Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 10 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

Order-finding via eigenvalue estimation

Order-finding problem

Let M be an m-bit integer

Def: $Z_M^* = \{x \in \{1, 2, ..., M-1\} : gcd(x, M) = 1\}$ (a group)

Def: $\operatorname{ord}_{M}(a)$ is the minimum r > 0 such that $a^{r} = 1 \pmod{M}$

Order-finding problem: given a and M, find $\operatorname{ord}_{M}(a)$

Example: $\mathbf{Z}_{21}^{*} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$

The powers of 10 are: 1, 10, 16, 13, 4, 19, 1, 10, 16, ...

Therefore, $ord_{21}(10) = 6$

Note: no *classical* polynomial-time algorithm is known for this problem

Order-finding algorithm (1)

Define: U (an operation on m qubits) as: $U|y\rangle = |ay \mod M\rangle$

Define:
$$|\psi_1\rangle = \sum_{j=0}^{r-1} e^{-2\pi i (1/r)j} |a^j \mod M\rangle$$

Then
$$U|\psi_1\rangle = \sum_{j=0}^{r-1} e^{-2\pi i (1/r)j} |a^{j+1} \mod M\rangle$$

$$= \sum_{j=0}^{r-1} e^{2\pi i (1/r)} e^{-2\pi i (1/r)(j+1)} |a^{j+1} \mod M\rangle$$
$$= e^{2\pi i (1/r)} |\psi_1\rangle$$

Order-finding algorithm (2)

corresponds to the mapping: $|x\rangle|y\rangle \rightarrow |x\rangle|a^xy \mod M\rangle$

Moreover, this mapping can be implemented with roughly $O(n^2)$ gates

The phase estimation algorithm yields a 2n-bit estimate of 1/r

From this, a good estimate of r can be calculated by taking the reciprocal, and rounding off to the nearest integer

Exercise: why are 2*n* bits necessary and sufficient for this?

Problem: how do we construct state $|\psi_1\rangle$ to begin with?

Bypassing the need for $|\psi_1\rangle$ (1)

 $\left|\psi_{1}\right\rangle = \sum_{i=0}^{r-1} e^{-2\pi i (1/r)j} \left|a^{j} \operatorname{mod} M\right\rangle$ Let $\left|\psi_{2}\right\rangle = \sum_{i=0}^{r-1} e^{-2\pi i (2/r)j} \left|a^{j} \operatorname{mod} M\right\rangle$ $\left|\psi_{k}\right\rangle = \sum_{j=0}^{r-1} e^{-2\pi i (k/r)j} \left|a^{j} \mod M\right\rangle$ $\left|\psi_{r}\right\rangle = \sum_{j=0}^{r-1} e^{-2\pi i (r/r)j} \left|a^{j} \mod M\right\rangle$

Can still uniquely determine k and r, provided they have no common factors (and $O(\log n)$ trials suffice for this)

Any one of these could be used in the previous procedure, to yield an estimate of k/r, from which r can be extracted What if k is chosen randomly and kept secret?

Bypassing the need for $|\psi_1\rangle$ (2)

Returning to the phase estimation problem, suppose that $|\psi_1\rangle$ and $|\psi_2\rangle$ have respective eigenvalues $e^{2\pi i \phi_1}$ and $e^{2\pi i \phi_2}$, and that $\alpha_1 |\psi_1\rangle + \alpha_2 |\psi_2\rangle$ is used in place of an eigenvalue:

What will the outcome be?

It will be an estimate of $\begin{cases} \phi_1 \text{ with probability } |\alpha_1|^2 \\ \phi_2 \text{ with probability } |\alpha_2|^2 \end{cases}$

Bypassing the need for $|\psi_1\rangle$ (3)

Using the state

yields results equivalent to choosing a $|\psi_k\rangle$ at random

Is it hard to construct the state $\frac{1}{\sqrt{r}}\sum_{k=1}^{r} |\psi_k\rangle$?

