+\beta|1\rangle)\left(\alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle\right)=\alpha \alpha^{\prime}|00\rangle+\alpha \beta^{\prime}|01\rangle+\beta \alpha^{\prime}|10\rangle+\beta \beta^{\prime}|11\rangle$

Example of an entangled state: $\quad \frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$
... can exhibit interesting "nonlocal" correlations:

Structure among subsystems

 qubits:time

Quantum computations

Quantum circuits:

"Feasible" if circuit-size scales polynomially

Example of a one-qubit gate applied to a two-qubit system

$$
U=\left[\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right]
$$

The resulting 4×4 matrix is
Maps basis states as:

$$
\begin{aligned}
|0\rangle|0\rangle & \rightarrow|0\rangle U|0\rangle \\
|0\rangle|1\rangle & \rightarrow|0\rangle U|1\rangle \\
|1\rangle|0\rangle & \rightarrow|1\rangle U|0\rangle \\
|1\rangle|1\rangle & \rightarrow|1\rangle U|1\rangle
\end{aligned}
$$

$$
I \otimes U=\left[\begin{array}{cccc}
u_{00} & u_{01} & 0 & 0 \\
u_{10} & u_{11} & 0 & 0 \\
0 & 0 & u_{00} & u_{01} \\
0 & 0 & u_{10} & u_{11}
\end{array}\right]
$$

Controlled- \boldsymbol{U} gates

$$
U=\left[\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right]
$$

Resulting 4×4 matrix is controlled- $U=$

Maps basis states as:

$$
\begin{aligned}
& |0\rangle|0\rangle \rightarrow|0\rangle|0\rangle \\
& |0\rangle|1\rangle \rightarrow|0\rangle|1\rangle \\
& |1\rangle|0\rangle \rightarrow|1\rangle U|0\rangle \\
& |1\rangle|1\rangle \rightarrow|1\rangle U|1\rangle
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & u_{00} & u_{01} \\
0 & 0 & u_{10} & u_{11}
\end{array}\right]
$$

Controlled-NOT (CNOT)

Note: "control" qubit may change on some input states

$$
|0\rangle+|1\rangle \cdots \quad|0\rangle-|1\rangle
$$

Introduction to
 Quantum Information Processing
 CS 467 / CS 667
 Phys 667 / Phys 767 C\&O 481 / C\&O 681
 Lecture 2 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Superdense coding

How much classical information in \boldsymbol{n} qubits?

$2^{n}-1$ complex numbers apparently needed to describe an arbitrary n-qubit pure quantum state:
$\alpha_{000}|000\rangle+\alpha_{001}|001\rangle+\alpha_{010}|010\rangle+\ldots+\alpha_{111}|111\rangle$
Does this mean that an exponential amount of classical information is somehow stored in n qubits?

Not in an operational sense ...
For example, Holevo's Theorem (from 1973) implies: one cannot convey more than n classical bits of information in n qubits

Holevo's Theorem

Easy case:

$b_{1} b_{2} \ldots b_{n}$ certainly cannot convey more than n bits!

Hard case (the general case):

The difficult proof is beyond the scope of this course

Superdense coding (prelude)

Suppose that Alice wants to convey two classical bits to Bob sending just one qubit

By Holevo's Theorem, this is impossible

Superdense coding

In superdense coding, Bob is allowed to send a qubit to Alice first

How can this help?

How superdense coding works

1. Bob creates the state $|00\rangle+|11\rangle$ and sends the first qubit to Alice
2. Alice: if $a=1$ then apply X to qubit if $b=1$ then apply Z to qubit

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$ send the qubit back to Bob

$\left.\begin{array}{|l|l|}\hline a b & \text { state } \\ \hline 00 & |00\rangle+|11\rangle \\ 01 & |00\rangle-|11\rangle \\ 10 & |01\rangle+|10\rangle \\ 11 & |01\rangle-|10\rangle \\ \hline\end{array}\right\}$ Bell basis
3. Bob measures the two qubits in the Bell basis

Measurement in the Bell basis

Specifically, Bob applies

input	output
$\|00\rangle+\|11\rangle$	$\|00\rangle$
$\|01\rangle+\|10\rangle$	$\|01\rangle$
$\|00\rangle-\|11\rangle$	$\|10\rangle$
$\|01\rangle-\|10\rangle$	$\|11\rangle$

to his two qubits ... and then measures them, yielding $a b$

This concludes superdense coding

Introduction to
 Quantum Information Processing
 CS 467 / CS 667
 Phys 667 / Phys 767 C\&O 481 / C\&O 681
 Lecture 3 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Teleportation

Recap

- n-qubit quantum state: 2^{n}-dimensional unit vector
- Unitary op: $2^{n} \times 2^{n}$ linear operation U such that $U^{\dagger} U=I$ (where U^{\dagger} denotes the conjugate transpose of U) $U|0000\rangle=$ the $1^{\text {st }}$ column of U $U 0001\rangle=$ the $2^{\text {nd }}$ column of U
the columns of U are orthonormal
$U|1111\rangle=$ the $\left(2^{n}\right)^{\text {th }}$ column of U

Incomplete measurements (I)

Measurements up until now are with respect to orthogonal one-dimensional subspaces:

The orthogonal subspaces can have other dimensions:

Incomplete measurements (II)

