Introduction to
 Quantum Information Processing CS 667 / Phys 767 / C\&O 681

Lecture 15 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Continuous-time evolution

Continuous-time evolution

Although we've expressed quantum operations in discrete terms, in real physical systems, the evolution is continuous
Let H be any Hermitian matrix and $t \in \mathbf{R}$
Then $e^{i H t}$ is unitary - why?
$H=U^{\dagger} D U$, where $D=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{d}\end{array}\right]$

Grover's quantum search algorithm

Quantum search problem

Given: a black box computing $f:\{0,1\}^{n} \rightarrow\{0,1\}$
Goal: determine if f is satisfiable (if $\exists x \in\{0,1\}^{n}$ s.t. $f(x)=1$)
In positive instances, it makes sense to also find such a satisfying assignment x

Classically, using probabilistic procedures, order 2^{n} queries are necessary to succeed—even with probability $3 / 4$ (say)

Grover's quantum algorithm that makes only $O\left(\sqrt{ } 2^{n}\right)$ queries
[Grover '96]

Applications of quantum search

The function f could be realized as a 3-CNF formula:
$f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{5}\right) \wedge \cdots \wedge\left(\bar{x}_{1} \vee x_{5} \vee \bar{x}_{n}\right)$
Alternatively, the search could be for a certificate for any problem in NP

The resulting quantum algorithms appear to be quadratically more efficient than the best classical algorithms known

Prelude to Grover's algorithm: two reflections $=\mathbf{a}$ rotation

Consider two lines with intersection angle θ :

Net effect: rotation by angle 2θ, regardless of starting vector

Grover's algorithm: description I

Basic operations used:

Implementation?

$$
U_{0}|x\rangle|-\rangle=(-1)^{[x=0 \ldots 0]}|x\rangle|-\rangle
$$

Grover's algorithm: description II

1. construct state $H|0 \ldots 0\rangle|-\rangle$
2. repeat k times:

$$
\text { apply }-H U_{0} H U_{f} \text { to state }
$$

3. measure state, to get $x \in\{0,1\}^{n}$, and check if $f(x)=1$
(The setting of k will be determined later)

Grover's algorithm: analysis I

Let $A=\left\{x \in\{0,1\}^{n}: f(x)=1\right\}$ and $B=\left\{x \in\{0,1\}^{n}: f(x)=0\right\}$
and $N=2^{n}$ and $a=|A|$ and $b=|B|$
Let $|A\rangle=\frac{1}{\sqrt{a}} \sum_{x \in A}|x\rangle$ and $|B\rangle=\frac{1}{\sqrt{b}} \sum_{x \in B}|x\rangle$
Consider the space spanned by $|A\rangle$ and $|B\rangle$
$|A\rangle \leftarrow$ goal is to get close to this state

$\longrightarrow$$|B\rangle$

Grover's algorithm: analysis II

${ }^{|A\rangle}$

Algorithm: $\left(-H U_{0} H U_{f}\right)^{k} H|0 \ldots 0\rangle$

Observation:
U_{f} is a reflection about $|B\rangle: U_{f}|A\rangle=-|A\rangle$ and $U_{f}|B\rangle=|B\rangle$
Question: what is $-H U_{0} H$? U_{0} is a reflection about $H|0 \ldots 0\rangle$
Partial proof:
$-H U_{0} H H|0 \ldots 0\rangle=-H U_{0}|0 \ldots 0\rangle=-H(-|0 \ldots 0\rangle)=H|0 \ldots 0\rangle$

Grover's algorithm: analysis III

$|A\rangle$

Algorithm: $\left(-H U_{0} H U_{f}\right)^{k} H|0 \ldots 0\rangle$

Since $-H U_{0} H U_{f}$ is a composition of two reflections, it is a rotation by 2θ, where $\sin (\theta)=\sqrt{a / N} \approx \sqrt{a / N}$

When $a=1$, we want $(2 k+1)(1 / \sqrt{ } N) \approx \pi / 2$, so $k \approx(\pi / 4) \sqrt{ } N$
More generally, it suffices to set $k \approx(\pi / 4) \sqrt{N / a}$
Question: what if a is not known in advance?