In fact, it's easy, since

$$\frac{1}{\sqrt{r}} \sum_{k=1}^{r} |\psi_{k}\rangle = \frac{1}{\sqrt{r}} \sum_{k=1}^{r} \sum_{j=0}^{r-1} e^{-2\pi i (k/r)j} |a^{j} \mod M\rangle = |1\rangle$$

This is how the previous requirement for $|\psi_1\rangle$ is bypassed

Quantum algorithm for order-finding

measure these qubits and apply continued fractions* algorithm to determine a quotient, whose denominator divides *r*

 $U_{a,M}|y\rangle = |ay \mod M\rangle$

Number of gates for a constant success probability is: $O(n^2 \log n \log \log n)$

* For a discussion of the *continued fractions algorithm*, please see Appendix A4.4 in [Nielsen & Chuang]

Reduction from factoring to order-finding

The integer factorization problem

Input: *M* (*n*-bit integer; we can assume it is composite)

Output: *p*, *q* (each greater than 1) such that pq = N

Note 1: no efficient (polynomial-time) classical algorithm is known for this problem

Note 2: given any efficient algorithm for the above, we can recursively apply it to fully factor *M* into primes* efficiently

* A polynomial-time *classical* algorithm for *primality testing* exists

Factoring prime-powers

There is a straightforward *classical* algorithm for factoring numbers of the form $M = p^k$, for some prime p

What is this algorithm?

Therefore, the interesting remaining case is where *M* has at least two distinct prime factors

Numbers other than prime-powers

Proposed quantum algorithm (repeatedly do):

- 1. randomly choose $a \in \{2, 3, ..., M-1\}$
- 2. compute g = gcd(a, M)
- 3. <u>if</u> *g* > 1 <u>then</u>

```
output g, M/g
```

<u>else</u>

compute $r = \operatorname{ord}_{M}(a)$ (quantum part)

 $\underline{if} r$ is even \underline{then}

compute $x = a^{r/2} - 1 \mod M$ compute $h = \gcd(x, M)$ <u>if</u> h > 1 <u>then</u> output h, M/h Analysis:

we have $M \mid a^r - 1$

so $M|(a^{r/2}+1)(a^{r/2}-1)|$

thus, either $M | a^{r/2} + 1$ or $gcd(a^{r/2} + 1, M)$ is a nontrivial factor of M

latter event occurs with probability $\geq \frac{1}{2}$ 13

Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 11 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

Universal sets of gates

A universal set of gates (1)

Main Theorem: any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

Proof sketch (for a slightly worse bound of $O(k^24^k)$):

We first show how to simulate a controlled-U, for any one-qubit unitary U

Straightforward to show: every one-qubit unitary matrix can be expressed as a product of the form

$$\begin{bmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{bmatrix} \begin{bmatrix} e^{i\alpha/2} & 0 \\ 0 & e^{-i\alpha/2} \end{bmatrix} \begin{bmatrix} \cos(\theta/2) & \sin(\theta/2) \\ -\sin(\theta/2) & \cos(\theta/2) \end{bmatrix} \begin{bmatrix} e^{i\beta/2} & 0 \\ 0 & e^{-i\beta/2} \end{bmatrix}$$

A universal set of gates (2)

This can be used to show that, for every one-qubit unitary $U_{,}$ there exist A, B, C, and λ , such that:

• A B C = I• $e^{i\lambda}AXBXC = U$, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ **Exercise:** show how this follows

The fact implies that

A universal set of gates (3)

Controlled-U gates can also simulate <u>controlled-controlled-V</u> gates, for an arbitrary unitary one-qubit unitary V:

A universal set of gates (4)

Example: Toffoli gate "controlled-controlled-NOT"

In this case, the one-qubit gates can be:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \qquad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

A universal set of gates (5)

From the Toffoli gate, *generalized* Toffoli gates (which are controlled-controlled-...-NOT gates) can be constructed:

A universal set of gates (6)

From generalized Toffoli gates, *generalized controlled-U* gates (controlled-controlled- ... -U) can be constructed:

(1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	U_{00}	U_{01}
$\left(0 \right)$	0	0	0	0	0	U_{10}	U_{11}

A universal set of gates (7)

$\left(1 \right)$	0	0	0	0	0	0	0)
0	U_{00}	0	0	U_{01}	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
	TT	Δ	Δ	TI	Δ	Δ	
	U_{10}	U	U	U_{11}	U	U	U
0	U_{10}	0	0	0_{11}	0 1	0	0
000000000000000000000000000000000000000	U_{10} 0 0	0 0 0	0 0 0	U_{11} 0 0	1 0	0 0 1	0 0 0

to be computed with $O(k^2)$ CNOT and one-qubit gates

In a spirit similar to Gaussian elimination, any $2^k \times 2^k$ unitary matrix can be decomposed into a product of $O(4^k)$ of these

A universal set of gates (8)

This completes the proof sketch*

Thus, the set of *all* one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

* Actually we proved a slightly worse bound of $O(k^24^k)$

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense ...

