
1

Introduction to Introduction to 
Quantum Information ProcessingQuantum Information Processing

CS 667 / Phys 767 / C&O 681CS 667 / Phys 767 / C&O 681

Richard Cleve 
DC 2117
cleve@cs.uwaterloo.ca

Lecture 15 (2008)

mailto:cleve@cs.uwaterloo.ca


2

Continuous-time evolution
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ContinuousContinuous--time evolutiontime evolution
Although we’ve expressed quantum operations in discrete 
terms, in real physical systems, the evolution is continuous

|0〉

|1〉

Then eiHt is unitary – why?
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Let H be any Hermitian matrix and t ∈ R

Therefore eiHt = U† eiDt U = (unitary)
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Grover’s quantum 
search algorithm
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Quantum search problemQuantum search problem
Given: a black box computing  f : {0,1}n {0,1}

Goal: determine if  f  is satisfiable (if ∃x ∈ {0,1}n s.t. f(x) = 1)

In positive instances, it makes sense to also find such a 
satisfying assignment x

Classically, using probabilistic procedures, order 2n queries 
are necessary to succeed—even with probability ¾ (say)

|x1〉

|xn〉
|y〉

|xn〉

|x1〉

|y ⊕ f(x1,...,xn)〉

Uf

Grover’s quantum algorithm that makes only O(√2n) queries

Query:

[Grover ’96]
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Applications of quantum searchApplications of quantum search

( ) ( ) ( ) ( )nn xxxxxxxxxx,...,xf ∨∨∧∧∨∨∧∨∨= 515324311 L

The function f could be realized as a 3-CNF formula:

Alternatively, the search 
could be for a certificate 
for any problem in NP 3-CNF-SAT

FACTORING

P

NP

PSPACE

co-NP

The resulting quantum 
algorithms appear to be  
quadratically more 
efficient than the best 
classical algorithms 
known
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Prelude to Grover’s algorithm:Prelude to Grover’s algorithm:
two reflections = a rotationtwo reflections = a rotation

θ
θ1

θ2

θ1

θ2

reflection 1

reflection 2

Consider two lines with intersection angle θ:

Net effect: rotation by angle 2θ, regardless of starting vector
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Grover’s algorithm: description IGrover’s algorithm: description I

|x1〉

|xn〉
|y〉

|xn〉

|x1〉

|y ⊕ [x = 0...0]〉

U0

|x1〉

|xn〉
|y〉

|xn〉

|x1〉

|y ⊕ f(x1,...,xn)〉

Uf
Uf |x〉|−〉 = (−1) f(x) |x〉|−〉

H H
H
H

X
X
X

X
X
X

Hadamard

Basic operations used:

Implementation?

U0 |x〉|−〉 = (−1) [x = 0...0]|x〉|−〉
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Grover’s algorithm: description IIGrover’s algorithm: description II

1. construct state H |0...0〉|−〉
2. repeat k times:

apply −HU0HUf to state
3. measure state, to get x∈{0,1}n, and check if  f(x)=1

|0〉

|0〉
|−〉

UfH H U0 H Uf H U0 H

iteration 1 iteration 2    ...

(The setting of k will be determined later)
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Grover’s algorithm: analysis IGrover’s algorithm: analysis I

and N = 2n and  a = |A| and  b = |B|
Let  A = {x ∈{0,1}n : f (x) = 1} and  B = {x ∈{0,1}n : f (x) = 0}

Let ∑
∈

=
Ax

xA
a

1 ∑
∈

=
Bx

xB
b

1and

|B〉

|A〉

H|0...0〉

Consider the space spanned by |A〉 and |B〉

BAx N
b

N
a

,x
N

n

+== ∑
∈ }{ 10

1

Interesting case: a << N

goal is to get close to this state
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Grover’s algorithm: analysis IIGrover’s algorithm: analysis II

Algorithm: (−HU0HUf)kH |0...0〉

|B〉

|A〉

H|0...0〉

Observation:
Uf is a reflection about |B〉:  Uf |A〉 = −|A〉 and Uf |B〉 = |B〉

Question: what is −HU0H ?