Introduction to
 Quantum Information Processing
 CS 667 / Phys 767 / C\&O 681

Lecture 17 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Optimality of Grover's algorithm

Optimality of Grover's algorithm

Theorem: any quantum search algorithm for $f:\{0,1\}^{n} \rightarrow\{0,1\}$ must make $\Omega\left(\sqrt{ } 2^{n}\right)$ queries to f (if f is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form

$$
|x\rangle \equiv f \bar{E}(-1)^{f(x)}|x\rangle
$$

and that a k-query algorithm is of the form

where $U_{0}, U_{1}, U_{2}, \ldots, U_{k}$, are arbitrary unitary operations

Optimality of Grover's algorithm

Define $f_{r}:\{0,1\}^{n} \rightarrow\{0,1\}$ as $f_{r}(x)=1$ iff $x=r$
Consider

versus

We'll show that, averaging over all $r \in\{0,1\}^{n}$,

$$
\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \| \leq 2 k / \sqrt{2^{n}}
$$

Optimality of Grover's algorithm

Consider

Note that

$$
\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle=\left(\left|\psi_{r, k}\right\rangle-\left|\psi_{r, k-1}\right\rangle\right)+\left(\left|\psi_{r, k-1}\right\rangle-\left|\psi_{r, k-2}\right\rangle\right)+\ldots+\left(\left|\psi_{r, 1}\right\rangle-\left|\psi_{r, 0}\right\rangle\right)
$$

which implies

$$
\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle\|\leq\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, k-1}\right\rangle\|+\ldots+\|\left|\psi_{r, 1}\right\rangle-\left|\psi_{r, 0}\right\rangle \|
$$

Optimality of Grover's algorithm

 ${ }^{10)} \equiv U_{0}=I=U_{1}=I=U_{2}^{\text {quer } i}=f_{r}^{\text {quer } i+1}=U_{r}=U_{k}=\mid \psi_{r, i}$
$\|\left|\psi_{r, i}\right\rangle-\left|\psi_{r, i-1}\right\rangle| |=\left|2 \alpha_{i, r}\right|$, since query only negates $|r\rangle$
Therefore, $\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \| \leq \sum_{i=0}^{k-1} 2\left|\alpha_{i, r}\right|$

Optimality of Grover's algorithm

Now, averaging over all $r \in\{0,1\}^{n}$,

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{r} \|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \| & \leq \frac{1}{2^{n}} \sum_{r}\left(\sum_{i=0}^{k-1} 2\left|\alpha_{i, r}\right|\right) \\
& =\frac{1}{2^{n}} \sum_{i=0}^{k-1} 2\left(\sum_{r}\left|\alpha_{i, r}\right|\right) \\
& \leq \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2\left(\sqrt{2^{n}}\right) \quad \text { (By Cauchy-Schwarz) } \\
& =\frac{2 k}{\sqrt{2^{n}}}
\end{aligned}
$$

Therefore, for some $r \in\{0,1\}^{n}$, the number of queries k must be $\Omega\left(\sqrt{ } 2^{n}\right)$, in order to distinguish f_{r} from the all-zero function This completes the proof

Introduction to
 Quantum Information Processing
 CS 667 / Phys 767 / C\&O 681

Lecture 18 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

(instead of a regular lecture)

Introduction to
 Quantum Information Processing
 CS 667 / Phys 767 / C\&O 681

Lecture 19 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Preliminary remarks about quantum communication

Quantum information can apparently be used to substantially reduce computation costs for a number of interesting problems

How does quantum information affect the communication costs of information processing tasks?

We explore this issue ...

Entanglement and signaling

Recall that Entangled states, such as $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$,

can be used to perform some intriguing feats, such as teleportation and superdense coding
—but they cannot be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

Basic communication scenario

Goal: convey n bits from Alice to Bob

Basic communication scenario

Bit communication：

Cost：n

Bit communication
\＆prior entanglement：

Cost：n（can be deduced）

Qubit communication：

Cost： \boldsymbol{n}［Holevo＇s Theorem，1973］

Qubit communication
\＆prior entanglement：
日可百
日回昌

Cost：$n / 2$ superdense coding ［Bennett \＆Wiesner，1992］

The GHZ "paradox"

GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]
Input:
Output:

Rules of the game:

1. It is promised that $r \oplus s \oplus t=0$
2. No communication after inputs received
3. They win if $a \oplus b \oplus c=r \vee s \vee t$

$r s t$	$a \oplus b \oplus c$	$a b c$
000	$0 \odot$	011
011	$1 \odot$	001
101	$1 \odot$	111
110	$1 \ominus$	101

No perfect strategy for GHZ

Input: \overbrace{a}^{r}

$r s t$	$a \oplus b \oplus c$
000	0
011	1
101	1
110	1

General deterministic strategy:

$$
a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}
$$

Winning conditions:
Has no solution, thus no perfect strategy exists

$$
\left\{\begin{array}{l}
a_{0} \oplus b_{0} \oplus c_{0}=0 \\
a_{0} \oplus b_{1} \oplus c_{1}=1 \\
a_{1} \oplus b_{0} \oplus c_{1}=1 \\
a_{1} \oplus b_{1} \oplus c_{0}=1
\end{array}\right.
$$

GHZ: preventing communication

Input and output events can be space-like separated: so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol still keep on winning?