Such a measurement on $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle+\alpha_{2}|2\rangle$
(renormalized)
results in $\left\{\begin{array}{cl}\alpha_{0}|0\rangle+\alpha_{1}|1\rangle & \text { with prob }\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2} \\ |2\rangle & \text { with prob }\left|\alpha_{2}\right|^{2}\end{array}\right.$

Measuring the first qubit of a two-qubit system

$$
\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

Defined as the incomplete measurement with respect to the two dimensional subspaces:

- span of $|00\rangle \&|01\rangle$ (all states with first qubit 0), and
- span of $|10\rangle \&|11\rangle$ (all states with first qubit 1)

Result is the mixture $\left\{\begin{array}{l}\alpha_{00}|00\rangle+\alpha_{01}|01\rangle \text { with prob }\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2} \\ \alpha_{10}|10\rangle+\alpha_{11}|11\rangle \text { with prob }\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}\end{array}\right.$

Easy exercise: show that measuring the first qubit and then measuring the second qubit gives the same result as measuring both qubits at once

Teleportation (prelude)

Suppose Alice wishes to convey a qubit to Bob by sending just classical bits
$\square \alpha|0\rangle+\beta|1\rangle$

If Alice knows α and β, she can send approximations of them -but this still requires infinitely many bits for perfect precision

Moreover, if Alice does not know α or β, she can at best acquire one bit about them by a measurement

Teleportation scenario

In teleportation, Alice and Bob also start with a Bell state

and Alice can send two classical bits to Bob
Note that the initial state of the three qubit system is:

$$
\begin{aligned}
& (1 / \sqrt{ } 2)(\alpha|0\rangle+\beta|1\rangle)(|00\rangle+|11\rangle) \\
& =(1 / \sqrt{ } 2)(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle)
\end{aligned}
$$

How teleportation works

Initial state: $\quad(\alpha|0\rangle+\beta|1\rangle)(|00\rangle+|11\rangle) \quad$ (omitting the $1 / \sqrt{ } 2$ factor)

$$
\begin{aligned}
& =\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle \\
& =1 / 2(|00\rangle+|11\rangle)(\alpha|0\rangle+\beta|1\rangle) \\
& +1 / 2(|01\rangle+|10\rangle)(\alpha|1\rangle+\beta|0\rangle) \\
& +1 / 2(|00\rangle-|11\rangle)(\alpha|0\rangle-\beta|1\rangle) \\
& +1 / 2(|01\rangle-|10\rangle)(\alpha|1\rangle-\beta|0\rangle)
\end{aligned}
$$

Protocol: Alice measures her two qubits in the Bell basis and sends the result to Bob (who then "corrects" his state)

What Alice does specifically

Alice applies

Then Alice sends her two classical bits to Bob, who then adjusts his qubit to be $\alpha|0\rangle+\beta|1\rangle$ whatever case occurs

Bob's adjustment procedure

Bob receives two classical bits a, b from Alice, and:
if $b=1$ he applies X to qubit if $a=1$ he applies Z to qubit

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

yielding: $\left\{\begin{array}{cc}00, \quad \alpha|0\rangle+\beta|1\rangle\end{array}\right.$

$$
\left\{\begin{aligned}
01, & X(\alpha|1\rangle+\beta|0\rangle)=\alpha|0\rangle+\beta|1\rangle \\
10, & Z(\alpha|0\rangle-\beta|1\rangle)=\alpha|0\rangle+\beta|1\rangle \\
11, & Z X(\alpha|1\rangle-\beta|0\rangle)=\alpha|0\rangle+\beta|1\rangle
\end{aligned}\right.
$$

Note that Bob acquires the correct state in each case

Summary of teleportation

Quantum circuit exercise: try to work through the details of the analysis of this teleportation protocol

No-cloning theorem

Classical information can be copied

What about quantum information?

Candidate:

works fine for $|\psi\rangle=|0\rangle$ and $|\psi\rangle=|1\rangle$
... but it fails for $|\psi\rangle=(1 / \sqrt{ } 2)(|0\rangle+|1\rangle) \ldots$
... where it yields output $(1 / \sqrt{ } 2)(|00\rangle+|11\rangle)$
instead of $|\psi\rangle|\psi\rangle=(1 / 4)(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$

No-cloning theorem

Theorem: there is no valid quantum operation that maps an arbitrary state $|\psi\rangle$ to $|\psi\rangle|\psi\rangle$

Proof:

Let $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ be two input states, yielding outputs $|\psi\rangle|\psi\rangle|\mathrm{g}\rangle$ and $\left|\psi^{\prime}\right\rangle\left|\psi^{\prime}\right\rangle\left|g^{\prime}\right\rangle$ respectively

Since U preserves inner products:
$\left\langle\psi \mid \psi^{\prime}\right\rangle=\left\langle\psi \mid \psi^{\prime}\right\rangle\left\langle\psi \mid \psi^{\prime}\right\rangle\left\langle\mathrm{g} \mid \mathrm{g}^{\prime}\right\rangle$ so
$\left\langle\psi \mid \psi^{\prime}\right\rangle\left(1-\left\langle\psi \mid \psi^{\prime}\right\rangle\left\langle g \mid g^{\prime}\right\rangle\right)=0$ so
$\left|\left\langle\psi \mid \psi^{\prime}\right\rangle\right|=0$ or 1

