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Order-finding via
eigenvalue estimation
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OrderOrder--finding problemfinding problem
Let M be an m-bit integer

Def: ZM
* = {x ∈ {1,2,…, M−1} : gcd(x,M ) = 1} (a group)

Def: ordM (a) is the minimum r > 0 such that ar = 1 (mod M )

Order-finding problem: given a and M, find ordM (a)

Example: Z21
* = {1,2,4,5,8,10,11,13,16,17,19,20}

The powers of 10 are: 1, 10, 16, 13, 4, 19, 1, 10, 16, …
Therefore, ord21 (10) = 6 

Note: no classical polynomial-time algorithm is known 
for this problem
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OrderOrder--finding algorithm (1)finding algorithm (1)
Define: U (an operation on m qubits) as: U|y〉 = |ay mod M 〉
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OrderOrder--finding algorithm (2)finding algorithm (2)

U n qubits

2n qubits corresponds to the mapping: 
|x〉|y〉 |x〉|axy mod M〉

Moreover, this mapping can 
be implemented with roughly 
O(n2) gates

The phase estimation algorithm yields a 2n-bit estimate of 1/r
From this, a good estimate of r can be calculated by taking 
the reciprocal, and rounding off to the nearest integer

Problem: how do we construct state |ψ1〉 to begin with?

Exercise: why are 2n bits necessary and sufficient for this?
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Bypassing the need for Bypassing the need for ||ψψ11〉〉 (1)(1)
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Any one of these could be used in the previous procedure, 
to yield an estimate of k/r, from which r can be extracted

What if k is chosen randomly and kept secret? 

Can still uniquely 
determine k and r, 
provided they have 
no common factors 
(and O(log n) trials 
suffice for this)
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Bypassing the need for Bypassing the need for ||ψψ11〉〉 (2)(2)
Returning to the phase estimation problem, suppose that 
|ψ1〉 and |ψ2〉 have respective eigenvalues e2πiφ1 and e2πiφ2, 
and that α1|ψ1〉 + α2|ψ2〉 is used in place of an eigenvalue:

Uα1|ψ1〉+α2|ψ2〉

H
H
H

|0〉
|0〉
|0〉

F†
M

What will the outcome be?

It will be an estimate of    φ1 with probability |α1 |2

φ2 with probability |α2 |2
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Bypassing the need for Bypassing the need for ||ψψ11〉〉 (3)(3)
Using the state 
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Is it hard to construct the state                  ?∑
=
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k
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1 ψ

yields results equivalent to choosing a |ψk〉 at random

In fact, it’s easy, since 

This is how the previous requirement for |ψ1〉 is bypassed
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Quantum algorithm for orderQuantum algorithm for order--findingfinding

Ua,M

H
H
H

|0〉
|0〉
|0〉
|0〉
|0〉
|1〉

H
H −4

−4 −8H

measure these qubits and 
apply continued fractions* 
algorithm to determine a 
quotient, whose 
denominator divides r

Ua,M |y〉 = |ay mod M〉

inverse QFT

* For a discussion of the continued fractions algorithm, please see 
Appendix A4.4 in [Nielsen & Chuang]

Number of gates for a constant success probability is: 
O(n2 log n loglog n)
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Reduction from factoring
to order-finding
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The integer factorization problemThe integer factorization problem

Input: M (n-bit integer; we can assume it is composite)

Output: p, q (each greater than 1) such that pq = N

Note 2: given any efficient algorithm for the above, we can 
recursively apply it to fully factor M into primes* efficiently

* A polynomial-time classical algorithm for primality testing exists

Note 1: no efficient (polynomial-time) classical algorithm 
is known for this problem
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Factoring primeFactoring prime--powerspowers
There is a straightforward classical algorithm for factoring 
numbers of the form M = pk, for some prime p

What is this algorithm?