"GHZ Paradox" explained

 Prior entanglement: $|\psi\rangle=|000\rangle-|011\rangle-|101\rangle-|110\rangle$

Alice's strategy:

1. if $r=1$ then apply H to qubit
2. measure qubit and set a to result

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Bob's \& Carol's strategies: similar

Cases 3 \& $4(r s t=101$ \& 110): similar by symmetry ©

GHZ: conclusions

- For the GHZ game, any classical team succeeds with probability at most $3 / 4$
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1
- Thus, entanglement is a useful resource for the task of winning the GHZ game

The Bell inequality and its violation

- Physicist's perspective

Bell's Inequality and its violation Part I: physicist's view:

Can a quantum state have pre-determined outcomes for each possible measurement that can be applied to it?

where the "manuscript" is something like this:
called hidden variables
[Bell, 1964]
[Clauser, Horne, Shimony, Holt, 1969]

if $\{\|0\rangle,\|1\rangle\}$ measurement then output 0 if $\{\|+\rangle,\|-\rangle\}$ measurement then output 1 if ... (etc)

table could be implicitly given by some formula

Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_{0} and M_{1}, will be applied to each qubit:

Define:
$A_{0}=(-1)^{a_{0}}$
$A_{1}=(-1)^{a_{1}}$
$B_{0}=(-1)^{b_{0}}$
$B_{1}=(-1)^{b_{1}}$
Claim: $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1} \leq 2$
Proof: $A_{0}\left(B_{0}+B_{1}\right)+A_{1}\left(B_{0}-B_{1}\right) \leq 2$
one is ± 2 and the other is 0

Bell Inequality

$A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1} \leq 2$ is called a Bell Inequality*
Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because $A_{0}, A_{1}, B_{0}, B_{1}$ cannot all be measured (only one $A_{s} B_{t}$ term can be measured)

Answer 2: yes, indirectly, by making many runs of this experiment: pick a random $s t \in\{00,01,10,11\}$ and then measure with M_{s} and M_{t} to get the value of $A_{s} B_{t}$
The average of $A_{0} B_{0}, A_{0} B_{1}, A_{1} B_{0},-A_{1} B_{1}$ should be $\leq 1 / 2$

* also called CHSH Inequality

Introduction to
 Quantum Information Processing
 CS 667 / Phys 767 / C\&O 681

Lecture 20 (2008)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

Violating the Bell Inequality

Two-qubit system in state

$$
|\phi\rangle=|00\rangle-|11\rangle
$$

Applying rotations θ_{A} and θ_{B} yields:

$$
\cos \left(\theta_{\mathrm{A}}+\theta_{\mathrm{B}}\right)(\underbrace{|00\rangle-\mid 11}_{A B=+1}\rangle)+\sin \left(\theta_{\mathrm{A}}+\theta_{\mathrm{B}}\right)(\underbrace{|01\rangle+|10\rangle}_{A B=-1})
$$

Define
M_{0} : rotate by $-\pi / 16$ then measure M_{1} : rotate by $+3 \pi / 16$ then measure

Then $A_{0} B_{0}, A_{0} B_{1}, A_{1} B_{0},-A_{1} B_{1}$ all have expected value $1 / 2 \sqrt{2}$, which contradicts the upper bound of $1 / 2$

Bell Inequality violation: summary

Assuming that quantum systems are governed by local hidden variables leads to the Bell inequality
 $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1} \leq 2$

But this is violated in the case of Bell states (by a factor of $\sqrt{ }$)
Therefore, no such hidden variables exist
This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted

The Bell inequality and its violation

- Computer Scientist's perspective

Bell's Inequality and its violation Part II: computer scientist's view:

 input:
output:
a

Rules: 1. No communication after inputs received 2. They win if $a \oplus b=s \wedge t$

With classical resources, $\operatorname{Pr}[a \oplus b=s \wedge t] \leq 0.75$
But, with prior entanglement state $|00\rangle-|11\rangle$,

