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* Loose ends In discrete log algorithm




Discrete log algorithm (1)

Input: p (N-bit prime), g (generator of Z*,), a e Z*,

Output: I € Z,_jsuchthat "' mod p = a

Example: p=7, Z*;={1,2,3,4,5, 6} = {30, 32, 31,3435 33}
(hence 3 Is a generator of Z*)

Define f:2Z,xZ, ;> Z*, as f(X,y)=0¥aY modp
Then f(X;,y)) =T (X, y)iff (X, Y1) = (X, ¥o) =K(T, 1) (mod p—1)

(for some k)

gi—F f FD—1 produces a random (S, t) such that
D
0 . T . (S,0)(r, 1) =0 (mod p—1)
0) & & Sr+t=0 (modp—1) 4




Discrete log algorithm (ll)

0)—F

0V—F f Ei} produces a random (S, t) such that
0) P Sr+t=0 (mod p—1)
0) d

If gcd(S, P—1) =1 then r can be computed as I = —tS~'mod p—1

The probability that this occurs is ¢(p—1)/(p—1), where ¢ is
Euler’s totient function

It is known that ¢(N) = Q(N/loglogN), which implies that the
above probability is at least €2(1/1loglog p) = €2(1/1og n)

Therefore, O(log N) repetitions are sufficient
... this i1s not bad—but things are actually better than that ... s



Discrete log algorithm (ll1)

We obtain a random (S, 1) such that Sr +t=0 (mod p—1)

Note that each S € {0,..., P—2} occurs with equal probability

Therefore, if we run the algorithm twice: we obtain two
iIndependent samples S,, S, € {0,...,p—2}

If it happens that gcd(S,,S,) = 1 then (by Euclid) there exist
integers a and b such thatas, + bs, =1 = r=—(at, + bt,)

Question: what is the probability that gcd(S,,S,) = 17?

1- Y Prq]s [Prlq]s,]>1- > iz>o.54

g prime q prime q

Therefore, a constant number of repetitions suffices



Discrete log algorithm (1V)

Another loose end: our algorithm uses QFTs modulo p—1,
whereas we have only seen how to compute QFTs modulo 2"

11 1 1 1]
1 2 3 N-1 ® ¢ ¢
Q] 6V} Q)] o
1 |1 (02 0)4 (06 OJZ(Nfl) 9 H p H T ®
— 8
: : : : 16-®~@H ‘ ;
1 CON—1 ®2(N—1) CO3(N—1) (D(N—l)z ¢ s) @ 9

A variation of our QFT algorithm would work for moduli of the
form 3", and, more generally, all smooth numbers (those that

are products of “small” primes)



Discrete log algorithm (V)

In fact, for the case where Pp—1 is smooth, there already exist
polynomial-time classical algorithms for discrete log!

It's only the case where p—1 is not smooth that is interesting

Shor just used a modulus close to p—1, and, using careful
error-analysis, showed that this was good enough ...

There are also ways of attaining good approximations of
QFTs for arbitrary moduli (which we won't consider now)



« Universal sets of guantum gates




A universal set of gates (l)

Main Theorem: any unitary operation U acting on K qubits
can be decomposed into O(4X) CNOT and one-qubit gates

Proof sketch (for a slightly worse bound of O(k24¥)) :

We first show how to simulate a controlled-U, for any one-
qubit unitary U

Straightforward to show: every one-qubit unitary matrix
can be expressed as a product of the form

e® 0 |e* 0 cos(0/2) sin(6/2)]e> 0
0 e®|l 0 e™?|—sin(0/2) cos(0/2)] 0 2
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A universal set of gates (ll)

This can be used to show that, for every one-qubit unitary U,

there exist A, B, C, and A, such that:
« ABC=1

+ e AXBXC=U,where X = Exercise: show
1 0 how this follows

The fact implies that

P
o moE

ST
O

1 O
where P = ( m]
- 0 e
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A universal set of gates (lll)

Controlled-U gates can also simulate controlled-controlled-V
gates, for an arbitrary unitary one-qubit unitary V:

® l l ®
where V = U?2

®
I
cl-e
S
e
S
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A universal set of gates (1V)

Example: Toffoli gate

“controlled-controlled-NOT”

In this case, the one-qubit gates can be:

1 |1

J2 |1
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A universal set of gates (V)

From the Toffoli gate, generalized Toffoli gates (which are
controlled-controlled- ... -NOT gates) can be constructed:

a)
o) :
as) L ®
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ay,) — ® ®

P D2
N a7 v
© —P— N N
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A universal set of gates (VI)

From generalized Toffoli gates, generalized controlled-U
gates (controlled-controlled- ... -U) can be constructed:

0) —1— 0) {——p

oSO O O O O
o O O O O O

-
-

00 01

S O O O O o O -
S O O O o o = O
S O O O o = O O
o o O o = O O O
S o O = O O O O
S O = O O O O O

-
-

10 11
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A universal set of gates (VII)

The approach essentially enables any K-qubit operation of the
simple form

1 0 00 0 00O
0o U, 00U, 00 0
0 0 10 0 00 0
0 0 01 0 00 0
0O U, 00U, 000
0 0 00 0 10 0
0 0 00 0 01 0
0 0 00 0 0 0 1

to be computed with O(k?) CNOT and one-qubit gates

In a spirit similar to Gaussian elimination, any 2x2X unitary

matrix can be decomposed into a product of O(4X) of these
16



A universal set of gates (VIll)

This completes the proof sketch*

Thus, the set of all one-qubit gates and the CNOT gate are
universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?

Answer 1: strictly speaking, no, because this results in only
countably many quantum circuits, whereas there are

uncountably many unitary operations on K qubits (for any k)

* Actually we proved a slightly worse bound of O(k24k)
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Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense ...
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