Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681

Lecture 7 (2005)

Richard Cleve DC 3524 cleve@cs.uwaterloo.ca

Course web site at: <u>http://www.cs.uwaterloo.ca/~cleve</u>

Contents

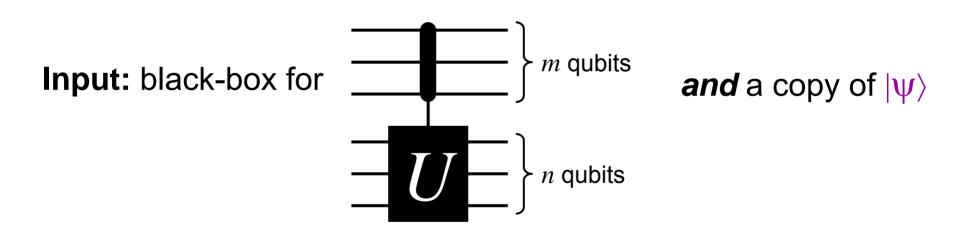
- Recap of phase estimation problem/algorithm
- How the algorithm works for general phases
- Recap of the order-finding problem/algorithm
- How to bypass the need for an eigenstate

- Recap of phase estimation problem/algorithm
- How the algorithm works for general phases
- Recap of the order-finding problem/algorithm
- How to bypass the need for an eigenstate

Phase estimation problem

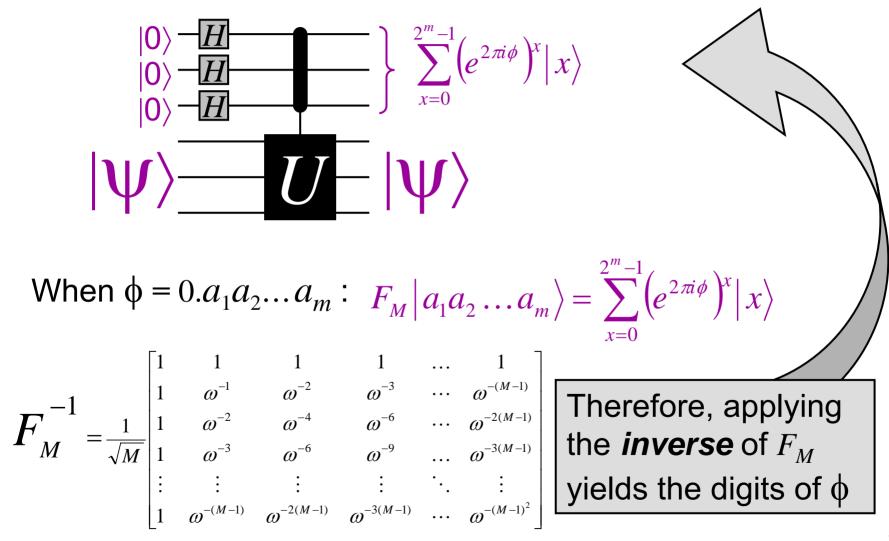
U is a unitary operation on n qubits

 $|\psi\rangle$ is an eigenvector of *U*, with eigenvalue $e^{2\pi i\phi}$ ($0 \le \phi \le 1$)



Output: ϕ (*m*-bit approximation)

Algorithm for phase estimation



- Recap of phase estimation problem/algorithm
- How the algorithm works for general phases
- Recap of the order-finding problem/algorithm
- How to bypass the need for an eigenstate

Arbitrary phases (I)

