Introduction to

Quantum Information Processing
CS 667 / Phys 767 / C&O 681

Lecture 15 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca



mailto:cleve@cs.uwaterloo.ca

Continuous-time evolution



Continuous-time evolution

Although we've expressed quantum operations in discrete
terms, in real physical systems, the evolution is continuous

Lesesdecesan,,

Let H be any Hermitian matrix and ¢ € R L

Then €' is unitary — why?

H= UTDU, Where D = ................. >

Therefore €=U e U= U* U (unitary)

7t
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Grover's quantum

search algorithm




Quantum search problem
Given: a black box computing f: {0,1}" = {0,1}
Goal: determine if f is satisfiable (if 3x € {0,1}" s.t. f{x) =1)

In positive instances, it makes sense to also find such a
satisfying assignment x

Classically, using probabilistic procedures, order 2" queries
are necessary to succeed—even with probability ¥4 (say)

Grover’s quantum algorithm that makes only O(~2") queries

Query: |x)) X)
= B
[Grover '906]

12 © y @ fix,...x,)) 5




Applications of quantum search

The function f could be realized as a 3-CNF formula:

flrox )=(x, v, va)A® v, vi)ar-AxX vr,vy,)

Alternatively, the search
could be for a certificate
for any problem in NP 3-CNF-SAT

The resulting quantum
algorithms appear to be ppctorING
guadratically more
efficient than the best
classical algorithms
Known



Prelude to Grover’s algorithm:

two reflections = a rotation

Consider two lines with intersection angle O:

reflection 2
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Net effect: rotation by angle 20, regardless of starting vector
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Grover’s algorithm: description |

Basic operations used:

Ukl = (-1)/ D))

Implementation?
X)) — — X)) :
| UO |

\J

) & y@x=0..0)  Uyk)-)=(-1)*=0-0x)-)

===
><>|<><

H

— H — Hadamard Z




Grover’s algorithm: description |l

0y —
0 - ST - ST

|—> D D (N N

1. construct state /H10...0)-)
2. repeat k times:
apply —HUOHUf to state
3. measure state, to get xe {0,1}”, and check if f(x)=1

(The setting of &£ will be determined later)



Grover’s algorithm: analysis |
Let A={xe{0,1}":f(x)=1} and B= {x €{0,1}": f(x) =0}
and N=2" and a=|A| and b=|B|
ot [A4)= L)) ana |B)=LY|y

xeA xeB

Consider the space spanned by |4) and |B)

|A) € goal is to get close to this state
H

HO..0) =2 2|x) =] 4)+%|B)
. |B> xe{0,1}"
Interesting case: a << N

10



Grover’s algorithm: analysis Il
)
' Algorithm: (—HUOHUf)kH|O...O)

H\0...0)

Observation:
Uf is a reflection about |B): Uf|A) =—A) and Uf|B) = |B)

Question: whatis —-H U,H ? U, is areflection about //0...0)

Partial proof:
-HU,HH\0...0y =-HU,|0...0) = —H(—|0...0)) = H|0...0)

11



Grover’s algorithm: analysis llI
4)
f Algorithm: (—HUOHUf)kH|O...O)

Since —H1 U1 Uy is a composition of two reflections, it is a
rotation by 20, where sin(9)=\/a/N ~ Va/N

When a =1, we want (2k+1)(1/WN)= /2 , so k~ (/4NN
More generally, it suffices to set k = (11/4)\NNla

Question: what if g is not known in advance? 12
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Optimality of

Grover's algorithm




Optimality of Grover’s algorithm

Theorem: any quantum search algorithm for 7: {0,1}" = {0,1}
must make Q(~2") queries to 1 (if f'is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form  |X) i (—l)ﬂx)|x>

and that a k-query algorithm is of the form

where U, U,, U,, ..., U, are arbitrary unitary operations
15
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Optimality of Grover’s algorithm