To be continued ...

Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 12 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

Approximately universal sets of gates

Universal gate sets

The set of all one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Quantitatively, any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated within any precision by repeatedly applying

In this sense, R is **approximately universal** for the set of all one-qubit rotations: any rotation S can be approximated within precision ε by applying R a suitable number of times

It turns out that $O((1/\epsilon)^c)$ times suffices (for a constant c)

Approximately universal gate sets

In three or more dimensions, the rate of convergence with respect to ϵ can be exponentially faster

Theorem 2: the gates CNOT, *H*, and $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$ are *approximately universal*, in that any unitary operation on *k* qubits can be simulated within precision ε by applying $O(4^k \log^c(1/\varepsilon))$ of them (*c* is a constant)

[Solovay, 1996][Kitaev, 1997]

Complexity classes

Complexity classes

Recall:

- P (polynomial time): problems solved by O(n^c)-size classical circuits (decision problems and uniform circuit families)
- BPP (bounded error probabilistic polynomial time): problems solved by O(n^c)-size probabilistic circuits that err with probability ≤ ¼
- BQP (bounded error quantum polynomial time): problems solved by O(n^c)-size quantum circuits that err with probability ≤ ¼
- **PSPACE (polynomial space):** problems solved by algorithms that use $O(n^c)$ memory.

Summary of previous containments

$\mathsf{P} \subseteq \mathsf{B}\mathsf{P}\mathsf{P} \subseteq \mathsf{B}\mathsf{Q}\mathsf{P} \subseteq \mathsf{P}\mathsf{S}\mathsf{P}\mathsf{A}\mathsf{C}\mathsf{E} \subseteq \mathsf{E}\mathsf{X}\mathsf{P}$

We now consider further structure between **P** and **PSPACE**

Technically, we will restrict our attention to *languages* (i.e. {0,1}-valued problems)

Many problems of interest can be cast in terms of languages

For example, we could define **FACTORING** = $\{(x,y) : \exists 2 \le z \le y, \text{ such that } z \text{ divides } x\}$

NP

Define **NP (non-deterministic polynomial time)** as the class of languages whose **positive** instances have "witnesses" that can be verified in polynomial time

Example: Let **3-CNF-SAT** be the language consisting of all **3-CNF** formulas that are satisfiable

3-CNF formula:

 $f(x_1,...,x_n) = (x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land \cdots \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n)$ $f(x_1,...,x_n) \text{ is } \textbf{satisfiable} \text{ iff there exists } b_1,...,b_n \in \{0,1\}$ such that $f(b_1,...,b_n) = 1$

No sub-exponential-time algorithm is known for **3-CNF-SAT** But poly-time verifiable witnesses exist (namely, $b_1, ..., b_n$) 33

Other "logic" problems in NP

• *k*-**DNF-SAT**:

 $f(x_1,\ldots,x_n) = (x_1 \wedge \overline{x}_3 \wedge x_4) \vee (\overline{x}_2 \wedge x_3 \wedge \overline{x}_5) \vee \cdots \vee (\overline{x}_1 \wedge x_5 \wedge \overline{x}_n)$

* But, unlike with *k*-CNF-SAT, this one is known to be in P

· CIRCUIT-SAT:

"Graph theory" problems in NP

- *k*-COLOR: does *G* have a *k*-coloring?
- k-CLIQUE: does G have a clique of size k?
- **HAM-PATH**: does *G* have a *Hamiltonian path*?
- EUL-PATH: does G have an Eulerian path?

"Arithmetic" problems in NP

- **FACTORING** = $\{(x, y) : \exists 2 \le z \le y, \text{ such that } z \text{ divides } x\}$
- **SUBSET-SUM**: given integers $x_1, x_2, ..., x_n, y$, do there exist $i_1, i_2, ..., i_k \in \{1, 2, ..., n\}$ such that $x_{i_1} + x_{i_2} + ... + x_{i_k} = y$?
- INTEGER-LINEAR-PROGRAMMING: linear programming where one seeks an *integer-valued* solution (its existence)
P vs. NP

All of the aforementioned problems have the property that they **reduce** to **3-CNF-SAT**, in the sense that a polynomialtime algorithm for **3-CNF-SAT** can be converted into a polytime algorithm for the problem

If a polynomial-time algorithm is discovered for **3-CNF-SAT** then a polynomial-time algorithm for **3-COLOR** easily follows

In fact, this holds for *any* problem $X \in NP$, hence 3-CNF-SAT is *NP-hard* ...