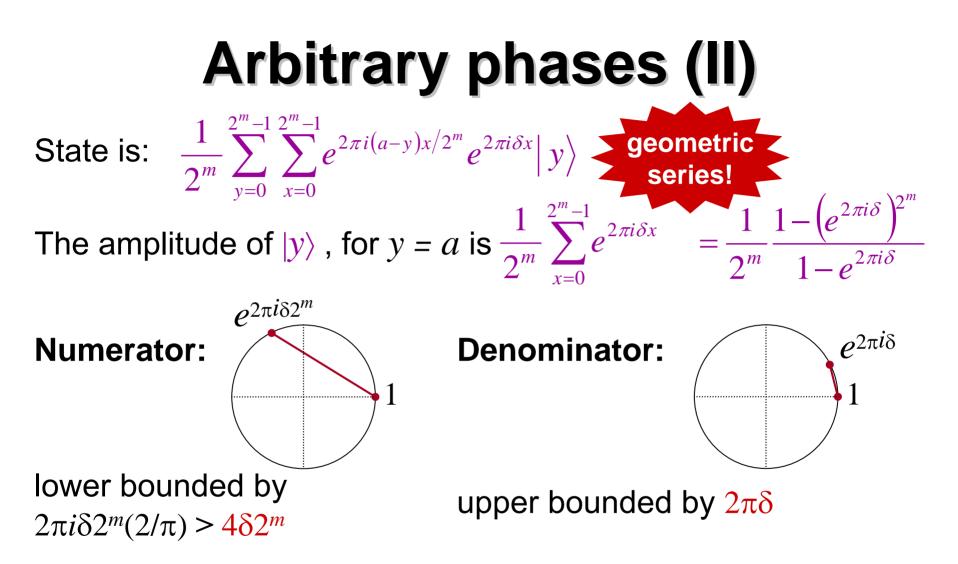
What if ϕ is not of the nice form $\phi = 0.a_1a_2...a_m$? **Example:** $\phi = \frac{1}{3} = 0.01010101010101...$

Let's calculate what the previously-described procedure does:

Let $a/2^m = 0.a_1a_2...a_m$ be an *m*-bit approximation of ϕ , in the sense that $\phi = a/2^m + \delta$, where $|\delta| \le 1/2^{m+1}$

$$(F_{M})^{-1} \sum_{x=0}^{2^{m}-1} (e^{2\pi i \phi})^{x} |x\rangle = \frac{1}{2^{m}} \sum_{y=0}^{2^{m}-1} \sum_{x=0}^{2^{m}-1} e^{-2\pi i x y/2^{m}} e^{2\pi i \phi x} |y\rangle$$

$$= \frac{1}{2^{m}} \sum_{y=0}^{2^{m}-1} \sum_{x=0}^{2^{m}-1} e^{-2\pi i x y/2^{m}} e^{2\pi i \left(\frac{a}{2^{m}}+\delta\right)^{x}} |y\rangle$$
What is the amplitude of $|a_{1}a_{2}...a_{m}\rangle$?

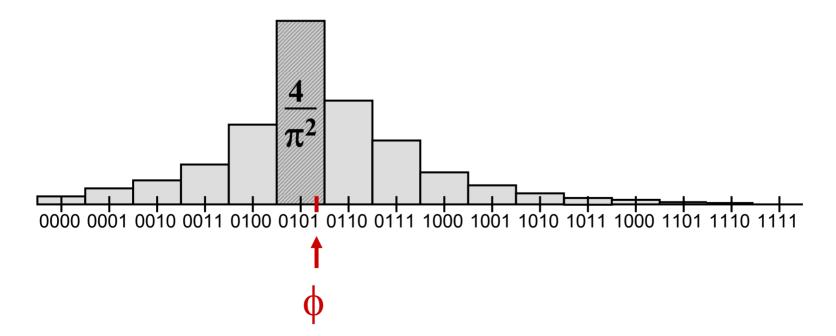


Therefore, the absolute value of the amplitude of $|y\rangle$ is at least the quotient of $(1/2^m)$ (numerator/denominator), which is $2/\pi$

Arbitrary phases (III)

Therefore, the probability of measuring an *m*-bit approximation of ϕ is always at least $4/\pi^2 \approx 0.4$

For example, when $\phi = \frac{1}{3} = 0.01010101010101...$, the outcome probabilities look roughly like this:



- Recap of phase estimation problem/algorithm
- How the algorithm works for general phases
- Recap of the order-finding problem/algorithm
- How to bypass the need for an eigenstate

Order-finding problem

Let M be an m-bit integer

Def: $\mathbf{Z}_{M}^{*} = \{x \in \{1, 2, ..., M-1\} : gcd(x, M) = 1\}$ (a group)

Def: $\operatorname{ord}_{M}(a)$ is the minimum r > 0 such that $a^{r} = 1 \pmod{M}$

Order-finding problem: given a and M, find $\operatorname{ord}_{M}(a)$

Example: $Z_{21}^* = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$

The powers of 10 are: 1, 10, 16, 13, 4, 19, 1, 10, 16, ...