Define f.: {0,1}" > {0,1} asf.(x)=1iffx =7

Consider

0)=

Uy

i/ §

VErsus

U

i/ §

0)=

Uy

U,

i/

U

Us

i/ §

i/

U,

i/ §
i/

Us

i/

We'll show that, averaging over all » € {0,1}",

[ 1w, = hvo) 1] < 2k/N2"

| \Vr, k>

|\|]r,0>

16



Optimality of Grover’s algorithm

Consider

0)={0,

i/

U,

i/

Note that

|\|]r,k> _ |\Vr,0> - (|\Vr,k> _ |\|]r,k—1>) t (|\Vr,k—1> _ |\|]r,k—2>) T (‘\Vr,1> _ |\Vr,0>)

which implies

” |\|fr,k> _ |\|fr,0> || < || |\|fr,k> _ |\|]r,k—1> ” Tt || ‘\Vr,1> _ |\|fr,0> ”

g o

E |\Vr,i>

J

o™~
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Optimality of Grover’s algorithm

0)=

Uy

i/

U

query I

0)=

Uy

query I+1

i/

U

i/ §

query I

Uy

|\Vr,i>

query I+1

Sl

i/ §

)

Uy

E|\Vr,i—l>

11,0 = w0 || = |2, |, since query only negates |1

k—1
Therefore, || v, = v, 1 < 2.2,

18



Optimality of Grover’s algorithm

Now, averaging over all r € {0,1}",

Y NS ERC3 3e ]

“llrk \ler

Therefore, for some r € {0,1}", the number of queries k& must
be Q(\2"), in order to distinguish £, from the all-zero function

This completes the proof 19
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Lab tour

(instead of a regular lecture)
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Preliminary remarks about

gquantum communication

23



Quantum information can apparently be
used to substantially reduce computation
costs for a number of interesting problems

How does quantum information affect the
communication costs of information
processing tasks?

We explore this issue ...

24



Entanglement and signaling

Recall that Entangled states, such as %\OO>+%\11>,

qubit qubit

can be used to perform some intriguing feats, such as
teleportation and superdense coding

—Dbut they cannot be used to “signal instantaneously”

Any operation performed on one system has no affect on
the state of the other system (its reduced density matrix)

25



Basic communication scenario

Goal: convey n bits from Alice to Bob

Resources 0 Bob

XXy ... X

XXy ..o X,

Alice

n

26



Basic communication scenario

Bit communication:

o
»
[
»
-
<
»
»

Cost: 71

Bit communication
& prior entanglement:
990 990

»
»
»
»
-
<
»
»

Cost: /1 (can be deduced)

Qubit communication:

»
»
»
»
P
<
»
»

Cost: 71 [Holevo’'s Theorem, 1973]

Qubit communication
& prior entanglement:
99D 990

o
»
o
»
P
o
o
»

Cost: 11/2 superdense coding
[Bennett & Wiesner, 1992]

27



The GHZ “paradox”



GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]

Input: 14 S A
Output: a «—7r b — —s c «— 1
Alice Bob Carol
Rules of the game:
1. It is promised that r®s®r =0 st | a@bodc | abe
2. No communication after inputs received | 000 0 @011
3. They win if a®b@C = rvsvi e | 011| 1 @001
101 1 @|111

110

101

29




No perfect strategy for GHZ

Input: g r
Output: %
rst | a®b®c
000 0

011

101

110

— | — | —

Has no solution,

thus no perfect
strategy exists

A A 5

General deterministic strategy:
a, a, by, by, ¢y, ¢,

Winning conditions:

[ a,®b,®c,=0
a,®b,dc, =1

a, ®b,®c, =1

L a9 b, ®c,=1 30

<




GHZ: preventing communication

Input:

Output:

Input and output events can be space-like separated:
so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol still keep on winning?