$s t$	$a \oplus b$
00	0
01	0
10	0
11	1

$\operatorname{Pr}[a \oplus b=s \wedge t]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{ } 2=0.853 \ldots$

The quantum strategy

- Alice and Bob start with entanglement
$|\phi\rangle=|00\rangle-|11\rangle$
- Alice: if $S=0$ then rotate by $\theta_{\mathrm{A}}=-\pi / 16$ else rotate by $\theta_{\mathrm{A}}=+3 \pi / 16$ and measure
- Bob: if $t=0$ then rotate by $\theta_{\mathrm{B}}=-\pi / 16$ else rotate by $\theta_{\mathrm{B}}=+3 \pi / 16$ and measure

$$
\cos \left(\theta_{\mathrm{A}}-\theta_{\mathrm{B}}\right)(|00\rangle-|11\rangle)+\sin \left(\theta_{\mathrm{A}}-\theta_{\mathrm{B}}\right)(|01\rangle+|10\rangle)
$$

Success probability:
$\operatorname{Pr}[a \oplus b=s \wedge t]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{ } 2=0.853 \ldots$

Nonlocality in operational terms

information
 processing task

The magic square game

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column
They win iff parities are correct and bits agree at intersection
Success probabilities: 8/9 classical and 1 quantum

Preview of communication complexity

Classical Communication Complexity

 [Yao, 1979]$$
\begin{aligned}
& x_{1} x_{2} \ldots x_{n} \\
& y_{1} y_{2} \ldots y_{n} \\
& f(x, y)
\end{aligned}
$$

E.g. equality function: $f(x, y)=1$ if $x=y$, and 0 if $x \neq y$

Any deterministic protocol requires n bits communication Probabilistic protocols can solve with only $O(\log (n / \varepsilon))$ bits communication (error probability ε)

Quantum Communication Complexity

$$
x_{1} x_{2} \ldots x_{n} \quad y_{1} y_{2} \ldots y_{n}
$$

Qubit communication

$x_{1} x_{2} \ldots x_{n} \quad y_{1} y_{2} \ldots y_{n}$
Prior entanglement

Question: can quantum beast classical in this context?

Appointment scheduling

$$
\begin{aligned}
& x=\begin{array}{|lllllll}
1 & 2 & 3 & 4 & 5 & \ldots & n \\
0 & 1 & 1 & 0 & 1 & \ldots & 0
\end{array} \\
& y=\begin{array}{|lllllll}
1 & 2 & 3 & 4 & 5 & \ldots & n \\
\hline 1 & 0 & 0 & 1 & 1 & \ldots & 1 \\
\hline
\end{array}
\end{aligned}
$$

Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq 3 / 4$

For all $\varepsilon>0, O\left(n^{1 / 2} \log n\right)$ qubits sufficient for error prob. $<\varepsilon$

Search problem

Given: $x=\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & \ldots & n \\ 0 & 0 & 0 & 0 & 1 & 0 & \ldots & 1\end{array} \quad$ accessible via queries

$$
\begin{aligned}
& \log n\{|i\rangle \overline{\mathcal{L}}|\boldsymbol{i}\rangle \\
& 1\left\{|b\rangle=\bigoplus \quad\left|b \oplus x_{i}\right\rangle\right.
\end{aligned}
$$

Goal: find $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1$
Classically: $\Omega(n)$ queries are necessary
Quantum mechanically: $O\left(n^{1 / 2}\right)$ queries are sufficient

$$
\begin{aligned}
& \text { Alice } \quad x=\begin{array}{|llllllll}
1 & 2 & 3 & 4 & 5 & 6 & \ldots & n \\
0 & 1 & 1 & 0 & 1 & 0 & \ldots & 0 \\
\hline
\end{array} \\
& \text { Bob } \quad y=100110 \ldots 1 \\
& x \wedge y=000010 \ldots 0
\end{aligned}
$$

Communication per $x \wedge y$-query: $2(\log n+3)=O(\log n)$

Appointment scheduling：epilogue

Bit communication：

Cost：$\theta(n)$

Bit communication
\＆prior entanglement：

Cost：$\theta\left(n^{1 / 2}\right)$

Qubit communication：

cost：$\theta\left(n^{1 / 2}\right)$（with refinements）

Qubit communication
\＆prior entanglement：
日可百
日旬可

Cost：$\theta\left(n^{1 / 2}\right)$

Are exponential savings possible?

