Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681

Lecture 15 (2008)

Richard Cleve DC 2117 <u>cleve@cs.uwaterloo.ca</u>

Continuous-time evolution

Continuous-time evolution

Although we've expressed quantum operations in discrete terms, in real physical systems, the evolution is continuous

Grover's quantum search algorithm

Quantum search problem

Given: a black box computing $f: \{0,1\}^n \rightarrow \{0,1\}$

Goal: determine if f is **satisfiable** (if $\exists x \in \{0,1\}^n$ s.t. f(x) = 1)

In positive instances, it makes sense to also *find* such a satisfying assignment x

Classically, using probabilistic procedures, order 2^n queries are necessary to succeed—even with probability $\frac{3}{4}$ (say)

Grover's **quantum** algorithm that makes only $O(\sqrt{2^n})$ queries

Query:
$$|x_1\rangle$$
 U_f $|x_n\rangle$
 $|x_n\rangle$ $[Grover '96]$ $|y\rangle$ \oplus $f(x_1,...,x_n)\rangle$ 5

Applications of quantum search

The function *f* could be realized as a **3-CNF formula**:

 $f(x_1,\ldots,x_n) = (x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land \cdots \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n)$

PSPACE Alternatively, the search could be for a certificate ŃΡ co-NR for any problem in **NP 3-CNF-SAT** The resulting quantum algorithms appear to be FACTORING quadratically more Ρ efficient than the best classical algorithms known 6

Prelude to Grover's algorithm: two reflections = a rotation

Consider two lines with intersection angle θ :

Net effect: rotation by angle 2θ , *regardless of starting vector*

Grover's algorithm: description I

Basic operations used:

$$|x_{1}\rangle = U_{f}$$

$$|x_{n}\rangle$$

$$|x_{n}\rangle = |x_{n}\rangle$$

$$|x_{n}\rangle$$

$$|y \oplus f(x_{1},...,x_{n})\rangle$$

$$U_f |x\rangle| - \rangle = (-1)^{f(x)} |x\rangle| - \rangle$$

Implementation?

$$\begin{array}{c|c} |x_1\rangle \\ \hline U_0 \\ |x_n\rangle \\ |y\rangle \end{array} \begin{array}{c} |x_1\rangle \\ |x_n\rangle \\ |x_n\rangle \\ |y \oplus [x = 0...0]\rangle \end{array}$$

 $U_0 |x\rangle |-\rangle = (-1)^{[x = 0...0]} |x\rangle |-\rangle$

Grover's algorithm: description II

- 1. construct state $H|0...0\rangle|-\rangle$
- 2. repeat k times:

apply $-HU_0HU_f$ to state

3. measure state, to get $x \in \{0,1\}^n$, and check if f(x)=1

(The setting of k will be determined later)

Grover's algorithm: analysis I

Let $A = \{x \in \{0,1\}^n : f(x) = 1\}$ and $B = \{x \in \{0,1\}^n : f(x) = 0\}$ and $N = 2^n$ and a = |A| and b = |B|

Let
$$|A\rangle = \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle$$
 and $|B\rangle = \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$

Consider the space spanned by $|A\rangle$ and $|B\rangle$

Interesting case: $a \ll N$ ¹⁰

Grover's algorithm: analysis II

Algorithm: $(-HU_0HU_f)^k H|0...0\rangle$

 $|A\rangle$

 U_f is a reflection about $|B\rangle$: $U_f |A\rangle = -|A\rangle$ and $U_f |B\rangle = |B\rangle$

Question: what is $-HU_0H$? U_0 is a reflection about $H|0...0\rangle$

Partial proof:

 $-HU_0HH|0...0\rangle = -HU_0|0...0\rangle = -H(-|0...0\rangle) = H|0...0\rangle$

 $H|0...0\rangle$

Grover's algorithm: analysis III

 $\begin{array}{c} A \\ 2\theta \\ 2\theta \\ 2\theta \\ 2\theta \\ 2\theta \\ \theta \\ \theta \\ B \\ \end{array}$

Algorithm: $(-HU_0HU_f)^k H|0...0\rangle$

Since $-HU_0HU_f$ is a composition of two reflections, it is a rotation by 20, where $\sin(\theta) = \sqrt{a/N} \approx \sqrt{a/N}$

When a = 1, we want $(2k+1)(1/\sqrt{N}) \approx \pi/2$, so $k \approx (\pi/4)\sqrt{N}$

More generally, it suffices to set $k \approx (\pi/4)\sqrt{N/a}$

Question: what if *a* **is not known in advance?**

Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681

Lecture 17 (2008)