31



“GHZ Paradox” explained
Prior entanglement: |\y) =|000) - |011) - |101) — [110)

£ 4 4

Alice’s strateqy: {1 1}

1. if » = 1 then apply H to qubit H =
2. measure qubit and set a to result

Bob’s & Carol’s strategies: similar

Case 2 (rst = 000): swiestatacdslred ditdotly|1.000® [111) @
Cases 3 & 4 (st =101 & 110): similar by symmetry @ 5,



GHZ: conclusions

For the GHZ game, any classical team succeeds with
probability at most %4

Allowing the players to communicate would enable them
to succeed with probability 1

Entanglement cannot be used to communicate

Nevertheless, allowing the players to have entanglement
enables them to succeed with probability 1

Thus, entanglement is a useful resource for the task of
winning the GHZ game

33



The Bell inequality and its violation

— Physicist’s perspective

34



Bell’s Inequality and its violation
Part |: physicist’s view:

Can a quantum state have pre-determined outcomes for
each possible measurement that can be applied to it?

@

qubit:

_ if {|0),|1)} measurement
where the "manuscript” |then output 0
Is something like this:

if {|+),]-)} measurement
then output 1

if ... (etc)
called hidden variables G )
table could be implicitly
[Bell, 1964] given by some formula

[Clauser, Horne, Shimony, Holt, 1969] 35



Bell Inequality

Imagine a two-qubit system, where one of two measurements,

called M, and M,, will be applied to each qubit:

> /Space-like separated, so Co— > )
no cross-coordination My by
M, : b,
G ) a
Define: Claim: 4 B,+A,B,+AB,—A,B, £2
= (— ao
jo_( })al Proof: 4,(B,+B,)+A4,(B,—B,) <2
1= )b
By=(-1)70 ) N

_ b
Bl — (_1) I one is 2 and the otheris O 36



Bell Inequality
AyB,+A,B,+AB,— A, B, <2 is called a Bell Inequality”*

Question: could one, in principle, design an experiment to
check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because 4, 4,, B,, B, cannot
all be measured (only one A4 B, term can be measured)

Answer 2: yes, indirectly, by making many runs of this

experiment: pick a random st €{00,01,10,11} and then
measure with M and M, to get the value of 4 B,

The average of 4,B,, 4,B,, A,B,, —4,B, should be <

* also called CHSH Inequality 37
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Violating the Bell Inequality

Two-qubit system in state
) =100) - [11)

Applying rotations 6, and &5 yields:
cos(G, + 65 ) (J00) — [11)) + sin(6, + 65 ) (J01) + |10Y)

AB =+1 AB = —]
Define b st =11
M,: rotate by —m/16 then measure ms e
M,: rotate by +31/16 then measure %
Then 4,B,, A,B,, 4,B,, —A, B, all have sz‘ - 00
expected value %V2, which contradicts S
the upper bound of % cosX(n/8) = Y4 + Yi\2

39



Bell Inequality violation: summary

Assuming that quantum systems are
governed by local hidden variables E E E
leads to the Bell inequality

But this is violated in the case of Bell states (by a factor of \2)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments
along these lines have actually been conducted

B @-=rssssuanununnnnnsn P

40



The Bell inequality and its violation

— Computer Scientist’s perspective
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Bell’s Inequality and its violation

Part ll: computer scientist’s view:

iInput: \ t
' '
output: a b
Rules: 1. No communication after inputs received o | aob
2. They win if a®b = sat 00 | 0
01 0
With classical resources, Pr[a®b = sAt] <0.75 10 | O
11 | 1

But, with prior entanglement state [00) — |11),
Pr[a®b = sAt] = cos?(Tt/8) =% + Va2 = 0.853...

