Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871

Lecture 15 (2009)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

Simulations among operations

Simulations among operations (1)

Fact 1: any *general quantum operation* can be simulated by applying a unitary operation on a larger quantum system:

Simulations among operations (2)

Fact 2: any *POVM measurement* can also be simulated by applying a unitary operation on a larger quantum system and then measuring:

Separable states

Separable states

A bipartite (i.e. two register) state ρ is a:

• product state if $\rho = \sigma \otimes \xi$

• separable state if
$$\rho = \sum_{j=1}^{m} p_j \sigma_j \otimes \xi_j$$
 $(p_1, ..., p_m \ge 0)$
(i.e. a probabilistic mixture of product states)

Question: which of the following states are separable? $\rho_1 = \frac{1}{2} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \left(\left\langle 00 \right| + \left\langle 11 \right| \right)$

 $\rho_2 = \frac{1}{2} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \left(\left\langle 00 \right| + \left\langle 11 \right| \right) + \frac{1}{2} \left(\left| 00 \right\rangle - \left| 11 \right\rangle \right) \left(\left\langle 00 \right| - \left\langle 11 \right| \right) \right)$

Distance measures for quantum states

Distance measures

Some simple (and often useful) measures:

- Euclidean distance: $\| |\psi\rangle |\phi\rangle \|_{2}$
- Fidelity: $|\left<\phi|\psi\right>|$

Small Euclidean distance implies "closeness" but large Euclidean distance need not (for example, $|\psi\rangle$ vs – $|\psi\rangle$)

Not so clear how to extend these for mixed states ...

... though fidelity does generalize, to $\mathrm{Tr}\sqrt{\rho^{1/2}\sigma\rho^{1/2}}$

Trace norm – preliminaries (1)

For a normal matrix M and a function $f: \mathbb{C} \to \mathbb{C}$, we define the matrix f(M) as follows:

 $M = U^{\dagger}DU$, where D is diagonal (i.e. unitarily diagonalizable)

Now, define $f(M) = U^{\dagger}f(D) U$, where

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix} \quad f(D) = \begin{bmatrix} f(\lambda_1) & 0 & \cdots & 0 \\ 0 & f(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_d) \end{bmatrix}$$

Trace norm – preliminaries (2)

For a normal matrix $M = U^{\dagger}DU$, define |M| in terms of replacing D with [12] = 0

$$|D| = \begin{bmatrix} |\lambda_1| & 0 & \cdots & 0 \\ 0 & |\lambda_2| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |\lambda_d| \end{bmatrix}$$

This is the same as defining $|M| = \sqrt{M^{\dagger}M}$ and the latter definition extends to **all** matrices (since $M^{\dagger}M$ is positive definite)

Trace norm/distance – definition

The *trace norm* of
$$M$$
 is $||M||_{tr} = Tr|M| = Tr\sqrt{M^{\dagger}M}$

Intuitively, it's the 1-norm of the eigenvalues (or, in the non-normal case, the singular values) of M

The *trace distance* between ρ and σ is $\left\| \rho - \sigma \right\|_{tr}$

Why is this a meaningful distance measure between quantum states?

Theorem: for any two quantum states ρ and σ , the optimal measurement procedure for distinguishing between them succeeds with probability $\frac{1}{2} + \frac{1}{4} ||\rho - \sigma||_{tr}$