Partial proof:
−HU0HH|0...0〉 = −HU0 |0...0〉 = −H(−|0...0〉) = H |0...0〉

U0 is a reflection about  H|0...0〉
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Grover’s algorithm: analysis IIIGrover’s algorithm: analysis III

Algorithm: (−HU0HUf)kH |0...0〉

|B〉

|A〉

H|0...0〉
θ

2θ
2θ

2θ
2θ

Since −HU0HUf is a composition of two reflections, it is a 
rotation by 2θ, where sin(θ)=√a/N ≈ √a/N 

When a = 1, we want  (2k+1)(1/√N) ≈ π/2 , so  k ≈ (π/4)√N

More generally, it suffices to set k ≈ (π/4)√N/a

Question: what if a is not known in advance?
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Optimality of 
Grover’s algorithm
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Optimality of Grover’s algorithmOptimality of Grover’s algorithm

Proof (of a slightly simplified version):

fU0 U1 U2 U3 Ukf f f
and that a k-query algorithm is of the form 

where U0, U1, U2, ..., Uk, are arbitrary unitary operations

Theorem: any quantum search algorithm for  f : {0,1}n {0,1}
must make Ω(√2n) queries to  f (if f is used as a black-box)

f|x〉 (−1) f(x)|x〉Assume queries are of the form

|0...0〉
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Optimality of Grover’s algorithm Optimality of Grover’s algorithm 
Define  fr : {0,1}n {0,1} as fr (x) = 1 iff x = r

frU0 U1 U2 U3 Ukfr fr fr
|0〉 |ψr,k〉

Consider 

versus

IU0 U1 U2 U3 UkI I I|0〉 |ψr,0〉

We’ll show that, averaging over all r ∈ {0,1}n, 
|| |ψr,k〉 − |ψr,0〉 || ≤ 2k /√2n
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Optimality of Grover’s algorithmOptimality of Grover’s algorithm

Consider 

IU0 U1 U2 U3 UkI fr fr
|0〉 |ψr,i〉

k− i i

|ψr,k〉 − |ψr,0〉 = (|ψr,k〉 − |ψr,k−1〉) + (|ψr,k−1〉 − |ψr,k−2〉) + ... + (|ψr,1〉 − |ψr,0〉)
Note that

|| |ψr,k〉 − |ψr,0〉 || ≤ || |ψr,k〉 − |ψr,k−1〉 || + ... + || |ψr,1〉 − |ψr,0〉 || 
which implies
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Optimality of Grover’s algorithmOptimality of Grover’s algorithm

IU0 U1 U2 U3 UkI fr fr
|0〉 |ψr,i〉

query i query i+1

|| |ψr,i〉 − |ψr,i-1〉 || = |2αi,r|, since query only negates |r〉

IU0 U1 U2 U3 UkI I fr
|0〉

query i query i+1

|ψr,i-1〉

x
x

x,i∑α

Therefore, || |ψr,k〉 − |ψr,0〉 || ≤ r,i

k

i

α2
1

0
∑
−

=
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Optimality of Grover’s algorithmOptimality of Grover’s algorithm
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Now, averaging over all r ∈ {0,1}n, 

(By Cauchy-Schwarz)

Therefore, for some r ∈ {0,1}n, the number of queries k must 
be Ω(√2n), in order to distinguish fr from the all-zero function

This completes the proof
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(instead of a regular lecture)
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Preliminary remarks about 
quantum communication
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How does quantum information affect the 
communication costs of information 
processing tasks?

