Introduction to Quantum Information Processing CS 467 I CS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 9 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- Loose ends in discrete log algorithm
- Universal sets of quantum gates

- Loose ends in discrete log algorithm lanivereat ente of gurnitum grater

Discrete log algorithm (I)

Input: p (n-bit prime), g (generator of $\mathbf{Z}^{*}{ }_{p}$), $a \in \mathbf{Z}^{*}{ }_{p}$
Output: $r \in \mathbf{Z}_{p-1}$ such that $g^{r} \bmod p=a$
Example: $p=7, \mathbf{Z}^{*}{ }_{7}=\{1,2,3,4,5,6\}=\left\{3^{0}, 3^{2}, 3^{1}, 3^{4}, 3^{5}, 3^{3}\right\}$ (hence 3 is a generator of \mathbf{Z}^{*})

Define $f: \mathbf{Z}_{p-1} \times \mathbf{Z}_{p-1} \rightarrow \mathbf{Z}_{p}^{*}$ as $f(x, y)=g^{x} a^{-y} \bmod p$ Then $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$ iff $\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) \equiv k(r, 1)(\bmod p-1)$ (for some k)
$10\rangle-F-(-$ 国 $-D=\}$ produces a random (s, t) such that

$$
\begin{aligned}
(s, t) \cdot(r, 1) & \equiv 0(\bmod p-1) \\
\Leftrightarrow s r+t & \equiv 0(\bmod p-1)
\end{aligned}
$$

Discrete log algorithm (II)

$$
s r+t \equiv 0(\bmod p-1)
$$

If $\operatorname{gcd}(s, p-1)=1$ then r can be computed as $r=-t s^{-1} \bmod p-1$
The probability that this occurs is $\phi(p-1) /(p-1)$, where ϕ is Euler's totient function

It is known that $\phi(N)=\Omega(N / \log \log N)$, which implies that the above probability is at least $\Omega(1 / \log \log p)=\Omega(1 / \log n)$

Therefore, $O(\log n)$ repetitions are sufficient
... this is not bad-but things are actually better than that ... 5

Discrete log algorithm (III)

We obtain a random (s, t) such that $s r+t \equiv 0(\bmod p-1)$
Note that each $s \in\{0, \ldots, p-2\}$ occurs with equal probability
Therefore, if we run the algorithm twice: we obtain two independent samples $s_{1}, s_{2} \in\{0, \ldots, p-2\}$

If it happens that $\operatorname{gcd}\left(s_{1}, s_{2}\right)=1$ then (by Euclid) there exist integers a and b such that $a s_{1}+b s_{2}=1 \rightarrow r=-\left(a t_{1}+b t_{2}\right)$

Question: what is the probability that $\operatorname{gcd}\left(s_{1}, s_{2}\right)=1$?

$$
1-\sum_{q \text { prime }} \operatorname{Pr}\left[q \mid s_{1}\right] \operatorname{Pr}\left[q \mid s_{2}\right]>1-\sum_{q \text { prime }} \frac{1}{q^{2}}>0.54
$$

Therefore, a constant number of repetitions suffices

Discrete log algorithm (IV)

Another loose end: our algorithm uses QFTs modulo $p-1$, whereas we have only seen how to compute QFTs modulo 2^{n}

$$
\frac{1}{\sqrt{N}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(N-1)} \\
1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{3(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right]
$$

A variation of our QFT algorithm would work for moduli of the form 3^{n}, and, more generally, all smooth numbers (those that are products of "small" primes)

Discrete log algorithm (V)

In fact, for the case where $p-1$ is smooth, there already exist polynomial-time classical algorithms for discrete log!

It's only the case where $p-1$ is not smooth that is interesting

Shor just used a modulus close to $p-1$, and, using careful error-analysis, showed that this was good enough ...

There are also ways of attaining good approximations of QFTs for arbitrary moduli (which we won't consider now)

- Loose ends in discrete log algorithm - Universal sets of quantum gates

A universal set of gates (I)

Main Theorem: any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates

Proof sketch (for a slightly worse bound of $O\left(k^{2} 4^{k}\right)$) :
We first show how to simulate a controlled- U, for any onequbit unitary U

Straightforward to show: every one-qubit unitary matrix can be expressed as a product of the form
$\left[\begin{array}{cc}e^{i \delta} & 0 \\ 0 & e^{i \delta}\end{array}\right]\left[\begin{array}{cc}e^{i \alpha / 2} & 0 \\ 0 & e^{-i \alpha / 2}\end{array}\right]\left[\begin{array}{rr}\cos (\theta / 2) & \sin (\theta / 2) \\ -\sin (\theta / 2) & \cos (\theta / 2)\end{array}\right]\left[\begin{array}{cc}e^{i \beta / 2} & 0 \\ 0 & e^{-i \beta / 2}\end{array}\right]$

A universal set of gates (II)

This can be used to show that, for every one-qubit unitary U, there exist A, B, C, and λ, such that:

- $A B C=I$
- $e^{i \lambda} A X B X C=U$, where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Exercise: show how this follows

The fact implies that

A universal set of gates (III)

Controlled- U gates can also simulate controlled-controlled- V gates, for an arbitrary unitary one-qubit unitary V :

where $V=U^{2}$

A universal set of gates (IV)

Example: Toffoli gate "controlled-controlled-NOT"

In this case, the one-qubit gates can be:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \quad T=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right]
$$

A universal set of gates (V)

From the Toffoli gate, generalized Toffoli gates (which are controlled-controlled- ... -NOT gates) can be constructed:

A universal set of gates (VI)

From generalized Toffoli gates, generalized controlled- \boldsymbol{U} gates (controlled-controlled- ... $-U$) can be constructed:

$\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{10} & U_{11}\end{array}\right)$

A universal set of gates (VII)

The approach essentially enables any k-qubit operation of the simple form

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & U_{00} & 0 & 0 & U_{01} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & U_{10} & 0 & 0 & U_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

to be computed with $O\left(k^{2}\right)$ CNOT and one-qubit gates
In a spirit similar to Gaussian elimination, any $2^{k} \times 2^{k}$ unitary matrix can be decomposed into a product of $O\left(4^{k}\right)$ of these

A universal set of gates (VIII)

This completes the proof sketch*
Thus, the set of all one-qubit gates and the CNOT gate are universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?
Answer 1: strictly speaking, no, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

* Actually we proved a slightly worse bound of $O\left(k^{2} 4^{k}\right)$

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense ...

To be continued