Richard Cleve DC 2117 cleve@cs.uwaterloo.ca

Theorem: any quantum search algorithm for $f: \{0,1\}^n \rightarrow \{0,1\}$ must make $\Omega(\sqrt{2^n})$ queries to f (if f is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form

$$|x\rangle \equiv f \equiv (-1)^{f(x)} |x\rangle$$

and that a k-query algorithm is of the form

$$0...0\rangle = U_0 = f = U_1 = f = U_2 = f = U_3 = f = U_k$$

where U_0 , U_1 , U_2 , ..., U_k , are arbitrary unitary operations

Define $f_r: \{0,1\}^n \rightarrow \{0,1\}$ as $f_r(x) = 1$ iff x = r

Consider

We'll show that, averaging over all $r \in \{0,1\}^n$, $|| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || \le 2k/\sqrt{2^n}$

Consider

Note that

 $|\psi_{r,k}\rangle - |\psi_{r,0}\rangle = \left(|\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle\right) + \left(|\psi_{r,k-1}\rangle - |\psi_{r,k-2}\rangle\right) + \dots + \left(|\psi_{r,1}\rangle - |\psi_{r,0}\rangle\right)$

which implies

 $|| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || \leq || |\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle || + \dots + || |\psi_{r,1}\rangle - |\psi_{r,0}\rangle ||$

 $\begin{aligned} || |\psi_{r,i}\rangle - |\psi_{r,i-1}\rangle || &= |2\alpha_{i,r}|, \text{ since query only negates } |r\rangle \\ \text{Therefore, } || |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || &\leq \sum_{i=0}^{k-1} 2|\alpha_{i,r}| \end{aligned}$

Now, averaging over all $r \in \{0,1\}^n$,

$$\frac{1}{2^{n}} \sum_{r} \left\| \left| \psi_{r,k} \right\rangle - \left| \psi_{r,0} \right\rangle \right\| \leq \frac{1}{2^{n}} \sum_{r} \left(\sum_{i=0}^{k-1} 2 \left| \alpha_{i,r} \right| \right)$$
$$= \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2 \left(\sum_{r} \left| \alpha_{i,r} \right| \right)$$
$$\leq \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2 \left(\sqrt{2^{n}} \right) \quad \text{(By Cauchy-Schwarz)}$$
$$= \frac{2k}{\sqrt{2^{n}}}$$

Therefore, for some $r \in \{0,1\}^n$, the number of queries k must be $\Omega(\sqrt{2^n})$, in order to distinguish f_r from the all-zero function This completes the proof

Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681

Lecture 18 (2008)

Richard Cleve DC 2117 <u>cleve@cs.uwaterloo.ca</u>

Lab tour

(instead of a regular lecture)

Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681

Lecture 19 (2008)

Richard Cleve DC 2117 <u>cleve@cs.uwaterloo.ca</u>

Preliminary remarks about quantum communication

Quantum information can apparently be used to substantially reduce *computation* costs for a number of interesting problems

How does quantum information affect the *communication costs* of information processing tasks?

We explore this issue ...

Entanglement and signaling

Recall that Entangled states, such as $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$,

can be used to perform some intriguing feats, such as *teleportation* and *superdense coding*

—but they *cannot* be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

Basic communication scenario

Goal: convey *n* bits from Alice to Bob

Basic communication scenario

Bit communication:

Cost: n

(can be deduced) Cost: \mathcal{N}

Qubit communication:

Cost: \mathcal{N} [Holevo's Theorem, 1973]

Qubit communication & prior entanglement:

Cost: n/2 superdense coding [Bennett & Wiesner, 1992]

The GHZ "paradox"

GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]

Rules of the game:

- 1. It is promised that $r \oplus s \oplus t = 0$
- 2. No communication after inputs received
- 3. They *win* if $a \oplus b \oplus c = r \lor s \lor t$

rst	$a \oplus b \oplus c$	abc
000	0 😀	011
011	1 🕄	001
101	1 😜	111
110	1 🙁	101

No perfect strategy for GHZ

Input:

rst	$a \oplus b \oplus c$
000	0
011	1
101	1
110	1

General deterministic strategy: $a_0, a_1, b_0, b_1, c_0, c_1$

Winning conditions: Has no solution, thus no perfect strategy exists $\begin{cases} a_0 \oplus b_0 \oplus c_0 = 0 \\ a_0 \oplus b_1 \oplus c_1 = 1 \\ a_1 \oplus b_0 \oplus c_1 = 1 \\ a_1 \oplus b_1 \oplus c_0 = 1 \end{cases}$

GHZ: preventing communication

Input and output events can be *space-like* separated: so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol *still* keep on winning?