Quantum information can apparently be 
used to substantially reduce computation
costs for a number of interesting problems

We explore this issue ...
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Entanglement and signalingEntanglement and signaling
1100

2
1

2
1 +Recall that Entangled states, such as                        ,

Any operation performed on one system has no affect on 
the state of the other system (its reduced density matrix)

qubit qubit

can be used to perform some intriguing feats, such as 
teleportation and superdense coding

—but they cannot be used to “signal instantaneously”
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Alice Bob

Basic communication scenarioBasic communication scenario

Resources

x1x2 … xn

Goal: convey n bits from Alice to Bob

x1x2 … xn
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Basic communication scenarioBasic communication scenario
Bit communication:

Cost: n

Qubit communication:

Cost: n [Holevo’s Theorem, 1973]

Bit communication    
& prior entanglement:

Cost: n (can be deduced) Cost: n/2 superdense coding
[Bennett & Wiesner, 1992]

Qubit communication 
& prior entanglement:
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The GHZ “paradox”
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GHZGHZ scenarioscenario

Alice Bob Carol

Input: r ts

Output: a cb

Rules of the game:
1. It is promised that  r⊕s⊕t = 0
2. No communication after inputs received

3. They win if a⊕b⊕c = r∨s∨t

rst a⊕b⊕c
000 0
011 1
101 1
110 1

← r ← ¬s ← 1

abc
011
001
111
101

[Greenberger, Horne, Zeilinger, 1980]
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No perfect strategy for No perfect strategy for GHZ GHZ 
Input: r ts

Output: a cb

rst a⊕b⊕c
000 0
011 1
101 1
110 1

General deterministic strategy: 
a0, a1, b0, b1, c0, c1

Winning conditions:
a0 ⊕ b0 ⊕ c0 = 0 
a0 ⊕ b1 ⊕ c1 = 1 
a1 ⊕ b0 ⊕ c1 = 1 
a1 ⊕ b1 ⊕ c0 = 1

Has no solution, 
thus no perfect 
strategy exists
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GHZGHZ: preventing communication: preventing communication
Input: r ts

Output: a cb

Input and output events can be space-like separated: 
so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol still keep on winning?
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““GHZGHZ Paradox” explainedParadox” explained

r ts

a cb

Prior entanglement: |ψ〉 = |000〉 – |011〉 – |101〉 – |110〉

Alice’s strategy:
1. if r = 1 then apply H to qubit
2. measure qubit and set a to result 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

2

1H

Bob’s & Carol’s strategies: similar

Case 1 (rst = 000): state is measured directly … Case 2 (rst = 011): new state  |001〉 + |010〉 – |100〉 + |111〉

Cases 3 & 4 (rst = 101 & 110): similar by symmetry
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GHZGHZ: conclusions: conclusions
• For the GHZ game, any classical team succeeds with  

probability at most ¾

• Allowing the players to communicate would enable them 
to succeed with probability 1

• Entanglement cannot be used to communicate

• Nevertheless, allowing the players to have entanglement 
enables them to succeed with probability 1

• Thus, entanglement is a useful resource for the task of 
winning the GHZ game
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The Bell inequality and its violation
– Physicist’s perspective
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Bell’s Inequality and its violationBell’s Inequality and its violation
Part I: physicist’s view:
Can a quantum state have pre-determined outcomes for 
each possible measurement that can be applied to it?

if {|0〉,|1〉} measurement 
then output 0

if {|+〉,|−〉} measurement
then output 1

if ... (etc)

qubit:

where the “manuscript” 
is something like this:

called hidden variables
table could be implicitly  
given by some formula[Bell, 1964]

[Clauser, Horne, Shimony, Holt, 1969]
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Bell InequalityBell Inequality
Imagine a two-qubit system, where one of two measurements, 
called M0 and M1, will be applied to each qubit: 