Therefore, the interesting remaining case is where M has 
at least two distinct prime factors
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Proposed quantum algorithm (repeatedly do):

1. randomly choose a ∈ {2, 3, …, M−1}
2. compute g = gcd(a,M)
3. if g > 1 then

output g, M/g
else

compute r = ordM(a)  (quantum part)
if r is even then

compute x = ar/2 −1 mod M
compute h = gcd(x,M)
if h > 1 then output h, M/h

Numbers other than primeNumbers other than prime--powerspowers

so M | (ar/2+1)(ar/2−1)

we have M | ar−1

thus, either M | ar/2 +1
or gcd(ar/2 +1,M)
is a nontrivial factor of M

latter event occurs with probability ≥ ½  

Analysis:
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Universal sets of gates
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A universal set of gates (1)A universal set of gates (1)
Main Theorem: any unitary operation U acting on k qubits
can be decomposed into O(4k) CNOT and one-qubit gates

Proof sketch (for a slightly worse bound of O(k24k)) :

We first show how to simulate a controlled-U, for any one-
qubit unitary U
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Straightforward to show: every one-qubit unitary matrix 
can be expressed as a product of the form
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A universal set of gates (2)A universal set of gates (2)

• A B C = I
• eiλ A X B X C = U, where

This can be used to show that, for every one-qubit unitary U, 
there exist  A, B, C, and λ, such that:
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Exercise: show 
how this follows
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A universal set of gates (3)A universal set of gates (3)
Controlled-U gates can also simulate controlled-controlled-V 
gates, for an arbitrary unitary one-qubit unitary V: 

UV U U†

≡ where V = U 2
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A universal set of gates (4)A universal set of gates (4)
Example: Toffoli gate
“controlled-controlled-NOT”

In this case, the one-qubit gates can be:
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A universal set of gates (5)A universal set of gates (5)
From the Toffoli gate, generalized Toffoli gates (which are 
controlled-controlled- ... -NOT gates) can be constructed:

≡

|a1〉
|a2〉
|a3〉

:
|ak〉
|b1〉

:

|c〉

|c ⊕ (a1 ∧ a2∧ ... ∧ ak)〉

|bk−2〉
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A universal set of gates (6)A universal set of gates (6)
From generalized Toffoli gates, generalized controlled-U
gates (controlled-controlled- ... -U) can be constructed:

U
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A universal set of gates (7)A universal set of gates (7)
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The approach essentially enables any k-qubit operation of the 
simple form

to be computed with O(k2) CNOT and one-qubit gates

In a spirit similar to Gaussian elimination, any 2k×2k unitary 
matrix can be decomposed into a product of O(4k) of these
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A universal set of gates (8)A universal set of gates (8)

Thus, the set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

This completes the proof sketch*

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)

∗ Actually we proved a slightly worse bound of O(k24k)
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ApproximatelyApproximately universal gate setsuniversal gate sets
Answer 2: yes, for universality in an approximate sense ...

To be continued ...
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Approximately universal 
sets of gates
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Universal gate setsUniversal gate sets
The set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)

Quantitatively, any unitary operation U acting on k qubits
can be decomposed into O(4k) CNOT and one-qubit gates
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ApproximatelyApproximately universal gate setsuniversal gate sets
Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated 
within any precision by repeatedly applying 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

)()(
)()(

πcosπsin
πsinπcos

22

22
R

some number of times

In this sense, R is approximately universal for the set of 
all one-qubit rotations: any rotation S can be approximated 
within precision ε by applying R a suitable number of times

It turns out that O((1/ε)c) times suffices (for a constant c)
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ApproximatelyApproximately universal gate setsuniversal gate sets

Theorem 2: the gates  CNOT,  H,  and ⎥
⎦

⎤
⎢
⎣

⎡
= 4π0

01
/ie

T
are approximately universal, in that any 
unitary operation on k qubits can be 

simulated within precision ε by applying 

O(4klogc(1/ε)) of them (c is a constant)

