
CS667/CO681/PH767 Quantum Information Processing (Fall 06)

Assignment 2

Due date: October 24, 2006

1. Review of some basic properties of matrices.

(a) Prove that every d × d matrix M has at least one eigenvector.
(An eigenvector is a state |ψ〉 6= 0 such that M |ψ〉 = λ|ψ〉, where
λ ∈ C.)

(b) Prove that, for all d, there exists a d× d matrix M that has only
one eigenvector up to a multiplicative constant. (That is, for all d,
there is some d×d matrix M for which there exists an eigenvector
|ψ〉 such that all eigenvectors of M are scalar multiples of |ψ〉.)

(c) Prove that, for every d×d matrix M , there exists a unitary opera-
tion U such that M = U †TU , where T is upper triangular. (Hint:
try induction on d, and make use of the result in part (a) in the
inductive step.)

(d) A d × d matrix M is normal if MM † = M †M . Prove that M is
normal if and only if, for some unitary operation U , M = U †DU ,
where D is diagonal. (Hint: you may use the result from part (c).)

Note: intuitively, part (d) means that normal matrices are precisely
those that have the property that there is an orthonormal basis in which
they are diagonal. Normal matrices arise frequently in the setting of
quantum information—for example unitary and Hermitian matrices are
both special cases of normal matrices.

2. Teleporting entanglement?

Recall the teleportation protocol that was covered in class. Alice and
Bob start with the entanglement 1√

2
|00〉+ 1√

2
|11〉 (between them) and

then Alice receives an arbitrary state |ψ〉. Alice performs a unitary
transformation and then a measurement on the two qubits in her pos-
session and then sends the resulting two classical bits to Bob, who can
then reconstruct |ψ〉.

1



Now, suppose that, instead of having Alice receive |ψ〉, she receives the
second qubit of some two-qubit state

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉
that is entangled with a third party Carol. What happens if Alice
follows the teleportation protocol with Bob to teleport her qubit (to
Bob)? Is the result that Carol and Bob share the two-qubit state

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉?
Either prove that this is so or give an example of a state where this
does not occur.

3. Parity of three bits?

Recall the quantum algorithm for computing f(0)⊕ f(1) with a single
query to f : {0, 1} → {0, 1}. This algorithm first constructs the state

1√
2
(−1)f(0)|0〉+ 1√

2
(−1)f(1)|1〉

with a single query to f and then performs a measurement on this state
to exactly determine f(0)⊕ f(1).

Consider the possibility of generalizing this approach to computing
g(0) ⊕ g(1) ⊕ g(2) with a single query to g : {0, 1, 2} → {0, 1}. It is
straightforward to construct the state

1√
3
(−1)g(0)|0〉+ 1√

3
(−1)g(1)|1〉+ 1√

3
(−1)g(2)|2〉

with a single query to g.

Is there a measurement of this state that deduces the value of g(0) ⊕
g(1)⊕ g(2)? Either give the measurement or explain why such a mea-
surement is impossible.

4. Slight variation of Simon’s problem. Consider the following vari-
ant of Simon’s problem. The given function f : {0, 1}n → {0, 1}n has
the the following property. There is a 2-dimensional subspace R of
{0, 1}n (viewed as a vector space in modulo 2 arithmetic) such that
f(x) = f(y) if and only if x + y ∈ S (mod 2), and the goal is to find
all the elements of R. Explain how to solve this problem by a quan-
tum algorithm that makes only O(n) queries to f and O(n3) auxiliary
operations.
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5. Quantum one-way functions. Intuitively, a (bijective) one-way
function is a function that is easy to compute in the forward direc-
tion but difficult to invert. More precisely it is a family of functions
fn : {0, 1}n → {0, 1}n (one for each value of n) such that:

• There exists a polynomial-time algorithm that, given x ∈ {0, 1}n,
computes fn(x) in time polynomial with respect to n.

• For all polynomial-time algorithms A, if x ∈ {0, 1}n is randomly
selected and y ← fn(x) then Pr[A(y) = x] = O(1/nc), for all c
(thus the success probability of the algorithm is asymptotically
smaller than 1/nc for all c).

In classical complexity theory it is unknown whether or not one-way
functions exist, but there are some candidate functions that are conjec-
tured to be one-way, and they are employed in cryptographic protocols.

Does it make sense for a family of functions fn : {0, 1}n → {0, 1}n to be
one-way with respect to quantum computers whose gates are unitary
operations?

Here is a sketch of a proposed proof that there are no one-way func-
tions with respect to quantum computers. Suppose that there is a
polynomial-size quantum circuit family Cn computing fn in the sense
that Cn|x〉 = |fn(x)〉 for all x ∈ {0, 1}n. Since each gate in Cn is uni-
tary, it has an inverse. Thus, reversing the order of all the gates and
inverting them yields a circuit for f−1 whose size is the same as that
of Cn, and thus polynomial.

Explain the error in this purported proof.
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