"GHZ Paradox" explained

Prior entanglement: $|\psi\rangle = |000\rangle - |011\rangle - |101\rangle - |110\rangle$

Alice's strategy:

- 1. if r = 1 then apply H to qubit
- 2. measure qubit and set a to result

$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

•••

32

Bob's & Carol's strategies: similar

Case 2 (rst = 000): statestatee as red (rst = 000): statestatee

Cases 3 & 4 (*rst* = 101 & 110): similar by symmetry

GHZ: conclusions

- For the GHZ game, any *classical* team succeeds with probability at most ³/₄
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1
- Thus, entanglement is a useful resource for the task of winning the GHZ game

The Bell inequality and its violation – Physicist's perspective

Bell's Inequality and its violation Part I: physicist's view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

qubit:

where the "manuscript" is something like this:

called hidden variables

[Bell, 1964]

[Clauser, Horne, Shimony, Holt, 1969]

if $\{|0\rangle, |1\rangle\}$ measurement then output **0** if $\{|+\rangle, |-\rangle\}$ measurement then output **1**

if ... (etc)

table could be implicitly given by some formula

Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_0 and M_1 , will be applied to each qubit:

Define: $A_0 = (-1)^{a_0}$ $A_1 = (-1)^{a_1}$ $B_0 = (-1)^{b_0}$ $B_1 = (-1)^{b_1}$

```
Claim: A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2

Proof: A_0(B_0 + B_1) + A_1(B_0 - B_1) \le 2

\uparrow

one is \pm 2 and the other is 0
```
Bell Inequality

 $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$ is called a **Bell Inequality***

Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: *no, not directly*, because A_0, A_1, B_0, B_1 cannot all be measured (only **one** $A_s B_t$ term can be measured)

Answer 2: *yes, indirectly*, by making many runs of this experiment: pick a random $st \in \{00, 01, 10, 11\}$ and then measure with M_s and M_t to get the value of $A_s B_t$. The expression of $A_s B_t$

The *average* of A_0B_0 , A_0B_1 , A_1B_0 , $-A_1B_1$ should be $\leq \frac{1}{2}$

* also called CHSH Inequality

Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681

Lecture 20 (2008)

Richard Cleve DC 2117 <u>cleve@cs.uwaterloo.ca</u>

Violating the Bell Inequality

Two-qubit system in state $|\phi\rangle = |00\rangle - |11\rangle$

Applying rotations θ_A and θ_B yields: $\cos(\theta_A + \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A + \theta_B) (|01\rangle + |10\rangle)$ AB = +1

Define

 M_0 : rotate by $-\pi/16$ then measure M_1 : rotate by $+3\pi/16$ then measure

Then $A_0 B_0$, $A_0 B_1$, $A_1 B_0$, $-A_1 B_1$ all have expected value $\frac{1}{2}\sqrt{2}$, which *contradicts* the upper bound of $\frac{1}{2}$

Bell Inequality violation: summary

Assuming that quantum systems are governed by *local hidden variables* leads to the Bell inequality $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$

But this is **violated** in the case of Bell states (by a factor of $\sqrt{2}$)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted

The Bell inequality and its violation – Computer Scientist's perspective

Bell's Inequality and its violation Part II: computer scientist's view:

Rules: 1. No communication after inputs received 2. They *win* if $a \oplus b = s \wedge t$

input:

output:

With classical resources, $\Pr[a \oplus b = s \land t] \le 0.75$

But, with prior entanglement state $|00\rangle - |11\rangle$, $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

The quantum strategy

- Alice and Bob start with entanglement $|\phi\rangle = |00\rangle |11\rangle$
- Alice: if s = 0 then rotate by $\theta_A = -\pi/16$ else rotate by $\theta_A = +3\pi/16$ and measure
- **Bob:** if t = 0 then rotate by $\theta_{\rm B} = -\pi/16$ else rotate by $\theta_{\rm B} = +3\pi/16$ and measure

st = 11 $3\pi/8$ st = 01 or 10 $\pi/8$ $-\pi/8$ st = 00

 $\cos(\theta_{\rm A}-\theta_{\rm B}~)~(|00\rangle-|11\rangle)+\sin(\theta_{\rm A}-\theta_{\rm B}~)~(|01\rangle+|10\rangle)$

Success probability: $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

Nonlocality in operational terms

The magic square game

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column

They *win* iff parities are correct and bits agree at intersection

Success probabilities: 8/9 classical and 1 quantum

[Aravind, 2002]

(details omitted here) ⁴⁶

Preview of communication complexity

Classical Communication Complexity

[Yao, 1979]

E.g. equality function: f(x,y) = 1 if x = y, and 0 if $x \neq y$

Any *deterministic* protocol requires *n* bits communication

Probabilistic protocols can solve with only $O(\log(n/\epsilon))$ bits communication (error probability ϵ)

Quantum Communication Complexity

Question: can quantum beast classical in this context?

Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq 3/4$

For all $\varepsilon > 0$, $O(n^{1/2} \log n)$ qubits sufficient for error prob. < ε

[KS '87] [BCW '98]

Search problem

Given: $x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & n \\ 0 & 0 & 0 & 1 & 0 & \dots & 1 \end{bmatrix}$ accessible via *queries*

$$\log n \left\{ \begin{array}{c} |\mathbf{i}\rangle & \hline \chi \\ 1 \\ |\mathbf{b}\rangle & \hline |\mathbf{b} \oplus x_{\mathbf{i}}\rangle \end{array} \right.$$

Goal: find $i \in \{1, 2, ..., n\}$ such that $x_i = 1$

Classically: $\Omega(n)$ queries are necessary

Quantum mechanically: $O(n^{1/2})$ queries are sufficient

[Grover, 1996]

Communication per $x \wedge y$ -query: $2(\log n + 3) = O(\log n)$

Appointment scheduling: epilogue

Bit communication:

 $\mathsf{Cost:}\, \theta(\mathcal{N})$

Bit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

Qubit communication:

Cost: $\theta(n^{1/2})$ (with refinements)

Qubit communication & prior entanglement:

Are exponential savings possible?

Restricted version of equality

Precondition (i.e. promise): either x = y or $\Delta(x,y) = n/2$

Hamming distance

(Distributed variant of "constant" vs. "balanced")

Classically, $\Omega(n)$ bits communication are necessary *for an exact solution*

Quantum mechanically, $O(\log n)$ qubits communication are sufficient *for an exact solution*

Classical lower bound

Theorem: If $S \subseteq \{0,1\}^n$ has the property that, for all $x, x' \in S$, their *intersection* size is *not* n/4 then $|S| < 1.99^n$

Let **some** protocol solve restricted equality with k bits comm.

- 2^k conversations of length k
- approximately $2^n/\sqrt{n}$ input pairs (x, x), where $\Delta(x) = n/2$

Therefore, $2^{n}/2^{k}\sqrt{n}$ input pairs (x, x) that yield **same** conv. *C*

Define $S = \{x : \Delta(x) = n/2 \text{ and } (x, x) \text{ yields conv. } C \}$

For any $x, x' \in S$, input pair (x, x') **also** yields conversation *C*

Therefore, $\Delta(x, x') \neq n/2$, implying intersection size is **not** n/4Theorem implies $2^n/2^k \sqrt{n} < 1.99^n$, so k > 0.007n

[Frankl and Rödl, 1987]

Quantum protocol

For each $x \in \{0,1\}^n$, define $|\Psi_x\rangle = \sum_{j=1}^n (-1)^{x_j} |j\rangle$

Protocol:

- 1. Alice sends $|\psi_x\rangle$ to Bob (log(*n*) qubits)
- 2. Bob measures state in a basis that includes $|\psi_{\nu}\rangle$

Correctness of protocol:

If x = y then Bob's result is definitely $|\psi_y\rangle$ If $\Delta(x,y) = n/2$ then $\langle \psi_x | \psi_y \rangle = 0$, so result is definitely **not** $|\psi_y\rangle$

Question: How much communication if error ¹/₄ is permitted? **Answer:** just **2** bits are sufficient!

