
CS667/CO681/PH767 Quantum Information Processing (Fall 06)

Assignment 5

Due date: December 15, 2006

Note: this assignment is optional.

1. Is the transpose a valid quantum operation? Here we consider
an operation on qubits that we denote by Λ, defined as Λ(ρ) = ρT for
each density matrix ρ (where ρT is the transpose of T ).

(a) Give an example of a one-qubit pure state |ψ〉 such that Λ(|ψ〉〈ψ|)
is a pure state orthogonal to |ψ〉.

(b) Prove that there is no unitary operation U such that Λ(ρ) = UρU †

for all ρ.

(In fact, Λ is not even of the form ρ 7→ ∑m
k=1 AkρA†

k, where∑m
k=1 A†

kAk = I, though this is harder to show.)

2. A nonlocal game. Consider the following game. Alice and Bob
receive s, t ∈ {0, 1, 2} as input (s to Alice and t to Bob), at which point
they are forbidden from communicating among each other. They each
output a bit, a for Alice and b for Bob. The winning conditions are:

• a = b in the cases where s = t.

• a 6= b in the cases where s 6= t.

(a) Show that any classical strategy that always succeeds in the s = t
cases can succeed with probability at most 2/3 in the s 6= t cases.

(b) Give a quantum strategy (that is, one where Alice and Bob can
base their outcomes on their measurement of an entangled state)
that always succeeds in the s = t cases and succeeds with proba-
bility 3/4 in the s 6= t cases.

3. A separable state. Consider the two-qubit state whose density ma-
trix is ρ = 1

2
|Φ+〉〈Φ+| + 1

2
|Ψ+〉〈Ψ+|, where |Φ+〉 = 1√

2
(|00〉 + |11〉),

and |Ψ+〉 = 1√
2
(|01〉 + |10〉). Show that we can write this state as

ρ = p|ψ1〉〈ψ1|+(1−p)|ψ2〉〈ψ2|, where |ψ1〉 and |ψ2〉 are both two-qubit
states that are not entangled and 0 ≤ p ≤ 1. (We call states expressible
in this form separable.)
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4. Secret key encryption. Recall the classical one-time pad encryption
scheme restricted to a single bit. The scenario is that Alice wants to
send a bit of information to Bob over a channel that is possibly being
monitored by Eve (an eavesdropper). We assume that Alice and Bob
share a secret key, which was set up in advance. The secret key is a
randomly chosen (uniformly distributed) k ∈ {0, 1}n, which is known
by Alice and Bob, but—importantly—not by Eve. If Alice wants to
send a bit m to Bob then Alice computes c = m ⊕ k and sends c
over the channel. When Bob receives c, he computes m′ = c ⊕ k. It
is easy to show that m′ = m and Eve acquires no information about
m from looking at c. We now consider a similar scenario, but where
Alice wants to send a qubit |ψ〉 to Bob over a quantum channel that is
possibly being monitored by Eve. How can this be accomplished so that
if Eve performs operations (including measurements) on the data that
goes through the channel, she cannot acquire any information about
what |ψ〉 was?

(a) If Alice and Bob share a classical secret key bit k ∈ {0, 1}, then one
approach would be for Alice to send Xk|ψ〉 to Bob. This seems
analogous to the classical protocol: Alice either flips or doesn’t
flip the (qu)bit according to a random key bit. Show that this is
highly insecure by giving two quantum states |ψ0〉 and |ψ1〉 whose
encryptions Eve can perfectly distinguish between.

(b) Suppose that Alice and Bob have two (independently generated)
key bits k1, k2, and Alice encrypts |ψ〉 Zk1Xk2|ψ〉. (Note that
Bob can decrypt this since he has k1 and k2.) Show that this is
perfectly secure in the sense that, for any two quantum states |ψ0〉
and |ψ1〉, Eve cannot distinguish at all between their encryptions.

5. Correcting errors at known positions. Here we consider error correcting
codes in scenarios where, after the qubits have been transmitted, the
location of the possible error is known (but not the error itself). Con-
sider the 4-qubit quantum error correcting Code A, which uses basis
codewords |c0〉 = 1√

2
(|0000〉 + |1111〉) and |c1〉 = 1√

2
(|0011〉 + |1100〉).

A qubit α|0〉 + β|1〉 is encoded as α|c0〉 + β|c1〉. It is easy to con-
struct a quantum circuit that performs this encoding, but we are more
interested in the error-correcting capabilities of this code. This code
does not protect against an arbitrary one-qubit error as the 9-qubit
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Shor code does. However, if, after the transmission of the codeword,
we are given a k ∈ {1, 2, 3, 4} such that if an error did occur then it
occurred in the kth qubit then it is possible to correct the error. For
example, if k = 3 then we know that we have received a state of the
form (I ⊗ I ⊗U ⊗ I)(α|c0〉+ β|c1〉) but we don’t know what U is. Our
goal is to recover α|c0〉+ β|c1〉 from this.

(a) Show how Code A (described above) protects against I and X
errors of known location. In other words, along with the four
qubits, we are given k ∈ {1, 2, 3, 4} and either I or X has been
applied to the kth qubit received (but we don’t know which one).
Show how to undo the error in this scenario. By the symmetry of
|c0〉 and |c1〉, you may simply show how to undo the error in the
case where k = 4; the other three cases would be very similar to
explain.

(b) Consider Code B, whose basis codewords are |c′0〉 = H⊗4|c0〉 and
|c′1〉 = H⊗4|c1〉. A qubit α|0〉+ β|1〉 is encoded as α|c′0〉+ β|c′1〉.

i. Give explicit expressions for |c′0〉 and |c′1〉.
ii. Show how Code B protects against I and X errors (in the

same sense that Code A does in part (a)).

(c) Show how Code A protects against I, X, Z, and XZ errors of
known location. (Hint: make use of the results established in
parts (a) and (b).)

(d) Show how Code A protects against any one-qubit unitary U error
of known location. You may use the results from parts (a), (b),
or (c) here.
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