42




The quantum strategy

* Alice and Bob start with entanglement

d) =100) —[11)

 Alice: if s =0 then rotate by 6, = —7/16
else rotate by 6, = +371/16 and measure

3n/8 St =01o0r10

/8
-Tt/8

+ Bob: if £ =0 then rotate by 6; = —1/16 St o
else rotate by g5 = +37/16 and measure S

cos(Oy — 65 ) (100) —[11)) + sin(6, — 6 ) (|01) +[10))

Success probability:
Pr[a®b = sAt] = cos?(T/8) =% + Va2 = 0.853...

43



Nonlocality in operational terms

information
processing
task

classically, quantum
communication entanglement

IS heeded

44



The magic square game




Magic square game

Problem: fill in the matrix with bits such that each row has
even parity and each column has odd parity

odd odd odd

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: 8/ classical and 1 quantum
[Aravind, 2002] (details omitted here) 46



Preview of

communication
complexity




Classical Communication Complexity

[Yao, 1979]
XIXZ...Xn ylyZyn

f(xy)

E.g. equality function: f(x,y)=1ifx=yp, and0ifx #y
Any deterministic protocol requires n bits communication

Probabilistic protocols can solve with only O(log(n/g)) bits

communication (error probability €)
48



Quantum Communication Complexity

XXy .ou X, YWVa o Vi
Qubit communication ;
qubits ]
f(xy)
T entangled qubits T O
_ XXy .ou X, YWVa o Vi
Prior entanglement )
: >
bits
f(xy)

Question: can quantum beast classical in this context?
49



Appointment schedullng

1 2 3 4 5 ... N 1 2 3 4 5 ...
x=/101101...0 y=10011...1
I (x;=y,=1)

Classically, (2(n) bits necessary to succeed with prob. > 3/4

For all € > 0, O(n'2 log n) qubits sufficient for error prob. < g

[KS ‘87] [BCW ‘98] .



Search problem

1 2 3 4 5 6 ... N

Given: x=|000010...1| accessible via queries

log n { ‘l) ‘l)
1 { D) D b © x;)

Goal: find i€{1, 2, ..., n} such that x; = 1

Classically: )(n) queries are necessary

Quantum mechanically: O(n!/?) queries are sufficient

[Grover, 1996] 51



1 2 3 4 5 6 ... n

Alice x=1011010...0
Bob =1100110...1
xAy=1000010...0

|i>—x/\y— ‘i>—y XX yr

0) 0) —D 5 ¢ D
0) 0) —D—¢—D
b) —D b —D

Bob Alice | Bob

Communication per XxAy-query: 2(log n + 3) = O(log n)



Appointment scheduling: epilogue

Bit communication:

o
»
[
»
-
<
»
»

Cost: B(71)

Bit communication
& prior entanglement:
990 990

»
»
»
»
-
<
»
»

Cost: B(7112)

[R '02] [AA ‘03]

Qubit communication:

»
»
»
»
P
<
»
»

Cost: 9(n“2) (with refinements)

Qubit communication
& prior entanglement:
99D 990

o
»
o
»
P
o
o
»

Cost: O(712)

53



Are exponential

savings possible?




Restricted version of equality

Precondition (i.e. promise): either x =y o)r'A(x,y) =n/2

Hamming distance

(Distributed variant of “constant” vs. “balanced”)

Classically, €2(7) bits communication are necessary
for an exact solution

Quantum mechanically, O(log n) qubits communication
are sufficient for an exact solution

[BCW ‘98] 55



Classical lower bound

Theorem: If §'< {0,1}" has the property that, for all x, x' e S,
their intersection size is not n/4 then |S] <1.99”

Let some protocol solve restricted equality with & bits comm.

e 2k conversations of length k
e approximately 2"/\n input pairs (x, x), where A(x) = n/2

Therefore, 2"/2"\n input pairs (x, x) that yield same conv. C

Define = {x : A(x) =n/2 and (x, x) yields conv. C }
For any x, x' € S, input pair (x, x’) also yields conversation C

Therefore, A(x, x") # n/2, implying intersection size is not n/4

Theorem implies 2"/25\n < 1.99" | so k> 0.007n

[Frankl and Radl, 1987] 56




Quantum protocol

For each x e {0,1}", define |y, )= Zn:(—l)xjm
j=1

Protocol:

1. Alice sends |y,) to Bob (log(n) qubits)
2. Bob measures state in a basis that includes )

Correctness of protocol:
If x =y then Bob’s result is definitely v,

If A(x,y)=n/2 then (y,lw,) =0, soresultis definitely not v,

Question: How much communication if error Y4 is permitted?