[Solovay, 1996][Kitaev, 1997]

In three or more dimensions, the rate of convergence with 
respect to ε can be exponentially faster
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Complexity classes
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Complexity classesComplexity classes

• P (polynomial time): problems solved by O(nc)-size 
classical circuits (decision problems and uniform circuit 
families)

• BPP (bounded error probabilistic polynomial time):
problems solved by O(nc)-size probabilistic circuits that 
err with probability ≤ ¼

• BQP (bounded error quantum polynomial time):
problems solved by O(nc)-size quantum circuits that err 
with probability ≤ ¼

• PSPACE (polynomial space): problems solved by 
algorithms that use O(nc) memory.

Recall:
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Summary of previous containmentsSummary of previous containments
P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP

P
BPP

BQP

PSPACE

EXP
We now consider further 
structure between P and 
PSPACE

Technically, we will restrict 
our attention to languages
(i.e. {0,1}-valued problems)

Many problems of interest can 
be cast in terms of languages 
For example, we could define
FACTORING = {(x,y) : ∃2≤ z ≤y, such that z divides x}
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NPNP
Define NP (non-deterministic polynomial time) as 
the class of languages whose positive instances have 
“witnesses” that can be verified in polynomial time

( ) ( ) ( ) ( )nn xxxxxxxxxx,...,xf ∨∨∧∧∨∨∧∨∨= 515324311 L

( )nx,...,xf 1

Example: Let 3-CNF-SAT be the language consisting of all 
3-CNF formulas that are satisfiable

{ }101 ,b,...,b n ∈
( ) 11 =nb,...,bf

is satisfiable iff there exists                             
such that 

But poly-time verifiable witnesses exist (namely, b1, ..., bn)

3-CNF formula:

No sub-exponential-time algorithm is known for 3-CNF-SAT
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Other “logic” problems in NPOther “logic” problems in NP
• k-DNF-SAT:

• CIRCUIT-SAT:

( ) ( ) ( ) ( )nn xxxxxxxxxx,...,xf ∧∧∨∨∧∧∨∧∧= 515324311 L
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0
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Λ

Λ

Λ

Λ

Λ

Λ

¬

output
bit

∗ But, unlike with k-CNF-SAT, this one is known to be in P

∗ All known 
algorithms 
exponential-
time
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““Graph theory” problems in NPGraph theory” problems in NP

• k-COLOR: does G have a k-coloring?
• k-CLIQUE: does G have a clique of size k?
• HAM-PATH: does G have a Hamiltonian path?
• EUL-PATH: does G have an Eulerian path? 
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““Arithmetic” problems in NPArithmetic” problems in NP
• FACTORING = {(x, y) : ∃2≤ z ≤y, such that z divides x}

• SUBSET-SUM: given integers x1, x2 , ..., xn, y, do there exist 
i1, i2 , ..., ik ∈{1, 2,... , n} such that xi1+ xi2 + ... + xik = y?

• INTEGER-LINEAR-PROGRAMMING: linear programming 
where one seeks an integer-valued solution (its existence)
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P vs. NPP vs. NP

If a polynomial-time algorithm is discovered for 3-CNF-SAT
then a polynomial-time algorithm for 3-COLOR easily follows

All of the aforementioned problems have the property that 
they reduce to 3-CNF-SAT, in the sense that a polynomial-
time algorithm for 3-CNF-SAT can be converted into a poly-
time algorithm for the problem

algorithm for 
3-CNF-SAT

algorithm for 3-COLORExample:

In fact, this holds for any problem X ∈ NP, hence 3-CNF-SAT 
is NP-hard ... 
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P vs. NPP vs. NP

If a polynomial-time algorithm is discovered for 3-CNF-SAT
then a polynomial-time algorithm for 3-COLOR easily follows

All of the aforementioned problems have the property that 
they reduce to 3-CNF-SAT, in the sense that a polynomial-
time algorithm for 3-CNF-SAT can be converted into a poly-
time algorithm for the problem

algorithm for 
3-CNF-SAT

algorithm for XExample:

In fact, this holds for any problem X ∈ NP, hence 3-CNF-SAT 
is NP-hard ... Also NP-hard: CIRCUIT-SAT, k-COLOR, ... 
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FACTORING vs. NPFACTORING vs. NP

3-CNF-SAT

FACTORING

P

NP

PSPACE

co-NP

Is FACTORING NP-hard too?