P vs. NP

All of the aforementioned problems have the property that they **reduce** to **3-CNF-SAT**, in the sense that a polynomialtime algorithm for **3-CNF-SAT** can be converted into a polytime algorithm for the problem

If a polynomial-time algorithm is discovered for **3-CNF-SAT** then a polynomial-time algorithm for **3-COLOR** easily follows

In fact, this holds for *any* problem $X \in NP$, hence 3-CNF-SAT is *NP-hard* ... Also NP-hard: CIRCUIT-SAT, *k*-COLOR, ... ₃₈

FACTORING vs. NP

Is FACTORING NP-hard too?

If so, then *every* problem in **NP** is solvable by a poly-time quantum algorithm!

But **FACTORING** has not been shown to be **NP**-hard

Moreover, there is "evidence" that it is not NP-hard: FACTORING \in NP \cap co-NP

If FACTORING is NP-hard then NP = co-NP

FACTORING vs. co-NP

FACTORING = { $(x, y) : \exists 2 \le z \le y, \text{ s.t. } z \text{ divides } x$ }

co-NP: languages whose *negative* instances have "witnesses" that can be verified in poly-time

Question: what is a good witness for the negative instances?

Answer: the prime factorization $p_1, p_2, ..., p_m$ of x will work

Can verify primality and compare $p_1, p_2, ..., p_m$ with y, all in poly-time

Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 13 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

More state distinguishing problems

More state distinguishing problems

Which of these states are distinguishable? Divide them into equivalence classes:

- 1. $|0\rangle + |1\rangle$
- 2. $-|0\rangle |1\rangle$
- 3. $\begin{cases} |0\rangle \text{ with prob. } \frac{1}{2} \\ |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$ 4. $\begin{cases} |0\rangle + |1\rangle \text{ with prob. } \frac{1}{2} \\ |0\rangle |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$

- 5. $\begin{cases} |0\rangle & \text{with prob. } \frac{1}{2} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{2} \end{cases}$
- 6. $\begin{cases} |0\rangle & \text{with prob. } \frac{1}{4} \\ |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle |1\rangle & \text{with prob. } \frac{1}{4} \end{cases}$
- 7. The first qubit of $|01\rangle |10\rangle$

Answers later on ...

This is a probabilistic mixed state

Density matrix formalism

Density matrices (1)

Until now, we've represented quantum states as *vectors* (e.g. $|\psi\rangle$, and all such states are called *pure states*)

An alternative way of representing quantum states is in terms of *density matrices* (a.k.a. *density operators*)

The density matrix of a pure state $|\psi\rangle$ is the matrix $\rho = |\psi\rangle\langle\psi|$

Example: the density matrix of $\alpha |0\rangle + \beta |1\rangle$ is

$$\rho = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix} = \begin{bmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{bmatrix}$$

Density matrices (2)

How do quantum operations work using density matrices?

Effect of a unitary operation on a density matrix: applying U to ρ yields $U\rho U^{\dagger}$

(this is because the modified state is $U|\psi\rangle\langle\psi|U^{\dagger}$)

Effect of a measurement on a density matrix: measuring state ρ with respect to the basis $|\phi_1\rangle$, $|\phi_2\rangle$,..., $|\phi_d\rangle$, yields the k^{th} outcome with probability $\langle \phi_k | \rho | \phi_k \rangle$

(this is because $\langle \varphi_k | \rho | \varphi_k \rangle = \langle \varphi_k | \psi \rangle \langle \psi | \varphi_k \rangle = |\langle \varphi_k | \psi \rangle|^2$)

—and the state collapses to $|\phi_k\rangle\langle\phi_k|$

Density matrices (3)

A probability distribution on pure states is called a *mixed state*: ($(|\psi_1\rangle, p_1), (|\psi_2\rangle, p_2), ..., (|\psi_d\rangle, p_d)$)

The *density matrix* associated with such a mixed state is: $\rho = \sum_{k=1}^{d} p_k |\psi_k\rangle \langle \psi_k |$

Example: the density matrix for $((|0\rangle, \frac{1}{2}), (|1\rangle, \frac{1}{2}))$ is:

1	1	0	1	0	0	_ 1	1	0
2	0	0	$\frac{1}{2}$	_0	1	$-\frac{1}{2}$	0	1_

Question: what is the density matrix of $((|0\rangle + |1\rangle, \frac{1}{2}), (|0\rangle - |1\rangle, \frac{1}{2})$?