Answer: just 2 bits are sufficient!
57



Exponential quantum vs. classical
separation in bounded-error models

O(log n) quantum vs. Q(n!#/ log n) classical

lw): a log(n)-qubit state
(described classically)

M: two-outcome measurement

Output: result of
applying M to U |y)

U: unitary operation
on log(n) qubits

[Raz, 1999] 58




Lower bound for the

Inner product problem



Inner product

IP(x,y)=x,y;+Xx,y,+ ... +x,y, mod 2

Classically, {)(n) bits of communication are required,
even for bounded-error protocols

Quantum protocols also require {2(7) communication

[KY ‘95] [CNDT ‘98] [NS ‘02]

60



The BV black-box problem

Bernstein & Vazirani
Let f(x|, x5, ....Xx,)=a,x; +a,x,+...+a,x, mod 2

Given: 0) L
0) Lx

1)

Goal: determine a,, a,, ..

X

X

'

H

o |ay)

) |ay)

0) L

SIEIEEE

b

o |a,)

H
H
H
H

L/

., a

n

Classically, n queries are necessary

Quantum mechanically, 1 query is sufficient

61



Lower bound for inner product
[P(x,y)=x,y,+x,y,+...+x,y, mod 2

Proof: |3|c1> \3|c2> \3|cn> Iy|1> lT2> [V|n> 2)

Alice and Bob’s 1P protocol

s O

Alice and Bob’s 1P protocol inverted

o o
X)) X)) ‘xn> Vi o) b’n> z®IP(x, y))

62



Lower bound for inner product
[P(x,y)=x,y,+x,y,+...+x,y, mod 2

0y 1) 10) [1)
Proof: [x,) |x,) |x,) e

o HHH

Alice and Bob’s 1P protocol

s O

Alice and Bob’s 1P protocol inverted

| | | | | [
H ||H |\H |H
X)) x,) | | | |

) ) ‘xn> 1)

Since n bits are conveyed from Alice to Bob, n qubits
communication necessary (by Holevo’'s Theorem) 63




Simultaneous message

passing and fingerprinting



Equality revisited
in simultaneous message model
XXy ... X, ViVa--o Yy

syt

Equality function:
/%) f(x,y)={1 ifx =y
0 ifx+#y

Exact protocols: require 27 bits communication

65



Equality revisited
in simultaneous message model
XXy ... X, ViVa--o Yy

JI0 JI0
classical \ / classical

X nF
\

= O
f(x,y) Pr[00] = Pr[11] = %

Bounded-error protocols with a shared random key:
require only O(1) bits communication

Error-correcting code: e(x)=1011 1 [D 10110011001

e()/)2011010010011001010
random Kk

66



Equality revisited
in simultaneous message model
XXy ... X, ViVa--o Yy

O 20

SEF

Bounded-error
protocols without
a shared key: f (x’y )

Classical: 6(n'/?)

Quantum: 6(log n)

[A ‘96] [NS ‘96] [BCWW ‘01] 67



Quantum fingerprints

Question 1: how many orthogonal states in m qubits?
Answer: 2"

Let € be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?

