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Discrete log algorithm (I)Discrete log algorithm (I)
Input: p (n-bit prime),  g (generator of Z*p),  a ∈ Z*p

Output: r ∈ Zp−1 such that g r mod p = a

Example: p = 7,  Z*7 = {1, 2, 3, 4, 5, 6} = {30, 32, 31, 34, 35, 33} 
(hence 3 is a generator of Z*7)

Define f : Zp−1× Zp−1 Z*p as  f (x , y) = gx a−y mod p

Then  f (x1 , y1) = f (x2, y2) iff (x1, y1)− (x2, y2) ≡ k(r, 1) (mod p− 1)
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F†
produces a random (s , t) such that 
(s , t)⋅(r, 1) ≡ 0  (mod p− 1)

sr + t ≡ 0  (mod p− 1)

(for some k)
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Discrete log algorithm (II)Discrete log algorithm (II)

fF
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F† produces a random (s , t) such that 
sr + t ≡ 0  (mod p− 1)

If gcd(s, p− 1) = 1 then r can be computed as r = − ts−1 mod p−1

The probability that this occurs is φ(p−1)/(p−1), where φ is 
Euler’s totient function

It is known that φ(N) = Ω(N/ loglogN), which implies that the 
above probability is at least Ω(1/ loglog p) = Ω(1/ log n)
Therefore, O( log n) repetitions are sufficient
… this is not bad—but things are actually better than that …
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Discrete log algorithm (III)Discrete log algorithm (III)
We obtain a random (s , t) such that sr + t ≡ 0  (mod p− 1)

Therefore, a constant number of repetitions suffices

Note that each s ∈ {0,…, p− 2} occurs with equal probability

Therefore, if we run the algorithm twice: we obtain two 
independent samples s1, s2 ∈ {0,…,p− 2}

Question: what is the probability that gcd(s1,s2) = 1?
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If it happens that gcd(s1,s2) = 1 then (by Euclid) there exist 
integers a and b such that as1 + bs2 = 1 r = − (at1 + bt2)
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Discrete log algorithm (IV)Discrete log algorithm (IV)
Another loose end: our algorithm uses QFTs modulo p− 1, 
whereas we have only seen how to compute QFTs modulo 2n

A variation of our QFT algorithm would work for moduli of the 
form 3n, and, more generally, all smooth numbers (those that 
are products of “small” primes)
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Discrete log algorithm (V)Discrete log algorithm (V)

Shor just used a modulus close to p− 1, and, using careful 
error-analysis, showed that this was good enough ...

In fact, for the case where p− 1 is smooth, there already exist 
polynomial-time classical algorithms for discrete log!

It’s only the case where p− 1 is not smooth that is interesting

There are also ways of attaining good approximations of  
QFTs for arbitrary moduli (which we won’t consider now)
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A universal set of gates (I)A universal set of gates (I)
Main Theorem: any unitary operation U acting on k qubits
can be decomposed into O(4k) CNOT and one-qubit gates

Proof sketch (for a slightly worse bound of O(k24k)) :

We first show how to simulate a controlled-U, for any one-
qubit unitary U
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Straightforward to show: every one-qubit unitary matrix 
can be expressed as a product of the form
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A universal set of gates (II)A universal set of gates (II)

• A B C = I
• eiλ A X B X C = U, where

This can be used to show that, for every one-qubit unitary U, 
there exist  A, B, C, and λ, such that:
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Exercise: show 
how this follows
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A universal set of gates (III)A universal set of gates (III)
Controlled-U gates can also simulate controlled-controlled-V 
gates, for an arbitrary unitary one-qubit unitary V: 

UV U U†

≡ where V = U 2
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A universal set of gates (IV)A universal set of gates (IV)
Example: Toffoli gate
“controlled-controlled-NOT”

In this case, the one-qubit gates can be:
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A universal set of gates (V)A universal set of gates (V)
From the Toffoli gate, generalized Toffoli gates (which are 
controlled-controlled- ... -NOT gates) can be constructed:

≡

|a1〉
|a2〉
|a3〉

:
|ak〉
|b1〉

:

|c〉

|c ⊕ (a1 ∧ a2∧ ... ∧ ak)〉

|bk−2〉
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A universal set of gates (VI)A universal set of gates (VI)
From generalized Toffoli gates, generalized controlled-U
gates (controlled-controlled- ... -U) can be constructed:
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A universal set of gates (VII)A universal set of gates (VII)
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The approach essentially enables any k-qubit operation of the 
simple form

to be computed with O(k2) CNOT and one-qubit gates

In a spirit similar to Gaussian elimination, any 2k×2k unitary 
matrix can be decomposed into a product of O(4k) of these



17

A universal set of gates (VIII)A universal set of gates (VIII)

Thus, the set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

This completes the proof sketch*

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)

∗ Actually we proved a slightly worse bound of O(k24k)
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ApproximatelyApproximately universal gate setsuniversal gate sets
Answer 2: yes, for universality in an approximate sense ...

To be continued ...
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