Restricted version of equality

Precondition (i.e. promise): either $x=y$ or $\Delta(x, y)=n / 2$
Hamming distance
(Distributed variant of "constant" vs. "balanced")

Classically, $\Omega(n)$ bits communication are necessary for an exact solution

Quantum mechanically, $O(\log n)$ qubits communication are sufficient for an exact solution

Classical lower bound

Theorem: If $S \subseteq\{0,1\}^{n}$ has the property that, for all $x, x^{\prime} \in S$, their intersection size is not $n / 4$ then $|S|<1.99^{n}$

Let some protocol solve restricted equality with k bits comm.

- 2^{k} conversations of length k
- approximately $2^{n} / \sqrt{ } n$ input pairs (x, x), where $\Delta(x)=n / 2$

Therefore, $2^{n} / 2^{k} \sqrt{n}$ input pairs (x, x) that yield same conv. C
Define $S=\{x: \Delta(x)=n / 2$ and (x, x) yields conv. $C\}$
For any $x, x^{\prime} \in S$, input pair $\left(x, x^{\prime}\right)$ also yields conversation C
Therefore, $\Delta\left(x, x^{\prime}\right) \neq n / 2$, implying intersection size is not $n / 4$ Theorem implies $2^{n} / 2^{k} \sqrt{n}<1.99^{n}$, so $k>0.007 n$ [Frankl and Rödl, 1987]

Quantum protocol

For each $x \in\{0,1\}^{n}$, define $\left|\psi_{x}\right\rangle=\sum_{j=1}^{n}(-1)^{x_{j}}|j\rangle$

Protocol:

1. Alice sends $\left|\psi_{x}\right\rangle$ to Bob ($\log (n)$ qubits)
2. Bob measures state in a basis that includes $\left|\psi_{y}\right\rangle$

Correctness of protocol:
If $x=y$ then Bob's result is definitely $\left|\psi_{y}\right\rangle$
If $\Delta(x, y)=n / 2$ then $\left\langle\psi_{x} \mid \psi_{y}\right\rangle=0$, so result is definitely not $\left|\psi_{y}\right\rangle$

Question: How much communication if error $1 / 4$ is permitted?
Answer: just $\mathbf{2}$ bits are sufficient!

Exponential quantum vs. classical separation in bounded-error models

$O(\log n)$ quantum vs. $\Omega\left(n^{1 / 4} / \log n\right)$ classical
$|\psi\rangle:$ a $\log (n)$-qubit state
(described classically)
M: two-outcome measurement

\boldsymbol{U} : unitary operation on $\log (n)$ qubits

Output: result of applying \boldsymbol{M} to $\boldsymbol{U}|\psi\rangle$

Lower bound for the inner product problem

Inner product

$$
\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2
$$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols also require $\Omega(n)$ communication

The BV black-box problem

 Bernstein \& Vazirani$$
\text { Let } f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \bmod 2
$$

Given:

Goal: determine $a_{1}, a_{2}, \ldots, a_{n}$
Classically, n queries are necessary
Quantum mechanically, 1 query is sufficient

Lower bound for inner product
 $$
\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2
$$

Lower bound for inner product $\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2$

Proof: $\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|x_{n}\right\rangle$
$|0\rangle \quad|0\rangle \quad|0\rangle \quad|1\rangle$

Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo's Theorem)

Simultaneous message passing and fingerprinting

Equality revisited in simultaneous message model

$$
\begin{aligned}
& \text { Equality function: } \\
& f(x, y)= \begin{cases}1 & \text { if } x=y \\
0 & \text { if } x \neq y\end{cases}
\end{aligned}
$$

Exact protocols: require $2 n$ bits communication

Equality revisited

 in simultaneous message model

Bounded-error protocols with a shared random key: require only $O(1)$ bits communication
Error-correcting code: $\begin{aligned} e(x) & =101111010110011001 \\ e(y) & =01101001011001010\end{aligned}$ random k

Equality revisited in simultaneous message model

Bounded-error protocols without a shared key:

Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$
[A '96] [NS ‘96] [BCWW '01]

Quantum fingerprints

Question 1: how many orthogonal states in m qubits?
Answer: 2^{m}

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?
(* where $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$)
Answer: $2^{2^{a m}}$, for some constant $a>0$
The states can be constructed via a suitable (classical) errorcorrecting code, which is a function $e:\{0,1\}^{n} \rightarrow\{0,1\}^{c n}$ where, for all $x \neq y, d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n \quad(c, d$ are constants)