(* where [(y,Jy,)[ <€)

am
Answer: 22" for some constant a > 0

The states can be constructed via a suitable (classical) error-
correcting code, which is a function e:{0,1}" = {0,1}¢" where,
for all x £y, den < A(e(x),e(y)) < (1-d)cn (c, d are constants)

68



Construction of almost
orthogonal states

()

Set |\VX>_FZ “|k) foreachxe{0,1}" (log(cn) qubits)
Then (i) = L0 g) = 1 2el)e(s)

Since dcn < A(e(x),e(y)) < (1-d)cn, we have [(y,|y,)|<1-2d

By duplicating each state, |y )®|y)® ... ®|y,), the pairwise
inner products can be made arbitrarily small: (1-2d) <¢

Result: m = rlog(cn) qubits storing 27 = 2(1/©2™" different states

69



Quantum fingerprints

Let [Wooo)s [Woor)s ---» [Wq4,) DE 27 states on O(log n) qubits such

that Kwylw)l <€ forallx #y

Given 'Wly,), one can check if x = y or x # y as follows:

0) —

H

v,

"

Intuition: 1)), ) + DIy, v,

!
S
W
A
P

H

Y if x =y, Proutput=0]=1

L/ ifx#, Prloutput = 0] = (1+ €2)/2

Note: error probability can
be reduced to ((1+ €2)/2)"

70



Equality revisited
in simultaneous message model
XXy ... X, ViVa--o Yy

O 20

SEF

Bounded-error
protocols without
a shared key: f (x’y )

Classical: 6(n'/?)

Quantum: 6(log n)

[A ‘96] [NS ‘96] [BCWW ‘01] 71



Quantum protocol for equality

in simultaneous message model
XXy ... X, VooV,

W) )

% ©) Z

Ve oy

2T IR 1T’ Recall that, with a

Orthogonality shared key, the
test problem is easy

' classically ...

72



Hidden matching problem



Hidden matching problem

For this problem, a quantum protocol is exponentially more
efficient than any classical protocol—even with a shared key

matchin on
Inputs:  x e {0,1}" '\.\I' (1,2, . g

Output: (i, /, x,®x;), such that
(i,j) e M

Only one-way communication (Alice to Bob) is permitted

[Bar-Yossef, Jayram, Kerenidis, 2004] 74



The hidden matching problem

_ matching on
Inputs:  x e {0,1}" M= '\. (1,2, 2}

Output: (7, /, xx)), (i,)) e M

Classically, one-way communication is Q(Vn), even with a
shared classical key (the proof is omitted here)

Rough intuition: Alice doesn’t know which edges are in M,

so she apparently has to send Q(Vn) bits of the form xiG-)xj
75



The hidden matching problem
Inputs: X e {0,1}11 .\:\I. ?}athhmg on

Output: (7, /, xx)), (i,)) e M

Quantum protocol: Alice sends %i(—l)x"
n k=1

k)  (log n qubits)

Bob measures in |i) + |j) basis, (i, ) € M,
and uses the outcome’s relative phase to
determine x,®x;

76



Nonlocality revisited



Restricted-equality nonlocality

Inputs: X (n bits) y (n bits)
FIT FIT
outputs: a  (logn bits) b (log n bits)

Precondition: either x = y or A(x,y) = n/2
Required postcondition: a = b iff x = y

With classical resources, Q(n) bits of communication needed
for an exact solution*

With (|00) + [11))®1°2” prior entanglement, no communication

IS needed at all*

* Technical details similar to restricted equality of Lecture 17
[BCT ‘99] 8



Restricted-equality nonlocality

Bit communication:

o
»
[
»
-
<
»
»

Cost: B(71)

Bit communication
& prior entanglement:
990 990

»
»
»
»
-
<
»
»

Cost: Z€I'0

Qubit communication:

»
»
»
»
P
<
»
»

Cost: log 71

Qubit communication
& prior entanglement:

P99 -y I
Cost: Z€1I0

79



Nonlocality and communication
complexity conclusions

 Quantum information affects communication
complexity in interesting ways

* There is a rich interplay between quantum
communication complexity and:

—quantum algorithms

—quantum information theory

—other notions of complexity theory ...
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