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OrderOrder--finding problemfinding problem
Input: M (an n-bit integer) and a∈ {1,2,…, M−1} 
such that gcd(x, M ) = 1}

Output: ordM (a), which is the minimum r > 0 such 
that ar = 1 (mod M )

Example: for M = 21 and a = 6, the powers of 10 are: 
1, 10, 16, 13, 4, 19, 1, 10, 16, 13, 4, 19, 1, 10, 16, 13, 4, …

Therefore, the correct output is: 6 

Note: no classical polynomial-time algorithm is known 
for this problem
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Quantum algorithm for orderQuantum algorithm for order--findingfinding

Ua,M

H
H
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H
H −4

−4 −8H

measure these qubits and 
apply continued fractions* 
algorithm to determine a 
quotient, whose 
denominator divides r

Ua,M |y〉 = |ay mod M〉

inverse QFT

* For a discussion of the continued fractions algorithm, please see 
Appendix A4.4 in [Nielsen & Chuang]

Number of gates for a constant success probability is: 
O(n2 log n loglog n)
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The integer factorization problemThe integer factorization problem

Input: M (n-bit integer; we can assume it is composite)

Output: p, q (each greater than 1) such that pq = N

Note 2: given any efficient algorithm for the above, we can 
recursively apply it to fully factor M into primes* efficiently

* A polynomial-time classical algorithm for primality testing exists

Note 1: no efficient (polynomial-time) classical algorithm 
is known for this problem
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Factoring primeFactoring prime--powerspowers
There is a straightforward classical algorithm for factoring 
numbers of the form M = pk, for some prime p

What is this algorithm?

Therefore, the interesting remaining case is where M has 
at least two distinct prime factors
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Proposed quantum algorithm (repeatedly do):

1. randomly choose a ∈ {2, 3, …, M−1}
2. compute g = gcd(a,M)
3. if g > 1 then

output g, M/g
else

compute r = ordM(a)  (quantum part)
if r is even then

compute x = ar/2 −1 mod M
compute h = gcd(x,M)
if h > 1 then output h, M/h

Numbers other than primeNumbers other than prime--powerspowers

so M | (ar/2+1)(ar/2−1)

we have M | ar−1

thus, either M | ar/2 +1
or gcd(ar/2 +1,M)
is a nontrivial factor of M

latter event occurs with probability ≥ ½

Analysis:
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Discrete logarithm problem (I)Discrete logarithm problem (I)
Input: p (prime),  g (generator of Z*p),  a ∈ Z*p

Output: r ∈ Zp−1 such that g r mod p = a

Example: p = 7,  Z*7 = {1, 2, 3, 4, 5, 6} = {30, 32, 31, 34, 35, 33} 
(hence 3 is a generator of Z*7)

For a = 6, since 33 = 6, the output should be r = 3

Note: No efficient classical algorithm for DLP is known 
(and cryptosystems exist whose security is predicated on 
the computational difficulty of DLP)

Efficient quantum algorithm for DLP? 
(Hint: it can be made to look like Simon’s problem!)
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Discrete logarithm problem (II)Discrete logarithm problem (II)
Clever idea (of Shor): define  f : Zp−1× Zp−1 Z*p
as f (x , y) = gx a−y mod p

We know  a = g r for some r, so  f (x , y) = gx− ry mod p

When is  f (x1 , y1) = f (x2, y2)?

Thus,  f (x1 , y1) = f (x2, y2) iff x1− ry1 ≡ x2− ry2   (mod p− 1)

iff (x1, y1)⋅(1, − r) ≡ (x2, y2)⋅(1, − r)   (mod p− 1)

iff ((x1, y1)− (x2, y2))⋅(1, − r) ≡ 0  (mod p− 1)

iff (x1, y1)− (x2, y2) ≡ k(r, 1) (mod p− 1)

Zp−1× Zp−1

(1,− r)

(r, 1)

Recall Simon’s: f(x) = f(y) iff x−y = kr (mod 2)
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Discrete logarithm problem (III)Discrete logarithm problem (III)
f : Zp−1× Zp−1 Z*p defined as f (x , y) = gx a−y mod p

f (x1 , y1) = f (x2, y2) iff (x1, y1)− (x2, y2) ≡ k(r, 1) (mod p− 1)

Recall Simon’s: f(x) = f(y) iff x−y = kr (mod 2)

fF

|0〉

|0〉
F|0〉

|0〉

F†

F† result is a random (s , t) such that 
(s , t)⋅(r, 1) ≡ 0  (mod p− 1)

if gcd(s, p− 1) = 1 then r can be 
computed as r = − ts−1 mod p− 1

Why?
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Hidden subgroup problem (I)Hidden subgroup problem (I)
Let G be a known group and H be an unknown subgroup of G

Let  f : G T have the property f (x1) = f (x2) iff x1− x2 ∈ H 
(i.e., x1 and x2 are in the same right coset of H )

Problem: given a black-box for computing  f, determine H

Example 1: G = (Z2)n (the additive group) and H = {0,r}

Example 2: G = (Zp−1)2 and 
H = {(0,0), (r,1), (2r,2), …, ((p−2)r, p−2)}

Example 3: G = Z and H = rZ



16

Hidden subgroup problem (II)Hidden subgroup problem (II)
Example 4: G = Sn (the symmetric group, consisting 
of all permutations on n objects—which is not abelian) 
and H is any subgroup of G

A quantum algorithm for this instance of HSP would 
lead to an efficient quantum algorithm for the graph 
isomorphism problem …

… yet no efficient quantum has been found for this 
instance of HSP, despite significant effort by many 
people
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