Exponential quantum vs. classical separation in <u>bounded-error models</u>

 $O(\log n)$ quantum vs. $\Omega(n^{1/4} / \log n)$ classical

|ψ>: a log(*n*)-qubit state
(described *classically*)
M: two-outcome measurement

Output: result of applying M to $U|\psi\rangle$

U: unitary operation on log(n) qubits

[Raz, 1999]

Lower bound for the inner product problem

Inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols **also** require $\Omega(n)$ communication

Goal: determine a_1, a_2, \ldots, a_n

Classically, *n* queries are necessary

Quantum mechanically, 1 query is sufficient

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Since *n* bits are conveyed from Alice to Bob, *n* qubits communication necessary (by Holevo's Theorem)

Simultaneous message passing and fingerprinting

Exact protocols: require 2*n* bits communication

Bounded-error protocols with a shared random key: require only O(1) bits communication

Error-correcting code: e(x) = 101111010110011001e(y) = 01101001001100100100100100random k

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum fingerprints

Question 1: how many orthogonal states in m qubits? **Answer:** 2^m

Let ε be an arbitrarily small positive constant **Question 2:** how many *almost orthogonal** states in *m* qubits? (* where $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$)

Answer: $2^{2^{am}}$, for some constant a > 0

The states can be constructed via a suitable (classical) errorcorrecting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ where, for all $x \neq y$, $dcn \leq \Delta(e(x), e(y)) \leq (1-d)cn$ (*c*, *d* are constants)

Construction of *almost* orthogonal states

Set $|\psi_x\rangle = \frac{1}{\sqrt{cn}} \sum_{k=1}^{cn} (-1)^{e(x)_k} |k\rangle$ for each $x \in \{0,1\}^n$ (log(*cn*) qubits)

Then $\langle \Psi_{x} | \Psi_{y} \rangle = \frac{1}{cn} \sum_{k=1}^{cn} (-1)^{[e(x) \oplus e(y)]_{k}} | k \rangle = 1 - \frac{2\Delta(e(x), e(y))}{cn}$

Since $dcn \le \Delta(e(x), e(y)) \le (1-d)cn$, we have $|\langle \psi_x | \psi_y \rangle| \le 1-2d$

By duplicating each state, $|\psi_x\rangle \otimes |\psi_x\rangle \otimes \dots \otimes |\psi_x\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2d)^r \le \varepsilon$

Result: $m = r \log(cn)$ qubits storing $2^n = 2^{(1/c)2^{m/r}}$ different states

Quantum fingerprints

Let $|\psi_{000}\rangle$, $|\psi_{001}\rangle$, ..., $|\psi_{111}\rangle$ be 2^n states on $O(\log n)$ qubits such that $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$ for all $x \ne y$

Given $|\psi_x\rangle|\psi_y\rangle$, one can check if x = y or $x \neq y$ as follows:

if x = y, Pr[output = 0] = 1 if $x \neq y$, Pr[output = 0] = $(1 + \varepsilon^2)/2$

Note: error probability can be reduced to $((1 + \varepsilon^2)/2)^r$

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum protocol for equality in simultaneous message model

Hidden matching problem

Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol—even with a shared key

Only one-way communication (Alice to Bob) is permitted

[Bar-Yossef, Jayram, Kerenidis, 2004]

Inputs: $x \in \{0,1\}^n$ $M = \bigcirc matching \text{ on } \{1,2,\ldots,n\}$ $Output: (i, j, x_i \oplus x_j), (i, j) \in M$

Classically, one-way communication is $\Omega(\sqrt{n})$, even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn't know which edges are in M, so she apparently has to send $\Omega(\sqrt{n})$ bits of the form $x_i \oplus x_j \dots$

The hidden matching problem

Inputs: $x \in \{0,1\}^n$

Output: $(i, j, x_i \oplus x_j)$, $(i, j) \in M$

Quantum protocol: Alice sends $\frac{1}{\sqrt{n}}\sum_{k=1}^{n}(-1)^{x_k}|k\rangle$ (log *n* qubits)

Bob measures in $|i\rangle \pm |j\rangle$ basis, $(i, j) \in M$, and uses the outcome's relative phase to determine $x_i \bigoplus x_j$

Nonlocality revisited

Restricted-equality nonlocality

78

Precondition: either x = y or $\Delta(x,y) = n/2$

Required postcondition: a = b iff x = y

With classical resources, $\Omega(n)$ bits of communication needed for an exact solution*

With $(|00\rangle + |11\rangle)^{\otimes \log n}$ prior entanglement, no communication is needed at all*

* Technical details similar to restricted equality of Lecture 17 [BCT '99]

Restricted-equality nonlocality

Bit communication:

 $\mathsf{Cost:}\, \theta(\mathcal{N})$

Bit communication & prior entanglement:

Cost: Zero

Qubit communication:

Cost: $\log n$

Qubit communication & prior entanglement:

Cost: Zero

Nonlocality and communication complexity conclusions

- Quantum information affects communication complexity in interesting ways
- There is a rich interplay between quantum communication complexity and:
 - -quantum algorithms
 - -quantum information theory
 - -other notions of complexity theory ...