Density matrices (4)

How do quantum operations work for these *mixed* states?

Effect of a unitary operation on a density matrix: applying U to ρ still yields $U\rho U^{\dagger}$

This is because the modified state is: $\sum_{k=1}^{d} p_{k} U |\psi_{k}\rangle \langle \psi_{k} | U^{t} = U \left(\sum_{k=1}^{d} p_{k} |\psi_{k}\rangle \langle \psi_{k} | \right) U^{t} = U \rho U^{t}$

Effect of a measurement on a density matrix:

measuring state ρ with respect to the basis $|\varphi_1\rangle$, $|\varphi_2\rangle$,..., $|\varphi_d\rangle$, *still* yields the k^{th} outcome with probability $\langle \varphi_k | \rho | \varphi_k \rangle$

Why?

Recap: density matrices

Quantum operations in terms of density matrices:

- Applying U to ρ yields $U \rho U^{\dagger}$
- Measuring state ρ with respect to the basis $|\phi_1\rangle$, $|\phi_2\rangle$,..., $|\phi_d\rangle$, yields: k^{th} outcome with probability $\langle \phi_k | \rho | \phi_k \rangle$ —and causes the state to collapse to $|\phi_k\rangle\langle\phi_k|$

Since these are expressible in terms of density matrices alone (independent of any specific probabilistic mixtures), states with identical density matrices are *operationally indistinguishable*

Return to state distinguishing problems ...

State distinguishing problems (1)

The *density matrix* of the mixed state (($|\psi_1\rangle, p_1$), ($|\psi_2\rangle, p_2$), ...,($|\psi_d\rangle, p_d$)) is: $\rho = \sum_{k=1}^{d} p_k |\psi_k\rangle \langle \psi_k |$

Examples (from beginning of lecture):

1. & 2. $|0\rangle + |1\rangle$ and $-|0\rangle - |1\rangle$ both have $\rho = \frac{1}{2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$

3. $\begin{cases} |0\rangle \text{ with prob. } \frac{1}{2} \\ |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$

4.
$$\begin{cases} |0\rangle + |1\rangle \text{ with prob. } \frac{1}{2} \\ |0\rangle - |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$$

6.
$$\begin{cases} |0\rangle & \text{with prob. } \frac{1}{4} \\ |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle - |1\rangle & \text{with prob. } \frac{1}{4} \end{cases}$$

$$\rho = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

State distinguishing problems (2)

Examples (continued):

5.
$$\begin{cases} |0\rangle & \text{with prob. } \frac{1}{2} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{2} \end{cases}$$

has: $\rho = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 3/4 & 1/2 \\ 1/2 & 1/4 \end{bmatrix}$

7. The first qubit of $|01\rangle - |10\rangle$...? (later)

Characterizing density matrices

Three properties of ρ :

• $\operatorname{Tr}\rho = 1$ ($\operatorname{Tr}M = M$

$$(m_{11} + M_{22} + ... + M_{dd})$$
 $(p = m_{dd})$

$$\rho = \sum_{k=1}^{d} p_{k} |\psi_{k}\rangle \langle \psi_{k}|$$

- $\rho = \rho^{\dagger}$ (i.e. ρ is Hermitian) • $\langle \phi | \rho | \phi \rangle \ge 0$, for all states $| \phi \rangle$
- Moreover, for **any** matrix ρ satisfying the above properties, there exists a probabilistic mixture whose density matrix is ρ

Exercise: show this

Taxonomy of various normal matrices

Normal matrices

Definition: A matrix *M* is *normal* if $M^{\dagger}M = MM^{\dagger}$

Theorem: *M* is normal iff there exists a unitary *U* such that $M = U^{\dagger}DU$, where *D* is diagonal (i.e. unitarily diagonalizable)

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix}$$

Examples of *ab*normal matrices:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 is not even
$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$
 is diagonalizable,
but not unitarily 55

Unitary and Hermitian matrices

Normal:

$$M = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix}$$

with respect to some orthonormal basis

Unitary: $M^{\dagger}M = I$ which implies $|\lambda_k|^2 = 1$, for all k

Hermitian: $M = M^{\dagger}$ which implies $\lambda_k \in \mathbf{R}$, for all k

Question: which matrices are both unitary and Hermitian?