But FACTORING has 
not been shown to be 
NP-hard

Moreover, there is “evidence” 
that it is not NP-hard:
FACTORING ∈ NP∩co-NP

If so, then every problem in 
NP is solvable by a poly-time 
quantum algorithm!

If FACTORING is NP-hard then NP = co-NP
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FACTORING vs.FACTORING vs. co-NPNP

P

NP

PSPACE

co-NP

FACTORING

FACTORING = {(x, y) : ∃2≤ z ≤y, s.t. z divides x}

Question: what is a 
good witness for the 
negative instances?

co-NP: languages whose negative
instances have “witnesses” that can 
be verified in poly-time

Answer: the prime factorization 
p1, p2 , ..., pm of x will work

Can verify primality and compare 
p1, p2 , ..., pm with y, all in poly-time 
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More state distinguishing 
problems
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More state distinguishing problemsMore state distinguishing problems
Which of these states are distinguishable? Divide them into 
equivalence classes:

1.   |0〉 + |1〉

2. −|0〉 − |1〉

3.   |0〉 with prob. ½
|1〉 with prob. ½

4.   |0〉 + |1〉 with prob. ½
|0〉 − |1〉 with prob. ½

5.   |0〉 with prob. ½
|0〉 + |1〉 with prob. ½

6.   |0〉 with prob. ¼
|1〉 with prob. ¼
|0〉 + |1〉 with prob. ¼
|0〉 − |1〉 with prob. ¼

7. The first qubit of |01〉 − |10〉

This is a probabilistic mixed state
Answers later on ...



44

Density matrix formalism
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Density matrices (1)Density matrices (1)
Until now, we’ve represented quantum states as vectors
(e.g. |ψ〉, and all such states are called pure states)

An alternative way of representing quantum states is in terms 
of density matrices (a.k.a. density operators)

The density matrix of a pure state |ψ〉 is the matrix ρ = |ψ〉〈ψ|

Example: the density matrix of α|0〉 + β|1〉 is 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

∗

∗
∗∗

2

2

ββα
αβα

βα
β
α

ρ
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Density matrices (2)Density matrices (2)

Effect of a unitary operation on a density matrix: 
applying  U to  ρ yields UρU†

Effect of a measurement on a density matrix: 
measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,
yields the k th outcome with probability 〈ϕk|ρ|ϕk〉

How do quantum operations work using density matrices?

(this is because the modified state is U|ψ〉〈ψ|U† )

(this is because 〈ϕk|ρ|ϕk〉 = 〈ϕk|ψ〉〈ψ|ϕk〉 = |〈ϕk|ψ〉|2 )
—and the state collapses to |ϕk〉〈ϕk|
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Density matrices (3)Density matrices (3)
A probability distribution on pure states is called a mixed state:
( (|ψ1〉, p1), (|ψ2〉, p2), …, (|ψd〉, pd))
The density matrix associated with such a mixed state is:

∑
=

=
d

k
kkkp

1
ψψρ

Example: the density matrix for ((|0〉, ½ ), (|1〉, ½ )) is: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
10
01

2
1

10
00

2
1

00
01

2
1

Question: what is the density matrix of
((|0〉 + |1〉, ½ ), (|0〉 − |1〉, ½ )) ?
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Density matrices (4)Density matrices (4)

Effect of a unitary operation on a density matrix: 
applying  U to  ρ still yields UρU†

How do quantum operations work for these mixed states?