M0 : a0

M1 : a1

M0 : b0

M1 : b1

Define:     
A0 = (−1)a0  

A1 = (−1)a1 

B0 = (−1)b0   

B1 = (−1)b1

Claim: A0 B0 + A0 B1 + A1B0 − A1 B1 ≤ 2

Proof: A0 (B0 + B1) + A1 (B0 − B1) ≤ 2

one is ±2 and the other is 0

space-like separated, so 
no cross-coordination
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Bell InequalityBell Inequality

Question: could one, in principle, design an experiment to 
check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because A0, A1, B0, B1 cannot 
all be measured (only one As Bt term can be measured)

Answer 2: yes, indirectly, by making many runs of this 
experiment: pick a random st ∈{00,01,10,11} and then 
measure with Ms and Mt to get the value of  As Bt
The average of  A0 B0,  A0 B1,  A1B0,  −A1 B1 should be ≤ ½

A0 B0 + A0 B1 + A1B0 − A1 B1 ≤ 2  is called a Bell Inequality* 

* also called CHSH Inequality
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ViolatingViolating the Bell Inequalitythe Bell Inequality
Two-qubit system in state 

|φ〉 = |00〉 – |11〉

Define 
M0: rotate by  −π/16   then measure
M1: rotate by +3π/16  then measure

st = 01 or 10

π/8

3π/8

-π/8

st = 11

st = 00

Applying rotations θA and θB  yields:
cos(θA + θB ) (|00〉 – |11〉) + sin(θA + θB ) (|01〉 + |10〉)

A B = +1 A B = −1

cos2(π/8) = ½ + ¼√2 

Then A0 B0,  A0 B1,  A1B0,  −A1 B1 all have 
expected value ½√2, which contradicts
the upper bound of ½
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Bell Inequality violation: summary Bell Inequality violation: summary 
Assuming that quantum systems are 
governed by local hidden variables
leads to the Bell inequality 
A0 B0 + A0 B1 + A1B0 − A1 B1 ≤ 2 

But this is violated in the case of Bell states (by a factor of √2)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments 
along these lines have actually been conducted
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The Bell inequality and its violation
– Computer Scientist’s perspective
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Bell’s Inequality and its violationBell’s Inequality and its violation

b

s t

a

input:

output:

With classical resources, Pr[a⊕b = s∧t] ≤ 0.75

But, with prior entanglement state |00〉 – |11〉,  
Pr[a⊕b = s∧t] = cos2(π/8) = ½ + ¼√2 = 0.853…

Rules: 1. No communication after inputs received
2. They win if a⊕b = s∧t

st a⊕b
00 0
01 0
10 0
11 1

Part II: computer scientist’s view:



43

The quantum strategyThe quantum strategy
• Alice and Bob start with entanglement 

|φ〉 = |00〉 – |11〉

• Alice: if s = 0 then rotate by θA = −π/16 
else rotate by θA = +3π/16 and measure 

• Bob: if t = 0 then rotate by θB = −π/16 
else rotate by θB = +3π/16 and measure 

st = 01 or 10

π/8

3π/8

-π/8

st = 11

st = 00

cos(θA – θB ) (|00〉 – |11〉) + sin(θA – θB ) (|01〉 + |10〉)

Success probability: 
Pr[a⊕b = s∧t] = cos2(π/8) = ½ + ¼√2 = 0.853…
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NonlocalityNonlocality in operational termsin operational terms

information 
processing 

task

quantum 
entanglement

!

classically,
communication

is needed
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The magic square game
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Magic square gameMagic square game

a11 a12 a13

a21 a22 a23

a31 a32 a33

Problem: fill in the matrix with bits such that each row has 
even parity and each column has odd parity

even

odd oddodd

even

evenIMPOSSIBLE

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: classical and 1 quantum8/9
[Aravind, 2002] (details omitted here)
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Preview of 
communication

complexity
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Classical Communication ComplexityClassical Communication Complexity

f (x,y)

x1x2 … xn y1y2 … yn

E.g. equality function: f (x,y) = 1 if x = y, and 0 if x ≠ y

Any deterministic protocol requires n bits communication

Probabilistic protocols can solve with only O(log(n/ε)) bits 
communication (error probability ε)