Answer: reflections ($\lambda_k \in \{+1, -1\}$, for all k)

Positive semidefinite

Positive semidefinite: Hermitian and $\lambda_k \ge 0$, for all k

Theorem: *M* is positive semidefinite iff *M* is Hermitian and, for all $|\phi\rangle$, $\langle \phi | M | \phi \rangle \ge 0$

(Positive *definite*: $\lambda_k > 0$, for all k)

Projectors and density matrices

Projector: Hermitian and $M^2 = M$, which implies that M is positive semidefinite and $\lambda_k \in \{0,1\}$, for all k

Density matrix: positive semidefinite and Tr M=1, so $\sum_{k=1}^{a} \lambda_k = 1$

Question: which matrices are both projectors *and* density matrices?

Answer: rank-1 projectors ($\lambda_k = 1$ if k = j; otherwise $\lambda_k = 0$)

Taxonomy of normal matrices

Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 14 (2008)

Richard Cleve

DC 2117 cleve@cs.uwaterloo.ca

Bloch sphere for qubits

Bloch sphere for qubits (1)

Consider the set of all 2x2 density matrices ho

They have a nice representation in terms of the *Pauli matrices*:

$$\sigma_{x} = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \sigma_{z} = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \sigma_{y} = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Note that these matrices—combined with I—form a **basis** for the vector space of all 2x2 matrices

We will express density matrices ρ in this basis

Note that the coefficient of I is $\frac{1}{2}$, since X, Y, Y are traceless

Bloch sphere for qubits (2)

We will express
$$\rho = \frac{I + c_x X + c_y Y + c_z Z}{2}$$

First consider the case of pure states $|\psi\rangle\langle\psi|$, where, without loss of generality, $|\psi\rangle = \cos(\theta)|0\rangle + e^{2i\phi}\sin(\theta)|1\rangle$ ($\theta, \phi \in \mathbf{R}$)

$$\rho = \begin{bmatrix} \cos^2\theta & e^{-i2\varphi}\cos\theta\sin\theta \\ e^{i2\varphi}\cos\theta\sin\theta & \sin^2\theta \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1+\cos(2\theta) & e^{-i2\varphi}\sin(2\theta) \\ e^{i2\varphi}\sin(2\theta) & 1-\cos(2\theta) \end{bmatrix}$$

Therefore $c_z = \cos(2\theta)$, $c_x = \cos(2\phi)\sin(2\theta)$, $c_y = \sin(2\phi)\sin(2\theta)$

These are *polar coordinates* of a unit vector $(c_x, c_y, c_z) \in \mathbb{R}^3$

Bloch sphere for qubits (3)

 $|+\rangle = |0\rangle + |1\rangle$ $|-\rangle = |0\rangle - |1\rangle$ $|+i\rangle = |0\rangle + i|1\rangle$ $|-i\rangle = |0\rangle - i|1\rangle$

Note that orthogonal corresponds to antipodal here

Pure states are on the surface, and mixed states are inside (being weighted averages of pure states)

Basic properties of the trace

Basic properties of the trace

The *trace* of a square matrix is defined as $TrM = \sum_{k,k}^{d} M_{k,k}$

It is easy to check that Tr(M+N) = TrM + TrN and Tr(MN) = Tr(NM)The second property implies $Tr(M) = Tr(U^{-1}MU) = \sum_{k=1}^{d} \lambda_k$

Calculation maneuvers worth remembering are: $\operatorname{Tr}(|a\rangle\langle b|M) = \langle b|M|a\rangle$ and $\operatorname{Tr}(|a\rangle\langle b|c\rangle\langle d|) = \langle b|c\rangle\langle d|a\rangle$

Also, keep in mind that, in general, $Tr(MN) \neq TrMTrN$

Partial trace (1)

Two quantum registers (e.g. two qubits) in states σ and μ (respectively) are *independent* if then the combined system is in state $\rho = \sigma \otimes \mu$

In such circumstances, if the second register (say) is discarded then the state of the first register remains σ

In general, the state of a two-register system may not be of the form $\sigma \otimes \mu$ (it may contain *entanglement* or *correlations*)

We can <u>define</u> the **partial trace**, $Tr_2 \rho$, as the unique linear operator satisfying the identity $Tr_2(\sigma \otimes \mu) = \sigma$ index means 2nd system For example, it turns out that traced out $\mathsf{Tr}_{2}\left(\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)\otimes\left(\frac{1}{\sqrt{2}}\langle00|+\frac{1}{\sqrt{2}}\langle11|\right)\right)=\frac{1}{2}\begin{vmatrix}1&0\\0&1\end{vmatrix}$

