Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681

Lecture 9 (2005)

Richard Cleve DC 3524 <u>cleve@cs.uwaterloo.ca</u>

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

Loose ends in discrete log algorithm
Universal sets of quantum gates

Loose ends in discrete log algorithm Universal sets of quantum gates

Discrete log algorithm (I)

Input: *p* (*n*-bit prime), *g* (generator of Z_p^*), $a \in Z_p^*$ **Output:** $r \in Z_{p-1}$ such that $g^r \mod p = a$

Example: p = 7, $\mathbf{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\} = \{3^{0}, 3^{2}, 3^{1}, 3^{4}, 3^{5}, 3^{3}\}$ (hence 3 is a generator of \mathbf{Z}_{7}^{*})

Define $f: \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \to \mathbb{Z}_{p}^{*}$ as $f(x, y) = g^{x} a^{-y} \mod p$ Then $f(x_{1}, y_{1}) = f(x_{2}, y_{2})$ iff $(x_{1}, y_{1}) - (x_{2}, y_{2}) \equiv k(r, 1) \pmod{p-1}$ (for some k)

produces a random
$$(s, t)$$
 such that
 $(s, t) \cdot (r, 1) \equiv 0 \pmod{p-1}$
 $\Leftrightarrow sr + t \equiv 0 \pmod{p-1}$

Discrete log algorithm (II)

If gcd(s, p-1) = 1 then *r* can be computed as $r = -ts^{-1} \mod p - 1$

The probability that this occurs is $\phi(p-1)/(p-1)$, where ϕ is *Euler's totient function*

It is known that $\phi(N) = \Omega(N/\log\log N)$, which implies that the above probability is at least $\Omega(1/\log\log p) = \Omega(1/\log n)$

Therefore, $O(\log n)$ repetitions are sufficient

... this is not bad—but things are actually better than that ... 5

Discrete log algorithm (III)

We obtain a random (s, t) such that $sr + t \equiv 0 \pmod{p-1}$

Note that each $s \in \{0, ..., p-2\}$ occurs with equal probability

Therefore, if we run the algorithm *twice*: we obtain two independent samples $s_1, s_2 \in \{0, ..., p-2\}$

If it happens that $gcd(s_1, s_2) = 1$ then (by Euclid) there exist integers *a* and *b* such that $as_1 + bs_2 = 1 \rightarrow r = -(at_1 + bt_2)$

Question: what is the probability that $gcd(s_1, s_2) = 1$?

$$1 - \sum_{q \text{ prime}} \Pr[q / s_1] \Pr[q / s_2] > 1 - \sum_{q \text{ prime}} \frac{1}{q^2} > 0.54$$

Therefore, a *constant* number of repetitions suffices

Discrete log algorithm (IV)

Another loose end: our algorithm uses QFTs modulo p-1, whereas we have only seen how to compute QFTs modulo 2^n

A variation of our QFT algorithm would work for moduli of the form 3^n , and, more generally, all **smooth** numbers (those that are products of "small" primes)

Discrete log algorithm (V)

In fact, for the case where p-1 is smooth, there already exist polynomial-time *classical* algorithms for discrete log!

It's only the case where p-1 is **not** smooth that is interesting

Shor just used a modulus *close to* p-1, and, using careful error-analysis, showed that this was good enough ...

There are also ways of attaining good approximations of QFTs for arbitrary moduli (which we won't consider now)

Loose ends in discrete log algorithm Universal sets of quantum gates

A universal set of gates (I)

Main Theorem: any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

Proof sketch (for a slightly worse bound of $O(k^24^k)$) :

We first show how to simulate a controlled-U, for any onequbit unitary U

Straightforward to show: every one-qubit unitary matrix can be expressed as a product of the form

$$\begin{bmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{bmatrix} \begin{bmatrix} e^{i\alpha/2} & 0 \\ 0 & e^{-i\alpha/2} \end{bmatrix} \begin{bmatrix} \cos(\theta/2) & \sin(\theta/2) \\ -\sin(\theta/2) & \cos(\theta/2) \end{bmatrix} \begin{bmatrix} e^{i\beta/2} & 0 \\ 0 & e^{-i\beta/2} \end{bmatrix}$$

A universal set of gates (II)

This can be used to show that, for every one-qubit unitary U, there exist A, B, C, and λ , such that:

• A B C = I• A B C = I• $e^{i\lambda} A X B X C = U$, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ **Exercise:** show how this follows

The fact implies that

A universal set of gates (III)

Controlled-U gates can also simulate <u>controlled-controlled-V</u> gates, for an arbitrary unitary one-qubit unitary V:

A universal set of gates (IV)

Example: Toffoli gate "controlled-controlled-NOT"

In this case, the one-qubit gates can be:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

A universal set of gates (V)

From the Toffoli gate, *generalized* Toffoli gates (which are controlled-controlled-...-NOT gates) can be constructed:

A universal set of gates (VI)

From generalized Toffoli gates, *generalized controlled-U* gates (controlled-controlled- \dots -*U*) can be constructed:

(1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	${U}_{00}$	${U}_{01}$
$\left(0 \right)$	0	0	0	0	0	${U}_{10}$	U_{11})

A universal set of gates (VII)

The approach essentially enables any k-qubit operation of the simple form $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ (1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

(1)	0	0	0	0	0	0	0	
0	${U}_{00}$	0	0	${U}_{01}$	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	${U}_{10}$	0	0	U_{11}	0	0	0	
0	0	0	0	0	1	0	0	
0	0	0	0	0	0	1	0	
0	0	0	0	0	0	0	1 /	

to be computed with $O(k^2)$ CNOT and one-qubit gates

In a spirit similar to Gaussian elimination, any $2^k \times 2^k$ unitary matrix can be decomposed into a product of $O(4^k)$ of these

A universal set of gates (VIII)

This completes the proof sketch*

Thus, the set of *all* one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

* Actually we proved a slightly worse bound of $O(k^24^k)$

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense ...

To be continued ...

