# Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871

**Lecture 19 (2009)** 

**Richard Cleve** 

DC 2117

cleve@cs.uwaterloo.ca

# Preliminary remarks about quantum communication

Quantum information can apparently be used to substantially reduce *computation* costs for a number of interesting problems

How does quantum information affect the *communication costs* of information processing tasks?

We explore this issue ...

## **Entanglement and signaling**

Recall that Entangled states, such as  $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$ ,





can be used to perform some intriguing feats, such as *teleportation* and *superdense coding* 

—but they *cannot* be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

#### **Basic communication scenario**

**Goal:** convey *n* bits from Alice to Bob



#### **Basic communication scenario**

#### Bit communication:



Cost: n

Qubit communication:



Cost: n [Holevo's Theorem, 1973]

Bit communication & prior entanglement:



Cost: n (can be deduced)

**Qubit communication & prior entanglement:** 



Cost: n/2 superdense coding

[Bennett & Wiesner, 1992]

## The GHZ "paradox"

## **GHZ** scenario

[Greenberger, Horne, Zeilinger, 1980]







#### Rules of the game:

- 1. It is promised that  $r \oplus s \oplus t = 0$
- 2. No communication after inputs received
- 3. They **win** if  $a \oplus b \oplus c = r \lor s \lor t$



| rst | $a\oplus b\oplus c$ | abc |
|-----|---------------------|-----|
| 000 | 0 😀                 | 011 |
| 011 | 1 😀                 | 001 |
| 101 | 1 😀                 | 111 |
| 110 | 1 😩                 | 101 |

## No perfect strategy for GHZ

Input:

**Output:** 







| rst | $a\oplus b\oplus c$ |
|-----|---------------------|
| 000 | 0                   |
| 011 | 1                   |
| 101 | 1                   |
| 110 | 1                   |

General deterministic strategy:

$$a_0, a_1, b_0, b_1, c_0, c_1$$

Winning conditions:

## **GHZ: preventing communication**



Input and output events can be **space-like** separated: so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol *still* keep on winning?

## "GHZ Paradox" explained

Prior entanglement:  $|\psi\rangle = |000\rangle - |011\rangle - |101\rangle - |110\rangle$ 







#### **Alice's strategy:**

- 1. if r = 1 then apply H to qubit
- 2. measure qubit and set *a* to result

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

#### Bob's & Carol's strategies: similar

Case 1 (rst = 000): state is measured directly ...

**Case 2** (rst = 011): new state  $|001\rangle + |010\rangle - |100\rangle + |111\rangle$ 

**Cases 3 & 4** (rst = 101 & 110): similar by symmetry  $\Theta$ 

#### **GHZ: conclusions**

- For the GHZ game, any classical team succeeds with probability at most <sup>3</sup>/<sub>4</sub>
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1
- Thus, entanglement is a useful resource for the task of winning the GHZ game

## The Bell inequality and its violation

Physicist's perspective

### Bell's Inequality and its violation

#### Part I: physicist's view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

#### qubit:



where the "manuscript" is something like this:

called *hidden variables* 

[Bell, 1964] [Clauser, Horne, Shimony, Holt, 1969] if  $\{|0\rangle, |1\rangle\}$  measurement then output **0** 

if  $\{|+\rangle, |-\rangle\}$  measurement then output **1** 

if ... (etc)

table could be implicitly given by some formula

## **Bell Inequality**

Imagine a two-qubit system, where one of two measurements, called  $M_0$  and  $M_1$ , will be applied to each qubit:



Define:

$$A_0 = (-1)^{a_0}$$

$$A_1 = (-1)^{a_1}$$

$$B_0 = (-1)^{b_0}$$

$$B_1 = (-1)^{b_1}$$

Claim:  $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$ 

**Proof:** 
$$A_0(B_0 + B_1) + A_1(B_0 - B_1) \le 2$$

one is ±2 and the other is 0

## **Bell Inequality**

 $A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \le 2$  is called a **Bell Inequality**\*

**Question:** could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

**Answer 1:** *no, not directly*, because  $A_0, A_1, B_0, B_1$  cannot all be measured (only *one*  $A_sB_t$  term can be measured)

**Answer 2:** *yes, indirectly*, by making many runs of this experiment: pick a random  $st \in \{00,01,10,11\}$  and then measure with  $M_s$  and  $M_t$  to get the value of  $A_sB_t$ 

The *average* of  $A_0B_0$ ,  $A_0B_1$ ,  $A_1B_0$ ,  $-A_1B_1$  should be  $\leq \frac{1}{2}$ 

<sup>\*</sup> also called CHSH Inequality

## Violating the Bell Inequality



Two-qubit system in state 
$$|\phi\rangle = |00\rangle - |11\rangle$$



Applying rotations  $\theta_A$  and  $\theta_B$  yields:

$$\cos(\theta_A + \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A + \theta_B) (|01\rangle + |10\rangle)$$

$$AB = +1$$

$$AB = -1$$

Define

 $M_0$ : rotate by  $-\pi/16$  then measure

 $M_1$ : rotate by  $+3\pi/16$  then measure

Then  $A_0B_0$ ,  $A_0B_1$ ,  $A_1B_0$ ,  $-A_1B_1$  all have expected value  $1/2\sqrt{2}$ , which **contradicts** the upper bound of 1/2



## Bell Inequality violation: summary

Assuming that quantum systems are governed by *local hidden variables* leads to the Bell inequality



$$A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \le 2$$

But this is *violated* in the case of Bell states (by a factor of  $\sqrt{2}$ )

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted



# The Bell inequality and its violation – Computer Scientist's perspective

## Bell's Inequality and its violation

#### Part II: computer scientist's view:

input:





output:

 $\boldsymbol{a}$ 

Rules: 1. No communication after inputs received

2. They **win** if  $a \oplus b = s \wedge t$ 

With classical resources,  $\Pr[a \oplus b = s \land t] \le 0.75$ 

But, with prior entanglement state  $|00\rangle - |11\rangle$ ,

$$\Pr[a \oplus b = s \land t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$$

| st | $a\oplus b$ |
|----|-------------|
| 00 | 0           |
| 01 | 0           |
| 10 | 0           |
| 11 | 1           |

## The quantum strategy

• Alice and Bob start with entanglement  $|\phi\rangle = |00\rangle - |11\rangle$ 

• Alice: if s=0 then rotate by  $\theta_A=-\pi/16$  else rotate by  $\theta_A=+3\pi/16$  and measure



• **Bob:** if t = 0 then rotate by  $\theta_B = -\pi/16$  else rotate by  $\theta_B = +3\pi/16$  and measure

$$\cos(\theta_A - \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A - \theta_B) (|01\rangle + |10\rangle)$$

#### Success probability:

$$\Pr[a \oplus b = s \land t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$$

### Nonlocality in operational terms



## The magic square game

## Magic square game

**Problem:** fill in the matrix with bits such that each row has even parity and each column has odd parity



Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

**Success probabilities:** 8/9 classical and 1 quantum [Aravind, 2002] (details omitted here)