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e Continuation of Simon’s problem




Quantum vs. classical separations

black-box problem |quantum |classical

constant vs. balanced |1 (query) |2 (queries)

1-out-of-4 search 1 3

constant vs. balanced |1 12"+ 1 | (only for exact)

Simon’s problem O(n) Q(2n/2) (probabilistic)




Simon’s problem

Let f: {0,1}" > {0,1}" have the property that there exists
an r € {0,1}" such that f (x) =f(y) iff X®y=rorx=y

Example: | x |f(X)
000 | 011 What is I In this case?
001 [ 101
010 | 000
011|010
100 | 101
101 | 011
110 (010
111 | 000

Answer: I =101




Classical lower bound

Theorem: any classical algorithm solving Simon’s

problem must make Q(2"?) queries, to succeed
with probability > %4



A quantum algorithm for Simon |
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Queries: X,) Not clear what eigenvector
’ of target registers is ...
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}y@f(x»
Proposed start of quantum 0) —H )
algorithm: query all values 0) —{H
of f in superposition 0y —[H

an
\V

What is the output state of 0)
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A quantum algorithm for Simon |

Answer: the output state is Z‘ X>‘ f (X)>

xe{0,1}"

X |f(X)

Let T < {0,1}” be such that one element from 000|011
each matched pairisin T (assume I # 00...0) 001|101
Example: could take T = {000, 001, 011, 111} |010|000
Then the output state can be written as: S Do
100|101

> )| f(0))Hx®r) f(x®r)) 101|011
xeT 110({010
ZZ(IX>+\X69r>)\ f(x)) =201 090

xeT 3



A quantum algorithm for Simon Il

Measuring the second register yields |X) + [X®T) In the first
register, for arandom X € T

How can we use this to obtain some information about r?

Try applying H®" to the state, yielding:

( I)Xoy > Z(_l)(x@r)oy >

yeOl yeOl

= 3 ()(l+DYy)

yeOl

Memsiring this state vield b {(1/2)n_1 ifrey =0
easuring this state yields y with prob. 1 if r-y #0

9



A quantum algorithm for Simon IV

Executing this algorithm k=0(n) times  0)—E =
yields randomy,, Y,,..., Y, € £0,13" such 0)—H a-D—
0)—H H-D—
thatr-y, =r-y,=..=r-y,=0 0) D
How does this help? 0) D
ow does this help i -

This is a system of K linear equations:

Yo Y - Y[ n] O
Y21 yzz yzn rz _ 0
Y Yke 0 Ykn W] L9

With high probability, there is a unique non-zero solution
that is r (which can be efficiently found by linear algebra) 1o



Conclusion of Simon’s algorithm

« Any classical algorithm has to query the black box Q(2"?)
times, even to succeed with probabillity %

« There is a quantum algorithm that queries the black box
only O(n) times, performs only O(n?3) auxiliary operations
(for the Hadamards, measurements, and linear algebra),
and succeeds with probability 34

11



* Preview of applications of black-box results
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Period-finding
Given: f:Z > Z suchthat f is (strictly) r-periodic, in the
sense that f(X) = f(y) iff X — Y is a multiple of I (unknown)

(1N NG AN NG NG NG PN

JJ \/J \/JX\JJ \/JY\/J \/J N
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& N
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Goal: find r

Classically, the number of queries required can be “huge”
(essentially as hard as finding a collision)

There is a quantum algorithm that makes only a constant

number of queries (which will be explained later on) y



Simon’s problem vs. period-finding

Period-finding problem: domain is Z and property is
f(x)=1f(y) iff X —y is a multiple of r

This problem meaningfully generalizes to domain Z",
where the periodicity is multidimensional

Deutsch’s problem: domain is Z, and property is
fx)="f(y)iff X®Yis a multiple of r
(r=0means f(0)=f(1) and r=1 means f(0) #f(1))

Simon’s problem: domain is (Z,)" and property is
f(x)="1(y)iff X®Yis a multiple of r

14



Application of period-finding algorithm

Order-finding problem: given a and m (positive integers
such that gcd(a,m) = 1), find the minimum positive I such
thata' mod m=1

Example: let a =4 and m =35 4! mod 35=4
(note that gcd(4,35) = 1) 42 mod 35=16
43> mod 35 =29
In this case, =7 4*mod 35=11
4> mod35=9
46 mod 35 =1

Note that this is not a black-box problem! 47 ,,,435=4
43 mod 35 =16

15



Application of period-finding algorithm

Order-finding problem: given a and m (positive integers
such that gcd(a,m) = 1), find the minimum positive I such

thata' mod m=1

No classical polynomial-time algorithm is known for this
problem (in fact, the factoring problem reduces to it)

The problem reduces to finding the period of the function

f(X) = a*mod M, and the aforementioned period-finding
guantum algorithm in the black-box model can be used to
solve it in polynomial-time

A circuit computing the function f is substituted into the
black-box ... 6



 On simulating black boxes
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How not to simulate a black box

Given an explicit function, such as f(X) =aX*mod m, and a

finite domain {0, 1, 2, ..., 2" — 1}, simulate f-queries over that
domain

Easy to compute mapping [X)|y)[00...0) = [X)|y®f(X))|g(X)),
where the third register is “work space” with accumulated
“garbage” (e.g., two such bits arise when a Toffoli gate Is
used to simulate an AND gate)

This works fine as long as f is not queried in superposition

If f is queried in superposition then the resulting state can be
ZX o, [X)Y®f (X))|g(X))  can we just discard the third register?

No ... there could be entanglement ... y



How to simulate a black box

Simulate the mapping |X)|y)|00...0) = [X)|y®f(X))|00...0),
(.e., clean up the “garbage™)

To do this, use an additional register and:

1. compute [X)|y)[00...0)/00...0) = OWIFX)|g(X))
(ignoring the 2nd register in this step)

2. compute X)) [TX)[G)) = POlYST )T ))IgX))
(using CNOT gates between the 2nd and 3" registers)

3. compute YOO (X))gX))y = [X)|yef(X))|00...0)/00...0)
(by reversing the procedure in step 1)

Total cost: around twice the cost of computing f, plus n

auxiliary gates o
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