
CS667/CO681/PH767 Quantum Information Processing (Fall 06)

Assignment 4

Due date: November 23, 2006

1. Unitary implementation of trine measurement. Let |φ0〉 = |0〉,
|φ1〉 = −1/2|0〉+√3/2|1〉, and |φ2〉 = −1/2|0〉−√3/2|1〉. We have seen
that a good POVM measurement for distinguishing among these states
is the one whose elements are A0 =

√
2/3|φ0〉〈φ0|, A1 =

√
2/3|φ1〉〈φ1|,

and A2 =
√

2/3|φ2〉〈φ2|. Suppose that you don’t have any device
the performs such POVMs; rather, you can perform arbitrary unitary
operation and you can measure in the computational basis. Show how
to simulate the above POVM by adding some number of qubits in state
|0〉 to the input state, performing some unitary operation on the entire
system, and then performing a measurement in the computational basis
(and interpreting the outcome as an element of {0, 1, 2}).

2. Measurements that never err. Recall that there is no measurement
that perfectly distinguishes between the states |ψ0〉 = |0〉 and |ψ1〉 =
|+〉. The “best” measurement that we’ve seen outputs a bit which
is correct with probability cos2(π/8) ≈ 0.853. Suppose that we’re in
a scenario where we cannot afford to make a wrong guess, but we
can sometimes decline to make a guess: the output can be 0, 1, or
“inconclusive”. Describe a measurement procedure that, for any input
state |ψk〉 (k ∈ {0, 1}), outputs one of the three answers such that:
(a) whenever it outputs a bit, the bit is guaranteed to be correct; and
(b) the probability of it outputting a bit is at least p (making p as
large as you can). You may use the POVM formalism or describe
your procedure in terms of unitary operations and measurements in
the computational basis.

3. Converting from unitary form to Krauss form. In each case
below, consider the one-qubit to one-qubit quantum operation that
results from the following process. First, the input quantum state is
extended by a one-qubit “ancilla” in state |ψ〉 (as given below), then
a CNOT gate is applied to the two-qubit system (with the ancilla as
target), and then the ancilla is discarded (i.e., traced out).
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For each case below, give a set of 2× 2 matrices A1, . . . , Am satisfying∑m
k=1 A†

kAk = I such that, for any input qubit with density matrix ρ,

the density matrix of the corresponding output qubit is
∑m

k=1 AkρA†
k.

(a) |ψ〉 = |0〉.
(b) |ψ〉 = 1√

2
(|0〉+ |1〉).

(c) |ψ〉 = 1√
2
(|0〉 − |1〉).

4. Converting from Krauss form to unitary form. Since the matri-
ces

A1 =




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 and A2 =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1




satisfy A†
1A1+A†

2A2 = I, they define a two-qubit to two-qubit quantum
operation that maps the state with density matrix ρ to the state with
density matrix A1ρA†

1 + A2ρA†
2. We explore this quantum operation

here.

(a) For each of the computational basis states, |00〉, |01〉, |10〉, |11〉,
give the corresponding output state of the operation.

Based on your results so far, can you deduce whether or not the
operation is unitary?

(b) What is the output state for input state 1√
2
|0〉(|0〉 + |1〉)? What

about the output state for input state 1√
2
|1〉(|0〉+ |1〉)? (Hint: in

one case you should get a pure state and in the other case a mixed
state.)

(c) If you did part (a) correctly, the output for each computational
basis state is also a computational basis state (possibly a different
one). For computational basis states, give a simple boolean ex-
pression for each bit of the output state |a′b′〉 (where a′, b′ ∈ {0, 1})
in terms of the bits of the input state |ab〉 (where a, b ∈ {0, 1}).

(d) Describe a unitary operation U acting on three qubits such that
the quantum operation ρ 7→ A1ρA†

1 + A2ρA†
2 is equivalent to first

extending the input state by an ancilla qubit in state |0〉, and then
applying U to the three qubit system, followed by tracing out the
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third qubit. You may specify U in terms of its quantum circuit
(for which a simple solution exists), or as an 8× 8 matrix.

5. Four states as close to orthogonal as possible. Give four one-
qubit quantum states |φ0〉, |φ1〉, |φ2〉, |φ3〉, such that, for all j 6= k,
|〈φj|φk〉| ≤ r, for as small an r as possible. Note that, using states |0〉,
|1〉, |+〉, |−〉, works for r = 1/

√
2, but a smaller r is achievable.

(Hint: it might be easier to reason on the Bloch sphere; it is acceptable
to give your answer in terms of four points on the Bloch sphere.)

6. Grover’s search algorithm when N/4 items are marked. Recall
Grover’s algorithm that searches for a marked item among N = 2n pos-
sibilities. In general, the expected number of queries that the algorithm
performs is O(

√
N). Show that, in the special case where there are ex-

actly N/4 marked items, the algorithm succeeds in finding a marked
item after a single iteration (thus, one query).

Bonus to question 6: Suppose that there are exactly 3N/8 marked
items (but we don’t know where they are). Then one iteration of
Grover’s algorithm no longer finds a marked item (at least not for
sure). Explain how to modify Grover’s algorithm so that it finds the
marked item making a single query.
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