Introduction to Quantum Information Processing CS 467 ICS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 5 (2005)

Richard Cleve
DC 653
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve

Contents

Continuation of Simon's problem

Preview of applications of black-box results
On simulating black boxes

- Continuation of Simon's problem

 Denvinu of anolinationc of hack hed esultsOn simulating black boxes

Quantum vs. classical separations

black-box problem	quantum	classical
constant vs. balanced	1 (query)	2 (queries)
1-out-of-4 search	1	3
constant vs. balanced	$\mathbf{1}$	$1 / 22^{n}+1$
Simon's problem	$O(n)$	$\Omega\left(2^{n / 2}\right)$
(only for exact)		
(probabilistic)		

Simon's problem

Let $f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{n}$ have the property that there exists an $r \in\{\mathbf{0 , 1}\}^{n}$ such that $f(x)=f(y)$ iff $x \oplus y=r$ or $x=y$

Example:

x	$f(x)$
000	011
001	101
010	What is r in this case?
000	Answer: $r=101$
$\mathbf{0 1 1}$	010
100	101
101	011
110	010
111	000

Classical lower bound

Theorem: any classical algorithm solving Simon's problem must make $\Omega\left(2^{n / 2}\right)$ queries, to succeed with probability $\geq 3 / 4$

A quantum algorithm for Simon I

Queries:

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?

A quantum algorithm for Simon II

Answer: the output state is $\sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle$
Let $T \subseteq\{\mathbf{0}, \mathbf{1}\}^{n}$ be such that one element from each matched pair is in T (assume $r \neq 00 \ldots 0$)

Example: could take $T=\{000,001,011,111\}$
Then the output state can be written as:
$\sum_{x \in T}|x\rangle|f(x)\rangle+|x \oplus r\rangle|f(x \oplus r)\rangle$
$=\sum_{x \in T}(|x\rangle+|x \oplus r\rangle)|f(x)\rangle$

x	$f(x)$
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle+|x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain some information about r ?
Try applying $H^{\otimes n}$ to the state, yielding:

$$
\begin{aligned}
& \sum_{y \in\{0,1\}^{n}}(-1)^{x \bullet y}|y\rangle+\sum_{y \in\{0,1\}^{n}}(-1)^{(x \oplus r) \bullet y}|y\rangle \\
= & \sum_{y \in\{0,1\}^{n}}(-1)^{x \bullet y}\left(1+(-1)^{r \bullet y}\right)|y\rangle
\end{aligned}
$$

Measuring this state yields y with prob. $\begin{cases}(1 / 2)^{n-1} & \text { if } r \cdot y=0 \\ 0 & \text { if } r \cdot y \neq 0\end{cases}$

A quantum algorithm for Simon IV

Executing this algorithm $k=O(n)$ times yields random $y_{1}, y_{2}, \ldots, y_{k} \in\{0,1\}^{n}$ such that $r \cdot y_{1}=r \cdot y_{2}=\ldots=r \cdot y_{n}=0$
How does this help?
This is a system of k linear equations:

$$
\left[\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{k 1} & y_{k 2} & \cdots & y_{k n}
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra)

Conclusion of Simon's algorithm

- Any classical algorithm has to query the black box $\Omega\left(2^{n / 2}\right)$ times, even to succeed with probability $3 / 4$
- There is a quantum algorithm that queries the black box only $O(n)$ times, performs only $O\left(n^{3}\right)$ auxiliary operations (for the Hadamards, measurements, and linear algebra), and succeeds with probability $3 / 4$

Period-finding

Given: $f: \mathbf{Z} \rightarrow \mathbf{Z}$ such that f is (strictly) r-periodic, in the sense that $f(x)=f(y)$ iff $x-y$ is a multiple of r (unknown)

Goal: find r
Classically, the number of queries required can be "huge" (essentially as hard as finding a collision)

There is a quantum algorithm that makes only a constant number of queries (which will be explained later on)

Simon's problem vs. period-finding

Period-finding problem: domain is \mathbf{Z} and property is $f(x)=f(y)$ iff $x-y$ is a multiple of r

This problem meaningfully generalizes to domain $\mathbf{Z}^{\boldsymbol{n}}$, where the periodicity is multidimensional

Deutsch's problem: domain is \mathbf{Z}_{2} and property is $f(x)=f(y)$ iff $x \oplus y$ is a multiple of r
($r=0$ means $f(0)=f(1)$ and $r=1$ means $f(0) \neq f(1)$)
Simon's problem: domain is $\left(Z_{2}\right)^{n}$ and property is $f(x)=f(y)$ iff $x \oplus y$ is a multiple of r

Application of period-finding algorithm

Order-finding problem: given a and m (positive integers such that $\operatorname{gcd}(a, m)=1$), find the minimum positive r such that $a^{r} \bmod m=1$

Example: let $a=4$ and $m=35$
$($ note that $\operatorname{gcd}(4,35)=1)$
In this case, $r=$?

Note that this is not a black-box problem!
$4^{1} \bmod 35=4$
$4^{2} \bmod 35=16$
$4^{3} \bmod 35=29$
$4^{4} \bmod 35=11$
$4^{5} \bmod 35=9$
$4^{6} \bmod 35=1$
$4^{7} \bmod 35=4$
$4^{8} \bmod 35=16$

Application of period-finding algorithm

Order-finding problem: given a and m (positive integers such that $\operatorname{gcd}(a, m)=1)$, find the minimum positive r such that $a^{r} \bmod m=1$

No classical polynomial-time algorithm is known for this problem (in fact, the factoring problem reduces to it)

The problem reduces to finding the period of the function $f(x)=a^{x} \bmod m$, and the aforementioned period-finding quantum algorithm in the black-box model can be used to solve it in polynomial-time

A circuit computing the function f is substituted into the black-box ...

- Continuation of Simon's problem Duevinum of amalinatione fiflalank bed Results
 On simulating black boxes

How not to simulate a black box

Given an explicit function, such as $f(x)=a^{x} \bmod m$, and a finite domain $\left\{0,1,2, \ldots, 2^{n}-1\right\}$, simulate f-queries over that domain
Easy to compute mapping $|x\rangle|y\rangle|00 \ldots 0\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|g(x)\rangle$, where the third register is "work space" with accumulated "garbage" (e.g., two such bits arise when a Toffoli gate is used to simulate an AND gate)

This works fine as long as f is not queried in superposition If f is queried in superposition then the resulting state can be $\Sigma_{x} \alpha_{x}|x\rangle|y \oplus f(x)\rangle|g(x)\rangle \quad$ can we just discard the third register?

No ... there could be entanglement ...

How to simulate a black box

Simulate the mapping $|x\rangle|y\rangle|00 \ldots 0\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|00 \ldots 0\rangle$, (i.e., clean up the "garbage")

To do this, use an additional register and:

1. compute $|x\rangle|y\rangle|00 \ldots 0\rangle|00 \ldots 0\rangle \rightarrow|x\rangle|y\rangle|f(x)\rangle|g(x)\rangle$
(ignoring the $2^{\text {nd }}$ register in this step)
2. compute $|x\rangle|y\rangle|f(x)\rangle|g(x)\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|f(x)\rangle|g(x)\rangle$ (using CNOT gates between the $2^{\text {nd }}$ and $3^{\text {rd }}$ registers)
3. compute $|x\rangle|y \oplus f(x)\rangle|f(x)\rangle|g(x)\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|00 \ldots 0\rangle|00 \ldots 0\rangle$ (by reversing the procedure in step 1)

Total cost: around twice the cost of computing f, plus n auxiliary gates

