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Bloch sphere for qubits



Bloch sphere for qubits (1)

Consider the set of all 2x2 density matrices p

They have a nice representation in terms of the Pauli matrices:

0 1 10 0 —i
o =X = 6. =7 = 6, =Y=
1 O 0 -1 Y i 0

Note that these matrices—combined with /—form a basis for
the vector space of all 2x2 matrices

We will express density matrices o in this basis

Note that the coefficient of [ is 2, since X, Y, Y are traceless
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We will express p =

First consider the case of pure states |\|J><\|!
loss of generality,

p:

e

Bloch sphere for qubits (2)

i2¢

2
cos 0

cosfsind

[+c X+c Y+cZ

. where, without

V) = cos(0)[0) + e*%sin(0)|1) (8, ¢ € R)

e

—i2¢

sin’60

cosfsind

1+cos(20) e sin(20)

esin(20) 1-cos(20)

Therefore c_ = co0s(20), ¢, = cos(2¢)sin(20), C,= sin(2¢)sin(20)

These are polar coordinates of a unit vector (Cy.Cy,C,) € R3
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Bloch sphere for qubits (3)

+)=10) +|1)
- =10)-11)
+1) = |0) + 1|1)
1) =10) - 7[1)

Note that orthogonal corresponds to antipodal here

Pure states are on the surface, and mixed states are inside
(being weighted averages of pure states)



Distinguishing mixed states




Distinguishing mixed states (1)

What's the best distinguishing strategy between these two
mixed states?

{|0> with prob. % {|O> with prob. %
0) + 1) with prob. %2 1) with prob. Y2

1374 172 1110
P12 174 | 773200 1

p, also arises from this

orthogonal mixture: ... as does p, from:

{|<|>O> with prob. cos%(n/8) {|¢O> with prob. ¥
[b,) with prob. sin?(w/8) [¢,) with prob. %2
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Distinguishing mixed states (2)

We've effectively found an orthonormal basis |¢,), |¢,) In
which both density matrices are diagonal:

. [cos*(n/8) 0 y :1{1 0} 9 1) )
= 0 sin®(m/8) © 200 1
Do)

Rotating |¢,), |¢,) to |0), |1) the scenario can now
be examined using classical probability theory:

Distinguish between two classical coins, whose probabilities
of “heads” are cos?(n/8) and Y2 respectively (details: exercise)

Question: what do we do if we aren’t so lucky to get two
density matrices that are simultaneously diagonalizable?




General guantum

operations



J=1

General quantum operations (1)

Also known as:

“gquantum channels”

“completely positive trace preserving maps”,
“admissible operations”

LetA,, 4,, ..., 4, be matrices satisfying > 474, =1

j=1

Then the mapping p+— ZAJ.pAJT. IS a general quantum op

j=1

Note: 4,, 4,, ..., 4,, do not have to be square matrices

Example 1 (unitary op): applying U to p yields U,OUJr
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General quantum operations (2)

Example 2 (decoherence): let 4,=|[0)(0| and 4, = |1)(1]

This quantum op maps p to |0)(0|p|0)(0| + |1)(1|po|1)(1]

2

‘oc aff’ _‘a‘z 0
s AT Lo A

For [y) = /0) + A1),

Corresponds to measuring p “without looking at the outcome”

After looking at the outcome, p becomes [ |0)(0| with prob. |]?
11| with prob. |/?
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General guantum operations (3)

Example 3 (discarding the second of two qubits):

1 0 0 O 0100}

0 0 1 o} and A1:1®<1|:{0 0 0 1

Let A,= [®(0| {
States of the form p®o (product states) become p

1 O
State (L|00)+L|11))®(L(00|+L(11]) becomes ;{O J
Note 1: it's the same density matrix as for ((2, |0)), (%, |1)))

Note 2: the operation is called the partial trace Tr, p
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More about the partial trace

Two guantum registers - - In states o and /£ (resp.) are
iIndependent when the combined system is in state p = o ®u
If the 2Md reqister is discarded, state of the 1st register remains o

In general, the state of a two-register system may not be of the
form o ®u (it may contain entanglement or correlations)

The partial trace Tr, gives the effective state of the first register

For d-dimensional registers, Tr, is defined with respect to the

operators 4, = [®(¢,|, where |0,), |0,), ..., |d,_,) can be any
orthonormal basis

The partial trace Tr, p, can also be characterized as the
unique linear operator satisfying the identity Tr,(c®u) = o




Partial trace continued

For 2-qubit systems, the partial trace is explicitly

P00.00
TI‘2 Po1.00
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- P11,00
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P00.00
p
TI‘I 01,00
P10.00
| P11,00

PLoo o1

Po1.01
P10.01
P11 01

Poo o1

Po1.01
P1o.01
Pi1.01

Poo 10
Po1.10

P1o.10

P11.10

Poo 10

Po1.10
P1o.10
Pi1.10

Poo 11
Po111
P1o11

Piin |

Poo11
Poi1
Pro1
Piin |

{

{

Poooo T Poror
Prooo T Piio1

Poo.oo T Pro1o
Poioo T Pitio

Pooio T Porir
Pro1o T Pii1i

Poo.or T Pro1r
Poior T Piia
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General quantum operations (4)

Example 4 (adding an extra qubit):

Just one operator 4,= /®|0) =

o = O O

o o o =

States of the form o become pP®|0)(0

More generally, to add a register in state |(), use the
operator 4, = I®|})
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POVM measurements

(POVM = Positive Operator Valued Measre)



POVM measurements (1)

Let A, 4,, ..., A, be matrices satisfying » 474 =1
j=1

Corresponding POVM measurement is a stochastic operation
on p that, with probability Tt (Aj/) A ) produces outcome:

" j (classical information)
t
| 4,p4,

(the collapsed quantum state)
1.
| Tr(4,p4")

Example 1: 4;= |(|)j><(|)j| (orthogonal projectors)

This reduces to our previously defined measurements ...




POVM measurements (2)
When 4;=|9,)(9,| are orthogonal projectors and p = [y)(y/|,

Te(4,p A7) = TH,)(b, W16,
= (O WXW[0,X0/(0))
= [Kg;lw)l

Moreover. _ P4, oMo v ) ¢f><¢f‘_‘¢.><¢_‘
‘ J J
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POVM measurements (3)

Example 3 (trine state “measurent”):

| 211 O
Define AOZ\/2/3|(P0><(P0| - 3{0 ()}
AI:V2/3I(P1><<P1|=H% +g} AZ:@B'%X(PQ':H% _Jﬂ

Then A, A, + A, A + A, 4, =1

If the input itself is an unknown trine state, |p,)(®,/, then the
probability that classical outcome is k is 2/3 = 0.6666... 19



POVM measurements (4)

Often POVMs arise in contexts where we only care about the
classical part of the outcome (not the residual guantum state)

The probability of outcome | is Tr (A].pA]T. ): Tr (pA;AJ.)

Simplified definition for POVM measurements:

LetE,, E,, ..., E, be positive definite and such that D £, =1

j=1

The probability of outcome | is Tr (pEj)

This is usually the way POVM measurements are defined
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“Mother of all operations”

Let AI’I’AM’ ""Al,m1 satisfy k 7 , B
Arpi Ay 4 ZZAj,iAj,i =1

) ) 2,m; j=1 i=l
Ay Ay A

k,my

Then there is a quantum operation that, on input p, produces

with probability ZTr( ]lpAT) the state:

] (classical information)

< ZJAj,iIOA]T',i
i=1
Z Tr(Aj’l.pA]T.’l. )
> =l

(the collapsed quantum state)
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