[Yao, 1979]
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Quantum Communication ComplexityQuantum Communication Complexity

Qubit communication 

Prior entanglement 

f (x,y)

x1x2 … xn y1y2 … yn

qubits

f (x,y)

x1x2 … xn y1y2 … yn

… …entangled qubits

bits

Question: can quantum beast classical in this context?
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Appointment schedulingAppointment scheduling

i  (xi = yi = 1)

Classically, Ω(n) bits necessary to succeed with prob. ≥ 3/4

For all ε > 0, O(n1/2 log n) qubits sufficient for error prob. < ε

0 1 1 0 1 … 0
1    2    3    4    5    . . .    n

1 0 0 1 1 … 1
1    2    3    4    5    . . .    n

x = y =

[KS ‘87] [BCW ‘98]
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Search problemSearch problem

0 0 0 0 1 0 … 1
1    2    3    4    5    6    . . .    n

x =Given: accessible via queries

|i〉
|b ⊕ xi〉

|i〉
|b〉

i
b ⊕ xi

i
b

Goal: find i∈{1, 2, …, n} such that xi = 1
Classically: Ω(n) queries are necessary

Quantum mechanically: O(n1/2) queries are sufficient

log n

1

x

[Grover, 1996]
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0 1 1 0 1 0 … 0
1    2    3    4    5    6    . . .    n

x =

1 0 0 1 1 0 … 1y =

0 0 0 0 1 0 … 0x∧y =

Alice

Bob

|i〉

|0〉
|0〉
|b〉

x∧y
≡
|i〉

|0〉
|0〉
|b〉

Bob

y

Bob

y

Alice

x x

Communication per x∧y-query: 2(log n + 3) = O(log n) 
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Appointment scheduling: epilogueAppointment scheduling: epilogue
Bit communication:

Cost: θ(n)

Qubit communication:

Cost: θ(n1/2) (with refinements)

Bit communication    
& prior entanglement:

Cost: θ(n1/2)

Qubit communication 
& prior entanglement:

Cost: θ(n1/2)

[R ‘02] [AA ‘03] 
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Are exponential 
savings possible?
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Restricted version of equalityRestricted version of equality
Precondition (i.e. promise): either x = y or Δ(x,y) = n/2

Hamming distance

Classically, Ω(n) bits communication are necessary 
for an exact solution

Quantum mechanically, O(log n) qubits communication 
are sufficient for an exact solution 

[BCW ‘98]

(Distributed variant of “constant” vs. “balanced”)
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Classical lower boundClassical lower bound
Theorem: If  S ⊆ {0,1}n  has the property that, for all  x, x′ ∈ S, 
their intersection size is not n/4 then  |S| < 1.99n

[Frankl and Rödl, 1987]

Let some protocol solve restricted equality with k bits comm.

● approximately 2n/√n input pairs  (x, x),  where Δ(x) = n/2
Therefore,  2n/2k√n input pairs  (x, x) that yield same conv. C

● 2k conversations of length k

Define S = {x : Δ(x) = n/2  and  (x, x) yields conv. C }
For any x, x′ ∈ S, input pair (x, x′ ) also yields conversation C

Therefore,  Δ(x, x′) ≠ n/2, implying intersection size is not n/4
Theorem implies  2n/2k√n < 1.99n , so  k > 0.007n
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Quantum protocolQuantum protocol
j

n

j

jx
x ∑

=

−=
1

)1(ψFor each x ∈ {0,1}n, define

Protocol:
1. Alice sends |ψx〉 to Bob  (log(n) qubits)
2. Bob measures state in a basis that includes |ψy〉

If x = y then Bob’s result is definitely |ψy〉
If Δ(x,y) = n/2 then 〈ψx|ψy〉 = 0, so result is definitely not |ψy〉

Question: How much communication if error ¼ is permitted?