Therefore, $ord_{21}(10) = 6$

Order-finding algorithm (I)

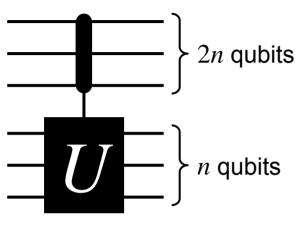
Define: U (an operation on m qubits) as: $U|y\rangle = |ay \mod M\rangle$

Define: $|\psi_1\rangle = \sum_{j=0}^{r-1} e^{-2\pi i (1/r)j} |a^j \mod M\rangle$

Then
$$U|\psi_1\rangle = \sum_{j=0}^{r-1} e^{-2\pi i (1/r)j} |a^{j+1} \mod M\rangle$$

$$= \sum_{j=0}^{r-1} e^{2\pi i (1/r)} e^{-2\pi i (1/r)(j+1)} |a^{j+1} \mod M\rangle$$
$$= e^{2\pi i (1/r)} |\psi_1\rangle$$

Order-finding algorithm (II)



corresponds to the mapping: $|x\rangle|y\rangle \rightarrow |x\rangle|a^xy \mod M\rangle$

Moreover, this mapping can be implemented with roughly $O(n^2)$ gates

The phase estimation algorithm yields a 2n-bit estimate of 1/r

From this, a good estimate of r can be calculated by taking the reciprocal, and rounding off to the nearest integer

Exercise: why are 2*n* bits necessary and sufficient for this?

Problem: how do we construct state $|\psi_1\rangle$ to begin with?

- Recap of phase estimation problem/algorithm
- How the algorithm works for general phases
- Recap of the order-finding problem/algorithm
- How to bypass the need for an eigenstate

Bypassing the need for $|\psi_1\rangle$ (I)

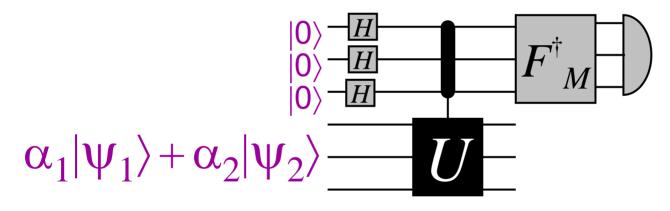
 $\left|\psi_{1}\right\rangle = \sum_{i=0}^{r-1} e^{-2\pi i (1/r)j} \left|a^{j} \operatorname{mod} M\right\rangle$ Let $\left|\psi_{2}\right\rangle = \sum_{i=0}^{r-1} e^{-2\pi i (2/r)j} \left|a^{j} \operatorname{mod} M\right\rangle$ $|\psi_k\rangle = \sum_{i=0}^{r-1} e^{-2\pi i (k/r)j} |a^j \mod M\rangle$ $|\psi_r\rangle = \sum_{i=0}^{r-1} e^{-2\pi i (r/r)j} |a^j \mod M\rangle$

Can still uniquely determine k and r, provided they have no common factors (and $O(\log n)$ trials suffice for this)

Any one of these could be used in the previous procedure, to yield an estimate of k/r, from which r can be extracted What if k is chosen randomly and kept secret? 15

Bypassing the need for $|\psi_1\rangle$ (II)

Returning to the phase estimation problem, suppose that $|\psi_1\rangle$ and $|\psi_2\rangle$ have respective eigenvalues $e^{2\pi i \phi_1}$ and $e^{2\pi i \phi_2}$, and that $\alpha_1 |\psi_1\rangle + \alpha_2 |\psi_2\rangle$ is used in place of an eigenvalue:



What will the outcome be?

It will be an estimate of $\begin{cases} \phi_1 \text{ with probability } |\alpha_1|^2 \\ \phi_2 \text{ with probability } |\alpha_2|^2 \end{cases}$

Bypassing the need for $|\psi_1\rangle$ (III)

Using the state

yields results equivalent to choosing a $|\psi_k\rangle$ at random

Is it hard to construct the state $\frac{1}{\sqrt{r}}\sum_{k=1}^{r} |\psi_k\rangle$?

In fact, it's easy, since

$$\frac{1}{\sqrt{r}} \sum_{k=1}^{r} |\psi_{k}\rangle = \frac{1}{\sqrt{r}} \sum_{k=1}^{r} \sum_{j=0}^{r-1} e^{-2\pi i (k/r)j} |a^{j} \mod M\rangle = |1\rangle$$

This is how the previous requirement for $|\psi_1\rangle$ is bypassed

