Introduction to Quantum Information Processing CS 467 I CS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 8 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve

Contents

- Recap of the order-finding problem/algorithm
- Reduction from factoring to order-finding
- The discrete log problem
- The "hidden subgroup" framework
- Recap of the order-finding problem/algorithm Reduction from factoring to order-findling The discrete log problem The "hidden subgroup" framework

Order-finding problem

Input: M (an n-bit integer) and $a \in\{1,2, \ldots, M-1\}$ such that $\operatorname{gcd}(X, M)=1\}$

Output: $\operatorname{ord}_{M}(a)$, which is the minimum $r>0$ such that $a^{r}=1(\bmod M)$

Example: for $M=21$ and $a=6$, the powers of 10 are: $1,10,16,13,4,19,1,10,16,13,4,19,1,10,16,13,4, \ldots$
Therefore, the correct output is: 6
Note: no classical polynomial-time algorithm is known for this problem

Quantum algorithm for order-finding

Number of gates for a constant success probability is:
$O\left(n^{2} \log n \log \log n\right)$

* For a discussion of the continued fractions algorithm, please see Appendix A4.4 in [Nielsen \& Chuang]
- Recap of the order-finding problem/algorithm
- Reduction from factoring to order-finding
- The discrete log problem
- The "hidden subgroup" framework

The integer factorization problem

Input: M (n-bit integer; we can assume it is composite)
Output: p, q (each greater than 1) such that $p q=N$

Note 1: no efficient (polynomial-time) classical algorithm is known for this problem

Note 2: given any efficient algorithm for the above, we can recursively apply it to fully factor M into primes* efficiently

* A polynomial-time classical algorithm for primality testing exists

Factoring prime-powers

There is a straightforward classical algorithm for factoring numbers of the form $M=p^{k}$, for some prime p

What is this algorithm?

Therefore, the interesting remaining case is where M has at least two distinct prime factors

Numbers other than prime-powers

Proposed quantum algorithm (repeatedly do):

1. randomly choose $a \in\{2,3, \ldots, M-1\}$
2. compute $g=\operatorname{gcd}(a, M)$
3. if $g>1$ then
output $g, M / g$
else
compute $r=\operatorname{ord}_{M}(a)$ (quantum part)
if r is even then
compute $x=a^{r / 2}-1 \bmod M$
compute $h=\operatorname{gcd}(x, M)$
if $h>1$ then output $h, M / h$

Analysis:
we have $M \mid a^{r}-1$
so $M \mid\left(a^{r / 2}+1\right)\left(a^{r / 2}-1\right)$
thus, either $M \mid a^{r / 2}+1$
or $\operatorname{gcd}\left(a^{r / 2}+1, M\right)$
is a nontrivial factor of M

- Recap of the order-finding problem/algorithm

Decluction from factoring to erolor findina

- The discrete log problem

The "hidden subgroup" framework

Discrete logarithm problem (I)

Input: p (prime), g (generator of \mathbf{Z}^{*}), $a \in \mathbf{Z}^{*}{ }_{p}$
Output: $r \in \mathbf{Z}_{p-1}$ such that $g^{r} \bmod p=a$
Example: $p=7, \mathbf{Z}^{*}{ }_{7}=\{1,2,3,4,5,6\}=\left\{3^{0}, 3^{2}, 3^{1}, 3^{4}, 3^{5}, 3^{3}\right\}$ (hence 3 is a generator of \mathbf{Z}^{*})

For $a=6$, since $3^{3}=6$, the output should be $r=3$
Note: No efficient classical algorithm for DLP is known (and cryptosystems exist whose security is predicated on the computational difficulty of DLP)

Efficient quantum algorithm for DLP?
(Hint: it can be made to look like Simon's problem!)

Discrete logarithm problem (II)

Clever idea (of Shor): define $f: \mathbf{Z}_{p-1} \times \mathbf{Z}_{p-1} \rightarrow \mathbf{Z}^{*}{ }_{p}$ as $f(x, y)=g^{x} a^{-y} \bmod p$

When is $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$?
We know $a=g^{r}$ for some r, so $f(x, y)=g^{x-r y} \bmod p$
Thus, $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$ iff $x_{1}-r y_{1} \equiv x_{2}-r y_{2}(\bmod p-1)$

$$
\text { iff }\left(x_{1}, y_{1}\right) \cdot(1,-r) \equiv\left(x_{2}, y_{2}\right) \cdot(1,-r) \quad(\bmod p-1)
$$

$$
\begin{equation*}
\text { iff }\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right) \cdot(1,-r) \equiv 0(\bmod p-1) \tag{1,-r}
\end{equation*}
$$

$$
\begin{equation*}
\text { iff }\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) \equiv k(r, 1)(\bmod p-1) \tag{r,1}
\end{equation*}
$$

$$
\text { Recall Simon's: } f(x)=f(y) \text { iff } x-y=k r(\bmod 2)
$$

$$
\mathbf{Z}_{p-1} \times \mathbf{Z}_{p-1}
$$

Discrete logarithm problem (III)

$f: \mathbf{Z}_{p-1} \times \mathbf{Z}_{p-1} \rightarrow \mathbf{Z}^{*}{ }_{p}$ defined as $f(x, y)=g^{x} a^{-y} \bmod p$

$$
f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right) \text { iff }\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) \equiv k(r, 1)(\bmod p-1)
$$

Recall Simon's: $f(x)=f(y)$ iff $x-y=k r(\bmod 2)$

$$
(s, t) \cdot(r, 1) \equiv 0(\bmod p-1) \quad \text { Why? }
$$

if $\operatorname{gcd}(s, p-1)=1$ then r can be computed as $r=-t s^{-1} \bmod p-1$

- Recap of the order-finding problem/algorithm
- Reduction from factoring to order-finding
- The discrete log problem
- The "hidden subgroup" framework

Hidden subgroup problem (I)

Let G be a known group and H be an unknown subgroup of G
Let $f: G \rightarrow T$ have the property $f\left(x_{1}\right)=f\left(x_{2}\right)$ iff $x_{1}-x_{2} \in H$
(i.e., x_{1} and x_{2} are in the same right coset of H)

Problem: given a black-box for computing f, determine H

Example 1: $G=\left(\mathbf{Z}_{2}\right)^{n}$ (the additive group) and $H=\{0, r\}$
Example 2: $G=\left(\mathbf{Z}_{p-1}\right)^{2}$ and
$H=\{(0,0),(r, 1),(2 r, 2), \ldots,((p-2) r, p-2)\}$
Example 3: $G=\mathbf{Z}$ and $H=r \mathbf{Z}$

Hidden subgroup problem (II)

Example 4: $G=S_{n}$ (the symmetric group, consisting of all permutations on n objects-which is not abelian) and H is any subgroup of G

A quantum algorithm for this instance of HSP would lead to an efficient quantum algorithm for the graph isomorphism problem ...

... yet no efficient quantum has been found for this instance of HSP, despite significant effort by many people

