# Introduction to <br> Quantum Information Processing CS 667 I PH 767 I CO 681 / AM 871 

## Lecture 18 (2009)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

## Grover's quantum search algorithm

## Quantum search problem

Given: a black box computing $f:\{0,1\}^{n} \rightarrow\{0,1\}$
Goal: determine if $f$ is satisfiable (if $\exists X \in\{0,1\}^{n}$ s.t. $f(x)=1$ )
In positive instances, it makes sense to also find such a satisfying assignment $X$

Classically, using probabilistic procedures, order $2^{n}$ queries are necessary to succeed-even with probability $3 / 4$ (say)

Grover's quantum algorithm that makes only $O\left(\sqrt{ } 2^{n}\right)$ queries
[Grover '96]


## Applications of quantum search

The function $f$ could be realized as a 3-CNF formula:
$f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{5}\right) \wedge \cdots \wedge\left(\bar{x}_{1} \vee x_{5} \vee \bar{x}_{n}\right)$

Alternatively, the search could be for a certificate for any problem in NP

The resulting quantum algorithms appear to be quadratically more efficient than the best classical algorithms known


# Prelude to Grover's algorithm: two reflections $=\mathbf{a}$ rotation 

Consider two lines with intersection angle $\theta$ :


Net effect: rotation by angle $2 \theta$, regardless of starting vector

## Grover's algorithm: description I

Basic operations used:


$$
U_{f^{|x\rangle|-\rangle}=(-1)} f(x)|x\rangle|-\rangle
$$



$$
U_{0}|x\rangle|-\rangle=(-1)^{[X=0 . .0] \mid}|\lambda\rangle|-\rangle
$$



## Grover's algorithm: description II



1. construct state $H|0 \ldots 0\rangle|-\rangle$
2. repeat $k$ times:

$$
\text { apply }-H U_{0} H U_{f} \text { to state }
$$

3. measure state, to get $X \in\{0,1\}^{n}$, and check if $f(x)=1$
(The setting of $k$ will be determined later)

## 

Let $A=\left\{x \in\{0,1\}^{n}: f(x)=1\right\}$ and $B=\left\{x \in\{0,1\}^{n}: f(x)=0\right\}$
and $N=2^{n}$ and $a=|A|$ and $b=|B|$
Let $|A\rangle=\frac{1}{\sqrt{a}} \sum_{x \in A}|x\rangle$ and $\quad|B\rangle=\frac{1}{\sqrt{b}} \sum_{x \in B}|x\rangle$
Consider the space spanned by $|A\rangle$ and $|B\rangle$
${ }^{|A\rangle} \leqslant$ goal is to get close to this state


Interesting case: $a \ll N$

## Grover's algorithm: analysis II

|A $\rangle$


Algorithm: $\left(-H U_{0} H U_{f}\right)^{k} H|0 \ldots 0\rangle$

Observation:
$U_{f}$ is a reflection about $|B\rangle: U_{f}|A\rangle=-|A\rangle$ and $U_{f}|B\rangle=|B\rangle$
Question: what is $-H U_{0} H$ ? $\quad U_{0}$ is a reflection about $H|0 \ldots .0\rangle$
Partial proof:
$-H U_{0} H H|0 \ldots 0\rangle=-H U_{0}|0 \ldots 0\rangle=-H(-|0 \ldots 0\rangle)=H|0 \ldots 0\rangle$

## Grover's algorithm: analysis III

|A


Algorithm: $\left(-H U_{0} H U_{f}\right)^{k} H|0 \ldots 0\rangle$

Since $-H U_{0} H U_{f}$ is a composition of two reflections, it is a rotation by $2 \theta$, where $\sin (\theta)=\sqrt{a / N} \approx \sqrt{a / N}$

When $a=1$, we want $(2 k+1)(1 / \sqrt{ } N) \approx \pi / 2$, so $k \approx(\pi / 4) \sqrt{ } N$
More generally, it suffices to set $k \approx(\pi / 4) \sqrt{N / a}$
Question: what if $a$ is not known in advance?

## Unknown number of solutions



success probability
very close to zero!
Choose a random $k$ in the range to get success probability $>0.43$

## Optimality of Grover's algorithm

## Optimality of Grover's algorithm I

Theorem: any quantum search algorithm for $f:\{0,1\}^{n} \rightarrow\{0,1\}$ must make $\Omega\left(\sqrt{ } 2^{n}\right)$ queries to $f$ (if $f$ is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form

$$
|x\rangle \equiv f \equiv(-1)^{f(x)}|x\rangle
$$

and that a $k$-query algorithm is of the form

where $U_{0}, U_{1}, U_{2}, \ldots, U_{k}$, are arbitrary unitary operations

## Optimality of Grover's algorithm II

Define $f_{r}:\{0,1\}^{n} \rightarrow\{0,1\}$ as $f_{r}(X)=1$ iff $X=r$
Consider

versus

We'll show that, averaging over all $r \in\{0,1\}^{n}, \|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \| \leq 2 k / \sqrt{ } 2^{n}$

## Optimality of Grover's algorithm III

Consider


Note that
$\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle=\left(\left|\psi_{r, k}\right\rangle-\left|\psi_{r, k-1}\right\rangle\right)+\left(\left|\psi_{r, k-1}\right\rangle-\left|\psi_{r, k-2}\right\rangle\right)+\ldots+\left(\left|\psi_{r, 1}\right\rangle-\left|\psi_{r, 0}\right\rangle\right)$
which implies

$$
\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle\|\leq\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, k-1}\right\rangle\|+\ldots+\|\left|\psi_{r, 1}\right\rangle-\left|\psi_{r, 0}\right\rangle \|
$$

## Optimality of Grover's algorithm IV



$\|\left|\psi_{r i}\right\rangle-\left|\psi_{r, i,}\right\rangle| |=\left|2 \alpha_{i, r}\right|$, since query only negates $|r\rangle$
Therefore, $\left|\left|\left|\psi_{r, k}\right\rangle-\right| \psi_{r_{0},}\right\rangle\left|\left|\leq \sum_{i=0}^{k-1} 2\right| \alpha_{i, i}\right|$

## Optimality of Grover's algorithm V

Now, averaging over all $r \in\{0,1\}^{n}$,

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{r} \|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \| & \leq \frac{1}{2^{n}} \sum_{r}\left(\sum_{i=0}^{k-1} 2\left|\alpha_{i, r}\right|\right) \\
& =\frac{1}{2^{n}} \sum_{i=0}^{k-1} 2\left(\sum_{r}\left|\alpha_{i, r}\right|\right) \\
& \leq \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2\left(\sqrt{2^{n}}\right) \quad \text { (By Cauchy-Schwarz) } \\
& =\frac{2 k}{\sqrt{2^{n}}}
\end{aligned}
$$

Therefore, for some $r \in\{0,1\}^{n}$, the number of queries $k$ must be $\Omega\left(\sqrt{ } 2^{n}\right)$, in order to distinguish $f_{r}$ from the all-zero function This completes the proof

