# Introduction to <br> Quantum Information Processing CS 667 I PH 767 I CO 681 I AM 871 

## Lecture 15 (2009)

Richard Cleve
DC 2117
cleve@cs.uwaterloo.ca

## Simulations among operations

## Simulations among operations (1)

Fact 1: any general quantum operation can be simulated by applying a unitary operation on a larger quantum system:


Example: decoherence


## Simulations among operations (2)

Fact 2: any POVM measurement can also be simulated by applying a unitary operation on a larger quantum system and then measuring:


## Separable states

## Separable states

A bipartite (i.e. two register) state $\rho$ is a:

- product state if $\rho=\sigma \otimes \xi$
- separable state if $\rho=\sum_{j=1}^{m} p_{j} \sigma_{j} \otimes \xi_{j} \quad\left(p_{1}, \ldots, p_{m} \geq 0\right)$
(i.e. a probabilistic mixture of product states)

Question: which of the following states are separable?

$$
\begin{aligned}
& \rho_{1}=\frac{1}{2}(|00\rangle+|11\rangle)(\langle 00|+\langle 11|) \\
& \rho_{2}=\frac{1}{2}(|00\rangle+|11\rangle)(\langle 00|+\langle 11|)+\frac{1}{2}(|00\rangle-|11\rangle)(\langle 00|-\langle 11|)
\end{aligned}
$$

## Distance measures for quantum states

## Distance measures

Some simple (and often useful) measures:

- Euclidean distance: $\||\psi\rangle-|\varphi\rangle \|_{2}$
- Fidelity: $|\langle\varphi \mid \psi\rangle|$

Small Euclidean distance implies "closeness" but large Euclidean distance need not (for example, $|\psi\rangle$ vs $-|\psi\rangle$ )

Not so clear how to extend these for mixed states ...
... though fidelity does generalize, to $\operatorname{Tr} \sqrt{\rho^{1 / 2} \sigma \rho^{1 / 2}}$

## Trace norm - preliminaries (1)

For a normal matrix $M$ and a function $f: \mathbf{C} \rightarrow \mathbf{C}$, we define the matrix $f(M)$ as follows:
$M=U^{\dagger} D U$, where $D$ is diagonal (i.e. unitarily diagonalizable)
Now, define $f(M)=U^{\dagger} f(D) U$, where

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right] \quad f(D)=\left[\begin{array}{cccc}
f\left(\lambda_{1}\right) & 0 & \cdots & 0 \\
0 & f\left(\lambda_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f\left(\lambda_{d}\right)
\end{array}\right]
$$

## Trace norm - preliminaries (2)

For a normal matrix $M=U^{\dagger} D U$, define $|M|$ in terms of replacing $D$ with

$$
|D|=\left[\begin{array}{cccc}
\left|\lambda_{1}\right| & 0 & \cdots & 0 \\
0 & \left|\lambda_{2}\right| & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left|\lambda_{d}\right|
\end{array}\right]
$$

This is the same as defining $|M|=\sqrt{M^{\dagger} M}$ and the latter definition extends to all matrices (since $M^{\dagger} M$ is positive definite)

## Trace norm/distance - definition

$$
\text { The trace norm of } M \text { is }\|M\|_{t r}=\operatorname{Tr}|M|=\operatorname{Tr} \sqrt{M^{\dagger} M}
$$

Intuitively, it's the 1-norm of the eigenvalues (or, in the nonnormal case, the singular values) of $M$

The trace distance between $\rho$ and $\sigma$ is $\|\rho-\sigma\|_{t r}$
Why is this a meaningful distance measure between quantum states?

Theorem: for any two quantum states $\rho$ and $\sigma$, the optimal measurement procedure for distinguishing between them succeeds with probability $1 / 2+1 / 4\|\rho-\sigma\|_{\text {tr }}$