This is because the modified state is:
tt

d

k
kkk

t
d

k
kkk UUUpUUUp ρψψψψ

11

=⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑

==

Effect of a measurement on a density matrix: 
measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,
still yields the k th outcome with probability 〈ϕk|ρ|ϕk〉

Why?
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Recap: density matricesRecap: density matrices

• Applying  U to  ρ yields UρU†

• Measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,
yields: k th outcome with probability 〈ϕk|ρ|ϕk〉
—and causes the state to collapse to |ϕk〉〈ϕk|

Quantum operations in terms of density matrices:

Since these are expressible in terms of density matrices alone 
(independent of any specific probabilistic mixtures), states with 
identical density matrices are operationally indistinguishable
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Return to state distinguishing 
problems …
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State distinguishing problems (1)State distinguishing problems (1)
The density matrix of the mixed state
((|ψ1〉, p1), (|ψ2〉, p2), …,(|ψd〉, pd)) is: ∑

=

=
d

k
kkk ψψpρ

1

1. & 2. |0〉 + |1〉 and −|0〉 − |1〉 both have

3.   |0〉 with prob. ½
|1〉 with prob. ½

4.   |0〉 + |1〉 with prob. ½
|0〉 − |1〉 with prob. ½

6.   |0〉 with prob. ¼
|1〉 with prob. ¼
|0〉 + |1〉 with prob. ¼
|0〉 − |1〉 with prob. ¼

Examples (from beginning of lecture):

⎥
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⎤
⎢
⎣

⎡
=

11
11

2
1ρ

⎥
⎦

⎤
⎢
⎣

⎡
=
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01

2
1ρ
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State distinguishing problems (2)State distinguishing problems (2)

5.   |0〉 with prob. ½
|0〉 + |1〉 with prob. ½

7. The first qubit of |01〉 − |10〉

Examples (continued):

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

4/12/1
2/14/3

2/12/1
2/12/1

2
1

00
01

2
1ρhas:

...? (later)
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Characterizing density matricesCharacterizing density matrices
Three properties of ρ :
• Trρ = 1 (TrM = M11 + M22 + ... + Mdd )
• ρ =ρ† (i.e. ρ is Hermitian)
• 〈ϕ|ρ|ϕ〉 ≥ 0, for all states |ϕ〉

∑
=

=
d

k
kkk ψψpρ

1

Moreover, for any matrix ρ satisfying the above properties, 
there exists a probabilistic mixture whose density matrix is ρ

Exercise: show this
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Taxonomy of various 
normal matrices
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Normal matricesNormal matrices
Definition: A matrix M is normal if M†M = MM†

Theorem: M is normal iff there exists a unitary U such that 
M = U†DU, where D is diagonal (i.e. unitarily diagonalizable)

Examples of abnormal matrices: 

⎥
⎦

⎤
⎢
⎣

⎡
10
11 is not even 

diagonalizable ⎥
⎦

⎤
⎢
⎣

⎡
20
11 is diagonalizable, 

but not unitarily

eigenvectors:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

dλ

λ
λ

D

L

MOMM

L

L

00

00
00

2

1
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Unitary and Unitary and HermitianHermitian matricesmatrices

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

dλ

λ
λ

M

L

MOMM

L

L

00

00
00

2

1 with respect to some 
orthonormal basis

Normal:

Unitary: M†M = I which implies |λk |2 = 1, for all k

Hermitian: M = M† which implies λk ∈ R, for all k

Question: which matrices are both unitary and Hermitian?

Answer: reflections (λk ∈ {+1,−1}, for all k)
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Positive Positive semidefinitesemidefinite
Positive semidefinite: Hermitian and λk ≥ 0, for all k

Theorem: M is positive semidefinite iff M is Hermitian and, 
for all |ϕ〉, 〈ϕ|M |ϕ〉 ≥ 0

(Positive definite: λk > 0, for all k)
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Projectors and density matricesProjectors and density matrices
Projector: Hermitian and M2 = M, which implies that M is 
positive semidefinite and λk ∈ {0,1}, for all k

Density matrix: positive semidefinite and Tr M =1, so 1
1

=∑
=

d

k
kλ

Question: which matrices are both projectors and density 
matrices?

