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Distinguishing between two 
arbitrary quantum states



Holevo-Helstrom Theorem (1)
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Theorem: for any two quantum states ρ and σ, the optimal 
measurement procedure for distinguishing between them 
succeeds with probability ½ + ¼||ρ − σ ||

tr
(equal prior probs.)

Proof* (the attainability part):

Since ρ − σ is Hermitian, its eigenvalues are real 

Let Π+ be the projector onto the positive eigenspaces

Let Π− be the projector onto the non-positive eigenspaces

Take the POVM measurement specified by Π+ and Π− with 
the associations + ≡ ρ and − ≡ σ
* The other direction of the theorem (optimality) is omitted here



Holevo-Helstrom Theorem (2)
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Claim: this succeeds with probability  ½ + ¼||ρ − σ ||
tr

A key observation is  Tr(Π+−Π−) (ρ −σ ) = ||ρ − σ ||
tr

Proof of Claim:

Therefore, ps−pf = ½Tr(Π+−Π−) (ρ −σ ) = ½||ρ − σ ||
tr

From this, the result follows

The success probability is  ps = ½Tr(Π+ρ ) + ½Tr(Π−σ )

& the failure probability is   pf = ½Tr(Π+σ ) + ½Tr(Π−ρ )



Purifications & Ulhmann’s Theorem

5

Any density matrix ρ, can be obtained by tracing out part of 
some larger pure state:
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a purification of ρ

Ulhmann’s Theorem*: The fidelity between ρ andσ is the 
maximum of  〈φ|ψ〉 taken over all purifications |ψ〉 and |φ〉

Recall our previous definition of fidelity as

F(ρ, σ ) = Tr√ρ1/2σρ1/2 ≡ ||ρ1/2σ 1/2||
tr

* See [Nielsen & Chuang, pp. 410-411] for a proof of this



Relationships between fidelity 
and trace distance
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1 − F(ρ,σ )  ≤ ||ρ − σ ||
tr
≤ √1 − F(ρ,σ )2

See [Nielsen & Chuang, pp. 415-416] for more details
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Entropy and
compression



Shannon Entropy
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Let p = (p1,…, pd) be a probability distribution on a set {1,…,d}

Then the (Shannon) entropy of p is H(p1,…, pd) j
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Intuitively, this turns out to be a good measure of “how random”
the distribution p is:

vs. vs. vs.

H(p) = log d H(p) = 0 

Operationally, H(p) is the number of bits needed to store the 
outcome (in a sense that will be made formal shortly)



Von Neumann Entropy
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For a density matrix ρ, it turns out that S(ρ) = − Trρ logρ is a 
good quantum analog of entropy

Note: S(ρ) = H(p1,…, pd), where p1,…, pd  are the eigenvalues
of ρ (with multiplicity)

Operationally, S(ρ) is the number of qubits needed to store 
ρ (in a sense that will be made formal later on)

Both the classical and quantum compression results pertain to 
the case of large blocks of n independent instances of data: 

• probability distribution p⊗n in the classical case, and 

• quantum state ρ⊗n in the quantum case



Classical compression (1)
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Let p = (p1,…, pd) be a probability distribution on a set {1,…,d}
where n independent instances are sampled:
( j1,…, jn) ∈{1,…,d}n (dn possibilities, n logd bits to specify one)

Theorem*: for all ε > 0, for sufficiently large n, there is a 
scheme that compresses the specification to n(H(p) + ε) bits 
while introducing an error with probability at most ε

A nice way to prove the theorem, is based on two cleverly 
defined random variables …

Intuitively, there is a subset of {1,…,d}n, called the “typical 
sequences”, that has size 2n(H(p) + ε) and probability  1 − ε

* “Plain vanilla” version that ignores, for example, the tradeoffs between n and ε



Classical compression (2)
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Define the random variable  f :{1,…,d} → R as f ( j ) = − log pj
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Classical compression (3)
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By standard results in statistics, as n → ∞, the observed 
value of  g( j1,…, jn) approaches its expected value, H(p)

More formally, call ( j1,…, jn)∈{1,…,d}n ε-typical  if

Then, the result is that, for all ε > 0, for sufficiently large n,
Pr[( j1,…, jn) is ε-typical] ≥ 1− ε

( ) ( ) ε,,1 ≤− pHjjg nK

We can also bound the number of these ε-typical sequences:
• By definition, each such sequence has probability ≥ 2−n(H(p) + ε)

• Therefore, there can be at most 2n(H(p) + ε) such sequences



Classical compression (4)
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The error probability is at most ε, the probability of an atypical 
input arising

In summary, the compression procedure is as follows: 

The input data is ( j1,…, jn) ∈{1,…,d}n, each independently 
sampled according the probability distribution  p = (p1,…, pd)

The compression procedure is to leave ( j1,…, jn) intact if it is 
ε-typical and otherwise change it to some fixed ε-typical 
sequence, say, ( j ,…,  j) (which will result in an error)

Since there are at most 2n(H(p) + ε) ε-typical sequences, the data 
can then be converted into n(H(p) + ε) bits 



Quantum compression (1)
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The scenario: n independent instances of a d-dimensional 
state are randomly generated according some distribution:

|φ1 〉 prob. p1
: : :
|φr 〉 prob. pr

Goal: to “compress” this into as few qubits as possible so that 
the original state can be reconstructed with small error in the 
following sense …

|0〉 prob. ½
|+〉 prob. ½

The expected* trace distance between the reconstructed state 
and the state that was actually generated should be small

Example:

* Defined as the expected value of the trace distance, taken with respect to the
randomness of the generation procedure



Quantum compression (2)
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Theorem: for all ε > 0, for sufficiently large n, there is a 
scheme that compresses the data to n(S(ρ) + ε) qubits, 
with expected trace distance ≤ √2ε

For the aforementioned example, ≈ 0.6n qubits suffices

With respect to this basis, we will define an ε-typical subspace 
of dimension 2n(S(ρ) + ε) = 2n(H(q) + ε)

The compression method:



Quantum compression (3)
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The ε-typical subspace is that spanned by 
where ( j1,…, jn) is ε-typical with respect to (q1,…, qd)

njj ,, ψψ
1
K

By the same argument as in the classical case, the subspace 
has dimension ≤ 2n(S(ρ) + ε) and Tr(Πtypρ ⊗n) ≥ 1− ε

Define Πtyp as the projector into the ε-typical subspace 

|ψ1〉 prob. q1
: : :
|ψd〉 prob. qd

This is because ρ is the density matrix of 



Quantum compression (4)
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Calculation of the expected fidelity:

( )
nn

n

nnn

n

n iiii
ii

iiiiii
ii

ii pp KK
K

KKK
K

K 11

1

111

1

1 typtyp Tr ϕϕϕϕ Π=Π ∑∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π= ∑ nn

n

n iiii
ii

iip KK
K

K 11

1

1typTr ϕϕ

( )n⊗Π= ρtypTr
ε−≥1

Using  ||ρ − σ ||
tr
≤ √1 − F(ρ,σ )2, we can  upper bound the

expected trace distance by √2ε

Abbreviations:
pi1…in 

= pi1… pin                          

|φi1…in〉 = |φi1〉…|φin〉
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