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Bloch sphere for qubits



3

Bloch sphere for qubits (1)Bloch sphere for qubits (1)
Consider the set of all 2x2 density matrices ρ

Note that the coefficient of  I is ½, since X, Y, Y are traceless

They have a nice representation in terms of the Pauli matrices:
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Note that these matrices—combined with I—form a basis for 
the vector space of all 2x2 matrices

We will express density matrices  ρ in this basis
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Bloch sphere for Bloch sphere for qubitsqubits (2)(2)
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First consider the case of pure states |ψ〉〈ψ|, where, without 
loss of generality,  |ψ〉 = cos(θ)|0〉 + e2iφsin(θ)|1〉 (θ, φ ∈ R)
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Therefore cz = cos(2θ), cx = cos(2φ)sin(2θ), cy = sin(2φ)sin(2θ)

These are polar coordinates of a unit vector (cx , cy , cz) ∈ R3
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Bloch sphere for qubits (3)Bloch sphere for qubits (3)
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Pure states are on the surface, and mixed states are inside 
(being weighted averages of pure states)

Note that orthogonal corresponds to antipodal here
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Distinguishing mixed states
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Distinguishing mixed states (1)Distinguishing mixed states (1)
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What’s the best distinguishing strategy between these two 
mixed states? 

ρ1 also arises from this 
orthogonal mixture: … as does ρ2 from:
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Distinguishing mixed states (2)Distinguishing mixed states (2)
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We’ve effectively found an orthonormal basis |φ0〉, |φ1〉 in 
which both density matrices are diagonal:

Rotating |φ0〉, |φ1〉 to |0〉, |1〉 the scenario can now 
be examined using classical probability theory:

Question: what do we do if we aren’t so lucky to get two 
density matrices that are simultaneously diagonalizable?

Distinguish between two classical coins, whose probabilities 
of “heads” are cos2(π/8) and ½ respectively (details: exercise)

|1〉
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General quantum 
operations
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General quantum operations (1)General quantum operations (1)

Example 1 (unitary op): applying  U to  ρ yields UρU†

Also known as: 
“quantum channels”
“completely positive trace preserving maps”,
“admissible operations”

Let A1, A2 , …, Am be matrices satisfying 

Then the mapping
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General quantum operations (2)General quantum operations (2)
Example 2 (decoherence): let A0 = |0〉〈0| and A1 = |1〉〈1|

This quantum op maps ρ to |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|

Corresponds to measuring ρ “without looking at the outcome”
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aFor |ψ〉 = α|0〉 + β|1〉,

After looking at the outcome, ρ becomes   |0〉〈0| with prob. |α|2
|1〉〈1| with prob. |β|2
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General quantum operations (3)General quantum operations (3)
Example 3 (discarding the second of two qubits):

Let A0 = I⊗〈0| and A1 = I⊗〈1|⎥
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Note 1: it’s the same density matrix as for ((½, |0〉), (½, |1〉))
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Note 2: the operation is called the partial trace Tr2 ρ



More about the partial traceMore about the partial trace
Two quantum registers                    in states σ and μ (resp.) are 
independent when the combined system is in state ρ = σ ⊗μ

If the 2nd register is discarded, state of the 1st register remains σ
In general, the state of a two-register system may not be of the 
form σ ⊗μ (it may contain entanglement or correlations)

The partial trace Tr2 ρ , can also be characterized as the 
unique linear operator satisfying the identity  Tr2(σ ⊗μ) = σ

For d-dimensional registers, Tr2  is defined with respect to the 
operators Ak = I⊗〈φk| , where |φ0〉, |φ1〉, …, |φd−1〉 can be any 
orthonormal basis

The partial trace Tr2 gives the effective state of the first register
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Partial trace continuedPartial trace continued
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For 2-qubit systems, the partial trace is explicitly
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General quantum operations (4)General quantum operations (4)
Example 4 (adding an extra qubit):

Just one operator A0 = I⊗|0〉
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States of the form  ρ become  ρ⊗|0〉〈0|

More generally, to add a register in state |φ〉, use the 
operator A0 = I⊗|φ〉
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POVM measurements
(POVM = Positive Operator Valued Measre)
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POVM measurements (1)POVM measurements (1)
Let A1, A2 , …, Am be matrices satisfying IAA j

m
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Corresponding POVM measurement is a stochastic operation 
on ρ that, with probability                     , produces outcome:

j (classical information)
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Tr
(the collapsed quantum state)

Example 1: Aj = |φj〉〈φj| (orthogonal projectors)

This reduces to our previously defined measurements …
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POVM measurements (2)POVM measurements (2)

Moreover, 
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When Aj = |φj〉〈φj| are orthogonal projectors and ρ = |ψ〉〈ψ|,

= Tr|φj〉〈φj|ψ〉〈ψ|φj〉〈φj|
= 〈φj|ψ〉〈ψ|φj〉〈φj|φj〉
= |〈φj|ψ〉|2
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POVM measurements (3)POVM measurements (3)
Example 3 (trine state “measurent”):

Let |ϕ0〉 = |0〉,  |ϕ1〉 = −1/2|0〉 + √3/2|1〉,  |ϕ2〉 = −1/2|0〉 − √3/2|1〉

Then IAAAAAA =++ 221100
ttt

If the input itself is an unknown trine state, |ϕk〉〈ϕk|, then the 
probability that classical outcome is k is 2/3 = 0.6666…
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POVM measurements (4)POVM measurements (4)

Simplified definition for POVM measurements:

Let E1, E2 , …, Em be positive definite and such that IE
m

j
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The probability of outcome j is ( ) ( )jjjj AAAA tt ρρ TrTr =

Often POVMs arise in contexts where we only care about the 
classical part of the outcome (not the residual quantum state)

The probability of outcome j is ( )jEρTr

This is usually the way POVM measurements are defined



““Mother of all operationsMother of all operations””
Let A1,1, A1,2 , …, A1,m1                      
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Then there is a quantum operation that, on input ρ, produces  

with probability                              the state:  
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