CS667/CO681/PH767 Quantum Information Processing (Fall 06)

Assignment 3
Due date: November 7, 2006

1. Period inversion. Let p and q be integers greater than 1 , and $p q$ denote their product. Recall that the quantum Fourier transform modulo $p q$ is the $p q$-dimensional unitary operation $F_{p q}$ such that

$$
F_{p q}|x\rangle=\frac{1}{\sqrt{p q}} \sum_{y=0}^{p q-1}\left(e^{2 \pi i / p q}\right)^{x y}|y\rangle
$$

for each $x \in \mathbb{Z}_{p q}$.
(a) Define two quantum states $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ as

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{q}}(|0\rangle+|p\rangle+|2 p\rangle+\cdots+|(q-1) p\rangle)=\frac{1}{\sqrt{q}} \sum_{x=0}^{q-1}|x p\rangle
$$

and

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{p}}(|0\rangle+|q\rangle+|2 q\rangle+\cdots+|(p-1) q\rangle)=\frac{1}{\sqrt{p}} \sum_{x=0}^{p-1}|x q\rangle .
$$

Show that $F_{p q}\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle$.
(b) Let $s \in\{0,1, \ldots, p-1\}$, and define $\left|\psi_{3}\right\rangle$ as

$$
\begin{aligned}
\left|\psi_{3}\right\rangle & =\frac{1}{\sqrt{q}}(|s\rangle+|s+p\rangle+|s+2 p\rangle+\cdots+|s+(q-1) p\rangle) \\
& =\frac{1}{\sqrt{q}} \sum_{x=0}^{q-1}|s+x p\rangle
\end{aligned}
$$

What is $F_{p q}\left|\psi_{3}\right\rangle$? Find a simple expression for this quantity. If $F_{p q}\left|\psi_{3}\right\rangle$ is measured in the computational basis, what is the probability distribution describing the outcome?
2. Detail from the analysis of the order-finding algorithm. Suppose that U is a unitary operation on n qubits and $C_{m}-U$ is a controlledU with an m-qubit control. Thus, $C_{m}-U|a\rangle|b\rangle=|a\rangle\left(U^{a}|b\rangle\right)$, where $U^{a}|b\rangle$ means apply U to $|b\rangle a$ times.
Let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be any two distinct eigenvectors of U (with different eigenvalues), $|\phi\rangle$ be any m-qubit state, and $\alpha_{1}, \alpha_{2} \in \mathbb{C}$ such that $\left|\alpha_{1}\right|^{2}+$ $\left|\alpha_{2}\right|^{2}=1$.
(a) Show that the final states of resulting from the following two procedures are identical.
Procedure I: With probability $\left|\alpha_{1}\right|^{2}$ create the state $|\phi\rangle\left|\psi_{1}\right\rangle$ and with probability $\left|\alpha_{2}\right|^{2}$ create the state $|\phi\rangle\left|\psi_{2}\right\rangle$. Apply $C_{m}-U$ to the created state and measure the second register (the last n qubits).
Procedure II: Create the state $|\phi\rangle\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$, apply $C_{m}-U$ to it and and measure the second register.
(b) Show by a counterexample that the two final states in part (a) might not be identical if the condition that $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are eigenvectors of U is dropped. (You should still assume $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are orthonormal.)
3. Fractional queries. Recall that, for a function $f:\{0,1\} \rightarrow\{0,1\}$, an f-query is defined as the unitary operation U_{f} such that, for all $a, b \in$ $\{0,1\}, U_{f}|a\rangle|b\rangle=|a\rangle|b \oplus f(a)\rangle=|a\rangle\left(X^{f(a)}|b\rangle\right)$. Define a half f-query as the unitary operation $U_{f}^{1 / 2}$ such that $U_{f}^{1 / 2}|a\rangle|b\rangle=|a\rangle\left(W^{f(a)}|b\rangle\right)$, where

$$
W=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\omega & \omega^{*} \\
\omega^{*} & \omega
\end{array}\right) \quad \text { and } \omega=e^{\pi i / 4}\left(\text { hence } \omega^{*}=e^{-\pi i / 4}\right) .
$$

Note that W is unitary and $W^{2}=X$.
(a) Show that two half f-queries amount to a full f-query in the sense that $U_{f}^{1 / 2} U_{f}^{1 / 2}=U_{f}$.
(b) What can a half f-query do? Define the one-out-of-two search problem as follows. One is given black-box access to $f:\{0,1\} \rightarrow$ $\{0,1\}$, that is promised to be uniquely satisfiable in the sense that either $(f(0), f(1))=(1,0)$ or $(f(0), f(1))=(0,1)$. The goal is to
determine the unique $a \in\{0,1\}$ for which $f(a)=1$. Classically, one query suffices to do this.
Show that there is a quantum algorithm that performs one half f-query and exactly solve the one-out-of-two search problem.
(c) What can't a half f-query do? Prove that one half f-query cannot exactly solve the evaluate-at-zero problem, where the input is an arbitrary $f:\{0,1\} \rightarrow\{0,1\}$ (there are four possibilities) and the goal is just to determine $f(0)$.
4. Differences between unitary operations. One distance measure between two unitary operations is based on the Euclidean norm of vectors, defined as $\|v\|_{2}=\sqrt{\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}+\cdots+\left|v_{d}\right|^{2}}$. For any matrix M, define

$$
\|M\|=\max _{|\psi\rangle} \| M|\psi\rangle \|_{2}
$$

where it is understood that $|\psi\rangle$ ranges over quantum state so that $|\| \psi\rangle \|_{2}=1$. Then one can define the distance between two unitaries U and V as $\|U-V\|_{2}$.
This isn't the only or best distance measure, but it's good for many purposes; if this distance measure between U and V is small then the effect of changing U with V in the context of any computation will also be small-the final outcome probability will be almost the same.
This question is about a sort of converse of the above property. Suppose that $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and that V approximates U_{f} in the weak sense that, for all $x \in\{0,1\}^{n}$, if the last qubit of $V|x\rangle|0\rangle$ measured then, with probability $1-\epsilon$, the result will be $f(x)$. This does not imply that $\left\|V-U_{f}\right\|$ is small-for example, the first n qubits of $V|x\rangle|0\rangle$ need not be in state $|x\rangle$; they could even be entangled with the last qubit.
Show how to make one query to V and one query to V^{\dagger} to produce a unitary transformation that is close to U_{f} (and quantify the closeness in terms of ϵ).
You may use ancilla qubits and produce a unitary transformation that is close to $U_{f} \otimes I$ (where I is the identity acting on the ancilla qubits).