Answer: rank-1 projectors (λk = 1 if k = j; otherwise λk = 0)
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Taxonomy of normal matricesTaxonomy of normal matrices
normal

unitary Hermitian

reflection
positive 

semidefinite

projector density
matrix

rank one
projector
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Bloch sphere for qubits
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Bloch sphere for Bloch sphere for qubitsqubits (1)(1)
Consider the set of all 2x2 density matrices ρ

Note that the coefficient of  I is ½, since X, Y, Y are traceless

They have a nice representation in terms of the Pauli matrices:

⎥
⎦

⎤
⎢
⎣

⎡
==

01
10

σ Xx ⎥
⎦

⎤
⎢
⎣

⎡ −
==

0
0

σ
i

i
Yy⎥

⎦

⎤
⎢
⎣

⎡
−

==
10
01

σ Zz

Note that these matrices—combined with I—form a basis for 
the vector space of all 2x2 matrices

We will express density matrices  ρ in this basis
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Bloch sphere for Bloch sphere for qubitsqubits (2)(2)

2
ZcYcXcI

ρ zyx +++
=We will express

First consider the case of pure states |ψ〉〈ψ|, where, without 
loss of generality,  |ψ〉 = cos(θ)|0〉 + e2iφsin(θ)|1〉 (θ, φ ∈ R)

( ) ( )
( ) ( ) ⎥⎦

⎤
⎢
⎣

⎡

−
+

=⎥
⎦

⎤
⎢
⎣

⎡
=

−−

θθe
θeθ

θθθe
θθeθ

ρ
φi

φi

φi

φi

2cos12sin
2sin2cos1

2
1

sinsincos
sincoscos

2

2

22

22

Therefore cz = cos(2θ), cx = cos(2φ)sin(2θ), cy = sin(2φ)sin(2θ)

These are polar coordinates of a unit vector (cx , cy , cz) ∈ R3



64

Bloch sphere for Bloch sphere for qubitsqubits (3)(3)

|+〉

|0〉

|1〉

|–〉

|+i〉

–|i〉
|+i〉 = |0〉 + i|1〉
|–i〉 = |0〉 – i|1〉

|–〉 = |0〉 – |1〉
|+〉 = |0〉 +|1〉

Pure states are on the surface, and mixed states are inside 
(being weighted averages of pure states)

Note that orthogonal corresponds to antipodal here



65

Basic properties of the trace
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Basic properties of the traceBasic properties of the trace
∑
=

=
d

k
k,kMM

1
Tr

( ) NMNM TrTrTr +=+

( ) NMNM TrTrTr ≠

( ) ( )MNNM TrTr =

( ) adcbdcba =Tr

( ) ( ) ∑
=

− ==
d

k
kMUUM

1

1 λTrTr

The trace of a square matrix is defined as

It is easy to check that 

The second property implies 

and

Calculation maneuvers worth remembering are:

( ) aMMa bb =Tr and

Also, keep in mind that, in general, 
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PartialPartial trace (1)trace (1)

In such circumstances, if the second register (say) is discarded
then the state of the first register remains σ
In general, the state of a two-register system may not be of the 
form σ ⊗μ (it may contain entanglement or correlations)

Two quantum registers (e.g. two qubits) in states σ and μ
(respectively) are independent if then the combined system 
is in state ρ = σ ⊗μ

We can define the partial trace, Tr2 ρ , as the unique linear 
operator satisfying the identity Tr2(σ ⊗μ) = σ
For example, it turns out that