Answer: just 2 bits are sufficient!

Correctness of protocol:
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Exponential quantum vs. classical Exponential quantum vs. classical 
separation in separation in boundedbounded--error modelserror models

O(log n) quantum vs. Ω(n1/4 / log n) classical

Output: result of 
applying M to U |ψ〉

|ψ〉: a log(n)-qubit state 
(described classically)
M: two-outcome measurement 

U: unitary operation 
on log(n) qubits

[Raz, 1999]
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Lower bound for the 
inner product problem
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Inner productInner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

Classically, Ω(n) bits of communication are required, 
even for bounded-error protocols

Quantum protocols also require Ω(n) communication

[KY ‘95] [CNDT ‘98] [NS ‘02]
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The BV blackThe BV black--box problembox problem
Let  f(x1, x2, …, xn) = a1 x1 + a2 x2 + … + an xn mod 2

Given:

f

|b〉

|x1〉

|xn〉

|x2〉
:

|x

|b 
|x

|x

:
2〉

⊕ f(x1, x2, …, xn)〉
n〉

1〉

H
H
H
H
H

H
H
H
H
H

|1〉

|0〉

|0〉

|0〉
:

|1〉

|a1〉

|an〉

|a2〉
:

Goal: determine a1, a2 , …, an

Classically, n queries are necessary

Quantum mechanically, 1 query is sufficient

Bernstein & Bernstein & VaziraniVazirani
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Lower bound for inner productLower bound for inner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

|y1〉 |yn〉|y2〉

Alice and Bob’s IP protocol

|x2〉|x1〉 |xn〉

|z⊕IP(x, y)〉

Alice and Bob’s IP protocol inverted

|y1〉 |y2〉 |yn〉|x1〉 |x2〉 |xn〉

|z〉Proof:
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Lower bound for inner productLower bound for inner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

Since n bits are conveyed from Alice to Bob, n qubits
communication necessary (by Holevo’s Theorem)

Alice and Bob’s IP protocol

|x2〉|x1〉 |xn〉

Alice and Bob’s IP protocol inverted

|x1〉 |x2〉 |xn〉
|x1〉 |x2〉 |xn〉

H H H

HHH
|1〉

|0〉 |1〉|0〉|0〉

H

H

Proof:
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Simultaneous message 
passing and fingerprinting
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Equality function:
f (x,y) = 1 if x = y

0   if x ≠ y

Exact protocols: require 2n bits communication
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error protocols with a shared random key:
require only O(1) bits communication
Error-correcting code: e(x) = 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1

e(y) = 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0

Pr[00] = Pr[11] = ½

random k 

classical classical
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error 
protocols without
a shared key:

Classical: θ(n1/2)
Quantum: θ(log n)
[A ‘96] [NS ‘96] [BCWW ‘01]
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Quantum fingerprintsQuantum fingerprints
Question 1: how many orthogonal states in m qubits?
Answer: 2m

Answer: 22am, for some constant a > 0

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits? 
(* where |〈ψx|ψy〉| ≤ ε )

The states can be constructed via a suitable (classical) error-
correcting code, which is a function  e :{0,1}n {0,1}cn where, 
for all x ≠ y, dcn ≤ Δ(e(x),e(y)) ≤ (1−d)cn (c, d are constants)
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Construction of Construction of almostalmost
orthogonal statesorthogonal states

Since dcn ≤ Δ(e(x),e(y)) ≤ (1−d)cn,  we have |〈ψx|ψy〉| ≤ 1−2d

Set  |ψx〉 for each x∈{0,1}n    (log(cn) qubits) ∑
=

−=
cn

k
kkxe

cn 1
11 )()(

Then 〈ψx|ψy〉
( )

cn
yexek

cn

k

kyexe

cn
)(),()( )]()([ Δ

−=−= ∑
=

⊕ 211
1

1

By duplicating each state, |ψx〉⊗|ψx〉⊗ … ⊗|ψx〉, the pairwise
inner products can be made arbitrarily small:  (1−2d )r ≤ ε