Partial trace (2)

Example: discarding the second of two qubits

Let $A_0 = I \otimes \langle \mathbf{0} | = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ and $A_1 = I \otimes \langle \mathbf{1} | = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

For the resulting quantum operation, state $\sigma \otimes \mu$ becomes σ

For *d*-dimensional registers, the operators are $A_k = I \otimes \langle \phi_k |$, where $|\phi_0\rangle$, $|\phi_1\rangle$, ..., $|\phi_{d-1}\rangle$ are an orthonormal basis

Partial trace (3)

For 2-qubit systems, the partial trace is explicitly

$$\operatorname{Tr}_{2}\begin{bmatrix}\rho_{00,00} & \rho_{00,01} & \rho_{00,10} & \rho_{00,11}\\ \rho_{01,00} & \rho_{01,01} & \rho_{01,10} & \rho_{01,11}\\ \rho_{10,00} & \rho_{10,01} & \rho_{10,10} & \rho_{10,11}\\ \rho_{11,00} & \rho_{11,01} & \rho_{11,10} & \rho_{11,11}\end{bmatrix} = \begin{bmatrix}\rho_{00,00} + \rho_{01,01} & \rho_{00,10} + \rho_{01,11}\\ \rho_{10,00} + \rho_{11,01} & \rho_{10,10} + \rho_{11,11}\end{bmatrix}$$
and

$$\operatorname{Tr}_{1}\begin{bmatrix} \rho_{00,00} & \rho_{00,01} & \rho_{00,10} & \rho_{00,11} \\ \rho_{01,00} & \rho_{01,01} & \rho_{01,10} & \rho_{01,11} \\ \rho_{10,00} & \rho_{10,01} & \rho_{10,10} & \rho_{10,11} \\ \rho_{11,00} & \rho_{11,01} & \rho_{11,10} & \rho_{11,11} \end{bmatrix} = \begin{bmatrix} \rho_{00,00} + \rho_{10,10} & \rho_{00,01} + \rho_{10,11} \\ \rho_{01,00} + \rho_{11,10} & \rho_{01,01} + \rho_{11,11} \end{bmatrix}$$

POVMS (Positive Operator Valued Measurements)

POVMs (1)

Positive operator valued measurement (POVM):

Let $A_1, A_2, ..., A_m$ be matrices satisfying $\sum_{j=1}^m A_j^{\dagger} A_j = I$

Then the corresponding POVM is a stochastic operation on ρ that, with probability $\text{Tr}(A_i \rho A_i^{\dagger})$ produces the outcome:

 $\begin{cases} j \quad (classical information) \\ \frac{A_j \rho A_j^{\dagger}}{\text{Tr}(A_j \rho A_j^{\dagger})} \quad (the \ collapsed \ quantum \ state) \end{cases}$

Example 1: $A_i = |\phi_i\rangle\langle\phi_i|$ (orthogonal projectors)

This reduces to our previously defined measurements ...

POVMs (2)

When $A_j = |\phi_j\rangle\langle\phi_j|$ are orthogonal projectors and $\rho = |\psi\rangle\langle\psi|$, $\operatorname{Tr}(A_j\rho A_j^{\dagger}) = \operatorname{Tr}|\phi_j\rangle\langle\phi_j|\psi\rangle\langle\psi|\phi_j\rangle\langle\phi_j|$ $= \langle\phi_j|\psi\rangle\langle\psi|\phi_j\rangle\langle\phi_j|\phi_j\rangle$ $= |\langle\phi_j|\psi\rangle|^2$

Moreover,
$$\frac{A_{j}\rho A_{j}^{\dagger}}{\operatorname{Tr}(A_{j}\rho A_{j}^{\dagger})} = \frac{\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\left|\psi\right\rangle\left\langle\psi\right|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|}{\left|\left\langle\varphi_{j}\left|\psi\right\rangle\right|^{2}} = \left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|$$

72
POVMs (3) Example 3 (trine state "measurent"):

Let $|\phi_0\rangle = |0\rangle$, $|\phi_1\rangle = -1/2|0\rangle + \sqrt{3}/2|1\rangle$, $|\phi_2\rangle = -1/2|0\rangle - \sqrt{3}/2|1\rangle$ Define $A_0 = \sqrt{2}/3|\phi_0\rangle\langle\phi_0| = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}$ $A_1 = \sqrt{2}/3|\phi_1\rangle\langle\phi_1| = \frac{1}{4} \begin{bmatrix} \sqrt{2}/3 & +\sqrt{2}\\ +\sqrt{2} & \sqrt{6} \end{bmatrix}$ $A_2 = \sqrt{2}/3|\phi_2\rangle\langle\phi_2| = \frac{1}{4} \begin{bmatrix} \sqrt{2}/3 & -\sqrt{2}\\ -\sqrt{2} & \sqrt{6} \end{bmatrix}$ Then $A_0^{\dagger}A_0 + A_1^{\dagger}A_1 + A_2^{\dagger}A_2 = I$