( ) ( )11001100
2

1
2

1
2

1
2

1 +⊗+ ⎥
⎦

⎤
⎢
⎣

⎡
10
01

2
1Tr2( ) =

index means 
2nd system 
traced out
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Partial trace (2)Partial trace (2)
Example: discarding the second of two qubits

Let A0 = I⊗〈0| and A1 = I⊗〈1|⎥
⎦

⎤
⎢
⎣

⎡
=

0100
0001

⎥
⎦

⎤
⎢
⎣

⎡
=

1000
0010

For the resulting quantum operation, state σ ⊗μ becomes σ

For d-dimensional registers, the operators are Ak = I⊗〈φk| , 
where |φ0〉, |φ1〉, …, |φd−1〉 are an orthonormal basis
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Partial trace (3)Partial trace (3)

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1111101001110010

1101100001010000

1111101101110011

1110101001100010

1101100101010001

1100100001000000

2Tr
,,,,

,,,,

,,,,

,,,,

,,,,

,,,,

ρρρρ
ρρρρ

ρρρρ
ρρρρ
ρρρρ
ρρρρ

For 2-qubit systems, the partial trace is explicitly

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1111010110110001

1110010010100000

1111101101110011

1110101001100010

1101100101010001

1100100001000000

1Tr
,,,,

,,,,

,,,,

,,,,

,,,,

,,,,

ρρρρ
ρρρρ

ρρρρ
ρρρρ
ρρρρ
ρρρρ

and
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POVMs
(Positive Operator Valued Measurements)
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POVMsPOVMs (1)(1)
Positive operator valued measurement (POVM):

Let A1, A2 , …, Am be matrices satisfying IAA j

m

j
j =∑

=1

t

Then the corresponding POVM is a stochastic operation on ρ
that, with probability                       produces the outcome:

j (classical information)

( )tjj AρATr

( )t
t

jj

jj

AρA
AρA

Tr
(the collapsed quantum state)

Example 1: Aj = |φj〉〈φj| (orthogonal projectors)

This reduces to our previously defined measurements …
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POVMsPOVMs (2)(2)

Moreover, 

( )tjj AρATr

( ) jj

j

jjjj

jj

jj φφ
ψφ

φφψψφφ
AρA

AρA
== 2Tr t

t

When Aj = |φj〉〈φj| are orthogonal projectors and ρ = |ψ〉〈ψ|,

= Tr|φj〉〈φj|ψ〉〈ψ|φj〉〈φj|
= 〈φj|ψ〉〈ψ|φj〉〈φj|φj〉
= |〈φj|ψ〉|2
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POVMsPOVMs (3)(3)
Example 3 (trine state “measurent”):

Let |ϕ0〉 = |0〉,  |ϕ1〉 = −1/2|0〉 + √3/2|1〉,  |ϕ2〉 = −1/2|0〉 − √3/2|1〉

Then IAAAAAA =++ 221100
ttt

If the input itself is an unknown trine state, |ϕk〉〈ϕk|, then the 
probability that classical outcome is k is 2/3 = 0.6666…

⎥
⎦

⎤
⎢
⎣

⎡
=

00
01

3
2

Define A0 =√2/3|ϕ0〉〈ϕ0|

A1=√2/3|ϕ1〉〈ϕ1| A2=√2/3|ϕ2〉〈ϕ2|⎥
⎦

⎤
⎢
⎣

⎡

+
+

=
62
232

4
1

⎥
⎦

⎤
⎢
⎣

⎡

−
−

=
62
232

4
1



74

General quantum 
operations
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General quantum operations (1)General quantum operations (1)

Example 1 (unitary op): applying  U to  ρ yields UρU†

General quantum operations (a.k.a. “completely positive 
trace preserving maps”, “admissible operations” ): 

Let A1, A2 , …, Am be matrices satisfying IAA j

m

j
j =∑

=1

t

Then the mapping ∑
=

m

j
jj AA

1

tρρ a is a general quantum op



76

General quantum operations (2)General quantum operations (2)
Example 2 (decoherence): let A0 = |0〉〈0| and A1 = |1〉〈1|