Construction of almost orthogonal states

Set $\left|\psi_{x}\right\rangle=\frac{1}{\sqrt{c n}} \sum_{k=1}^{c n}(-1)^{e(x)}|k\rangle$ for each $x \in\{0,1\}^{n} \quad(\log (c n)$ qubits)
Then $\left\langle\psi_{x} \mid \psi_{y}\right\rangle=\frac{1}{c n} \sum_{k=1}^{c n}(-1)^{[e(x) \oplus e(y)]_{k}}|k\rangle=1-\frac{2 \Delta(e(x), e(y))}{c n}$
Since $d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n$, we have $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq 1-2 d$

By duplicating each state, $\left|\psi_{x}\right\rangle \otimes\left|\psi_{x}\right\rangle \otimes \ldots \otimes\left|\psi_{x}\right\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2 d)^{r} \leq \varepsilon$

Result: $m=r \log (c n)$ qubits storing $2^{n}=2^{(1 / c) 2^{m / r}}$ different states

Quantum fingerprints

Let $\left|\psi_{000}\right\rangle,\left|\psi_{001}\right\rangle, \ldots,\left|\psi_{111}\right\rangle$ be 2^{n} states on $O(\log n)$ qubits such that $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$ for all $x \neq y$

Given $\left.\left.\left|\psi_{x}\right\rangle\right\rangle \psi_{y}\right\rangle$, one can check if $x=y$ or $x \neq y$ as follows:

Intuition: $|0\rangle\left|\psi_{x}\right\rangle\left\langle\psi_{y}\right\rangle+|1\rangle\left|\psi_{y}\right\rangle\left|\psi_{x}\right\rangle$

$$
\text { if } x=y, \operatorname{Pr}[\text { output }=0]=1
$$

$$
\text { if } x \neq y, \operatorname{Pr}[\text { output }=0]=\left(1+\varepsilon^{2}\right) / 2
$$

Note: error probability can be reduced to $\left(\left(1+\varepsilon^{2}\right) / 2\right)^{r}$

Equality revisited in simultaneous message model

Bounded-error protocols without a shared key:

Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$
[A '96] [NS ‘96] [BCWW '01]

Quantum protocol for equality in simultaneous message model

Recall that, with a shared key, the problem is easy classically ...

Hidden matching problem

Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol-even with a shared key

Inputs: $\quad x \in\{0,1\}^{n}$

Only one-way communication (Alice to Bob) is permitted

The hidden matching problem

Inputs: $\quad x \in\{0,1\}^{n}$

Output: $\left(i, j, x_{i} \oplus x_{j}\right), \quad(i, j) \in M$

Classically, one-way communication is $\Omega(\sqrt{ } n)$, even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn't know which edges are in M, so she apparently has to send $\Omega(\sqrt{ } n)$ bits of the form $x_{i} \oplus x_{j} \ldots$

The hidden matching problem

Inputs: $\quad x \in\{0,1\}^{n}$

$M=$ matching on
$\{1,2, \ldots, n\}$

Output: $\left(i, j, x_{i} \oplus x_{j}\right), \quad(i, j) \in M$
Quantum protocol: Alice sends $\frac{1}{\sqrt{n}} \sum_{k=1}^{n}(-1)^{x_{k}}|k\rangle \quad$ (log n qubits)
Bob measures in $|i\rangle \pm|j\rangle$ basis, $(i, j) \in M$, and uses the outcome's relative phase to determine $x_{i} \oplus x_{j}$

Nonlocality revisited

Restricted-equality nonlocality

 inputs:(n bits)

outputs:
a
(log n bits)

Precondition: either $x=y$ or $\Delta(x, y)=n / 2$
Required postcondition: $a=b$ iff $x=y$
With classical resources, $\Omega(n)$ bits of communication needed for an exact solution*
With $(|00\rangle+|11\rangle)^{\otimes \log n}$ prior entanglement, no communication is needed at all*

* Technical details similar to restricted equality of Lecture 17

Restricted－equality nonlocality

Bit communication：

Cost：$\theta(n)$

Bit communication
\＆prior entanglement：

cost：Zero

Qubit communication：

Cost： $\log n$

Qubit communication
\＆prior entanglement：
日ena
日回易

cost：Zero

Nonlocality and communication complexity conclusions

- Quantum information affects communication complexity in interesting ways
- There is a rich interplay between quantum communication complexity and:
-quantum algorithms
-quantum information theory
-other notions of complexity theory ...