If the input itself is an unknown trine state, $|\phi_k\rangle\langle\phi_k|$, then the probability that classical outcome is k is 2/3 = 0.6666...

General quantum operations

General quantum operations (1)

General quantum operations (a.k.a. "completely positive trace preserving maps", "admissible operations"):

Let $A_1, A_2, ..., A_m$ be matrices satisfying $\sum_{j=1}^m A_j^t A_j = I$

Then the mapping $\rho \mapsto \sum_{j=1}^{m} A_j \rho A_j^t$ is a general quantum op

Example 1 (unitary op): applying U to ρ yields $U\rho U^{\dagger}$

General quantum operations (2)

Example 2 (decoherence): let $A_0 = |\mathbf{0}\rangle\langle\mathbf{0}|$ and $A_1 = |\mathbf{1}\rangle\langle\mathbf{1}|$

This quantum op maps ρ to $|0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

For
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, $\begin{bmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{bmatrix} \mapsto \begin{bmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{bmatrix}$

Corresponds to measuring ho "without looking at the outcome"

After looking at the outcome, ρ becomes $\begin{cases} |0\rangle\langle 0| & \text{with prob. } |\alpha|^2 \\ |1\rangle\langle 1| & \text{with prob. } |\beta|^2 \end{cases}$

General quantum operations (3)

Example 4 (discarding the second of two qubits):

Let $A_0 = I \otimes \langle \mathbf{0} | = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ and $A_1 = I \otimes \langle \mathbf{1} | = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

State $\rho \otimes \sigma$ becomes ρ

State
$$\left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}\langle 00| + \frac{1}{\sqrt{2}}\langle 11|\right)$$
 becomes $\frac{1}{2}\begin{bmatrix}1&0\\0&1\end{bmatrix}$

Note 1: it's the same density matrix as for $((\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle))$ **Note 2:** the operation is the *partial trace* Tr₂ ρ

Distinguishing mixed states

Distinguishing mixed states (1)

What's the best distinguishing strategy between these two mixed states?

Distinguishing mixed states (2)

We've effectively found an orthonormal basis $|\phi_0\rangle$, $|\phi_1\rangle$ in which both density matrices are diagonal:

$$\rho_{2}' = \begin{bmatrix} \cos^{2}(\pi/8) & 0 \\ 0 & \sin^{2}(\pi/8) \end{bmatrix} \qquad \rho_{1}' = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Rotating $|\phi_0\rangle$, $|\phi_1\rangle$ to $|0\rangle$, $|1\rangle$ the scenario can now be examined using classical probability theory:

Distinguish between two *classical* coins, whose probabilities of "heads" are $\cos^2(\pi/8)$ and $\frac{1}{2}$ respectively (details: exercise)

Question: what do we do if we aren't so lucky to get two density matrices that are simultaneously diagonalizable?

0

Simulations among operations

Simulations among operations (1)

Fact 1: any *general quantum operation* can be simulated by applying a unitary operation on a larger quantum system:

Simulations among operations (2)

Fact 2: any **POVM** can also be simulated by applying a unitary operation on a larger quantum system and then measuring:

Separable states

Separable states

A bipartite (i.e. two register) state ρ is a:

• product state if $\rho = \sigma \otimes \xi$

• separable state if
$$\rho = \sum_{j=1}^{m} p_j \sigma_j \otimes \xi_j$$
 $(p_1, ..., p_m \ge 0)$
(i.e. a probabilistic mixture of product states)

Question: which of the following states are separable? $\rho_1 = \frac{1}{2} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \left(\left\langle 00 \right| + \left\langle 11 \right| \right)$

 $\rho_2 = \frac{1}{2} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \left(\left\langle 00 \right| + \left\langle 11 \right| \right) + \frac{1}{2} \left(\left| 00 \right\rangle - \left| 11 \right\rangle \right) \left(\left\langle 00 \right| - \left\langle 11 \right| \right) \right)$