Result: m = rlog(cn) qubits storing 2n = 2(1/c)2m/r different states



70

Quantum fingerprintsQuantum fingerprints

if x = y, Pr[output = 0] = 1
if x ≠ y, Pr[output = 0] = (1+ ε2)/2

Given |ψx〉|ψy〉, one can check if x = y or x ≠ y as follows:

Let |ψ000〉, |ψ001〉, …, |ψ111〉 be 2n states on O(log n) qubits such 
that |〈ψx|ψy〉| ≤ ε for all x ≠ y

H
S
W
A
P

H
|ψx〉

|ψy〉

|0〉

Intuition: |0〉|ψx〉|ψy〉 + |1〉|ψy〉|ψx〉
Note: error probability can 
be reduced to ((1+ ε2)/2)r
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error 
protocols without
a shared key:

Classical: θ(n1/2)
Quantum: θ(log n)
[A ‘96] [NS ‘96] [BCWW ‘01]
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Quantum protocol for equality       Quantum protocol for equality       
in simultaneous message modelin simultaneous message model

x1x2 … xn y1y2 … yn

|ψx〉 |ψy〉

Orthogonality
test

|ψx〉 |ψy〉
Recall that, with a 
shared key, the 
problem is easy 
classically ...
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Hidden matching problem
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Hidden matching problemHidden matching problem
For this problem, a quantum protocol is exponentially more 
efficient than any classical protocol—even with a shared key

x ∈ {0,1}n
matching on 
{1, 2, …, n}Inputs: M =

[Bar-Yossef, Jayram, Kerenidis, 2004]

(i, j, xi⊕xj), such that 
(i, j) ∈ M

Output:

Only one-way communication (Alice to Bob) is permitted
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The hidden matching problemThe hidden matching problem
x ∈ {0,1}n

matching on 
{1,2, …, n}Inputs:

Output: (i, j, xi⊕xj),  (i, j) ∈ M

M =

Rough intuition: Alice doesn’t know which edges are in M, 
so she apparently has to send Ω(√n) bits of the form xi⊕xj …

Classically, one-way communication is Ω(√n), even with a 
shared classical key (the proof is omitted here)
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The hidden matching problemThe hidden matching problem
x ∈ {0,1}n

matching on 
{1,2, …, n}Inputs: M =

Output: (i, j, xi⊕xj),  (i, j) ∈ M

Quantum protocol: Alice sends                          (log n qubits)∑
=

−
n

k
kkx

n 1
11 )(

Bob measures in |i〉 ± |j〉 basis, (i, j) ∈ M, 
and uses the outcome’s relative phase to 
determine xi⊕xj



77

Nonlocality revisited
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RestrictedRestricted--equality equality nonlocalitynonlocality

b

x y

a

inputs:

outputs:

(n bits)

(log n bits)

(n bits)

(log n bits)

With classical resources, Ω(n) bits of communication needed 
for an exact solution*

With  (|00〉 + |11〉)⊗log n prior entanglement, no communication 
is needed at all*

Precondition: either x = y or Δ(x,y) = n/2

Required postcondition: a = b iff x = y

[BCT ‘99]
∗ Technical details similar to restricted equality of Lecture 17
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RestrictedRestricted--equality equality nonlocalitynonlocality
Bit communication:

Cost: θ(n)

Qubit communication:

Cost: log n

Bit communication    
& prior entanglement:

Cost: zero Cost: zero

Qubit communication 
& prior entanglement:
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NonlocalityNonlocality and communication and communication 
complexity conclusionscomplexity conclusions

• Quantum information affects communication 
complexity in interesting ways

• There is a rich interplay between quantum 
communication complexity and:
– quantum algorithms
– quantum information theory
– other notions of complexity theory …
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