This quantum op maps ρ to |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|

Corresponds to measuring ρ “without looking at the outcome”

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∗

∗

2

2

2

2

0
0
β

α
ββα
αβα

aFor |ψ〉 = α|0〉 + β|1〉,

After looking at the outcome, ρ becomes   |0〉〈0| with prob. |α|2
|1〉〈1| with prob. |β|2
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General quantum operations (3)General quantum operations (3)
Example 4 (discarding the second of two qubits):

Let A0 = I⊗〈0| and A1 = I⊗〈1|⎥
⎦

⎤
⎢
⎣

⎡
=

0100
0001

⎥
⎦

⎤
⎢
⎣

⎡
=

1000
0010

State  ρ⊗σ becomes  ρ

State becomes( ) ( )11001100
2

1
2

1
2

1
2

1 +⊗+

Note 1: it’s the same density matrix as for ((½, |0〉), (½, |1〉))

⎥
⎦

⎤
⎢
⎣

⎡
10
01

2
1

Note 2: the operation is the partial trace Tr2 ρ
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Distinguishing mixed states
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Distinguishing mixed states (1)Distinguishing mixed states (1)

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

2
1

2ρ

|0〉 with prob. ½
|0〉 + |1〉 with prob. ½

|0〉 with prob. ½
|1〉 with prob. ½

⎥
⎦

⎤
⎢
⎣

⎡
=

4121
2143

1 //
//

ρ

|φ0〉 with prob. cos2(π/8)
|φ1〉 with prob. sin2(π/8)

|0〉

|+〉

|φ0〉

|φ1〉

|φ0〉 with prob. ½
|φ1〉 with prob. ½

What’s the best distinguishing strategy between these two 
mixed states? 

ρ1 also arises from this 
orthogonal mixture: … as does ρ2 from:
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Distinguishing mixed states (2)Distinguishing mixed states (2)

( )
( )⎥⎦

⎤
⎢
⎣

⎡
=′

8πsin0
08πcos

2

2

2 /
/

ρ

|0〉

|+〉

|φ0〉

|φ1〉

⎥
⎦

⎤
⎢
⎣

⎡
=′

10
01

2
1

1ρ

We’ve effectively found an orthonormal basis |φ0〉, |φ1〉 in 
which both density matrices are diagonal:

Rotating |φ0〉, |φ1〉 to |0〉, |1〉 the scenario can now 
be examined using classical probability theory:

Question: what do we do if we aren’t so lucky to get two 
density matrices that are simultaneously diagonalizable?

Distinguish between two classical coins, whose probabilities 
of “heads” are cos2(π/8) and ½ respectively (details: exercise)

|1〉
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Simulations among operations
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Simulations among operations (1)Simulations among operations (1)
Fact 1: any general quantum operation can be simulated 
by applying a unitary operation on a larger quantum system:

U|0〉
|0〉
|0〉

ρ σ

Example: decoherence

|0〉

α|0〉 + β|1〉
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 2

2

0
0
β

α
ρ

output

discard

input
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Simulations among operations (2)Simulations among operations (2)
Fact 2: any POVM can also be simulated by applying a unitary 
operation on a larger quantum system and then measuring:

U|0〉
|0〉
|0〉

ρ σ quantum outputinput

classical outputj
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Separable states
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Separable statesSeparable states

∑
=

⊗=
m

j
jjjp

1
ξσρ

• product state if  ρ = σ⊗ξ

• separable state if

A bipartite (i.e. two register) state ρ is a:

Question: which of the following states are separable?

( )( ) ( )( )1100110011001100 2
1

2
1

2 −−+++=ρ

(i.e. a probabilistic mixture 
of product states)

( p1 ,…, pm ≥ 0)

( )( )110011002
1

1 ++=ρ
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