Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 4 (2005)

Richard Cleve DC 653 cleve@cs.uwaterloo.ca

Course web site at: <u>http://www.cs.uwaterloo.ca/~cleve</u>

Contents

- Recap: query algorithms
- One-out-of-four search
- Constant vs. balanced
- $H \otimes H \otimes \dots \otimes H$
- Simon's problem

- Recap: query algorithms
- One-out-of-four search
- Constant vs. balanced
- $H \otimes H \otimes \ldots \otimes H$
- Simon's problem

Query algorithms

Last time: quantum algorithm for computing $f(0) \oplus f(1)$ making just **1** query to *f*, whereas any classical algorithm requires **2** queries

This time: other, stronger quantum vs. classical separations

Recap: query algorithms

- One-out-of-four search
- Constant vs. balanced
- $H \otimes H \otimes \ldots \otimes H$
- Simon's problem

One-out-of-four search

Let $f: \{0,1\}^2 \rightarrow \{0,1\}$ have the property that there is exactly one $x \in \{0,1\}^2$ for which f(x) = 1

Goal: find $x \in \{0,1\}^2$ for which f(x) = 1

What is the minimum number of queries *classically?*

Quantumly?

Quantum algorithm (I)

Black box for 1-4 search:

Start by creating phases in superposition of all inputs to f:

Input state to query? $(|00\rangle + |01\rangle + |10\rangle + |11\rangle)(|0\rangle - |1\rangle)$

Output state of query?

 $((-1)^{f(00)}|00\rangle + (-1)^{f(01)}|01\rangle + (-1)^{f(10)}|10\rangle + (-1)^{f(11)}|11\rangle)(|0\rangle - |1\rangle)$

Output state of the first two qubits in the four cases:

Case of f_{00} ? $|\psi_{00}\rangle = -|00\rangle + |01\rangle + |10\rangle + |11\rangle$ Case of f_{01} ? $|\psi_{01}\rangle = + |00\rangle - |01\rangle + |10\rangle + |11\rangle$ Case of f_{10} ? $|\psi_{10}\rangle = + |00\rangle + |01\rangle - |10\rangle + |11\rangle$ Case of f_{11} ? $|\psi_{11}\rangle = + |00\rangle + |01\rangle + |10\rangle - |11\rangle$

What noteworthy property do these states have? Orthogonal!

Challenge Exercise: simulate the above U in terms of H, Toffoli, and NOT gates

one-out-of-N search?

Natural question: what about search problems in spaces larger than *four* (and without uniqueness conditions)?

For spaces of size *eight* (say), the previous method breaks down—the state vectors will not be orthogonal

Later on, we'll see how to search a space of size N with $O(\sqrt{N})$ queries ...

- Recap: query algorithms
- One-out-of-four search
- Constant vs. balanced
- $H \otimes H \otimes \ldots \otimes H$
- Simon's problem

Constant vs. balanced

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be either constant or balanced, where

- **constant** means f(x) = 0 for all x, or f(x) = 1 for all x
- **balanced** means $\Sigma_x f(x) = 2^{n-1}$

Goal: determine whether f is constant or balanced

How many queries are there needed *classically?*_____

Example: if f(0000) = f(0001) = f(0010) = ... = f(0111) = 0then it still could be either

Quantumly?

[Deutsch & Jozsa, 1992]

Quantum algorithm

Constant case: $|\psi\rangle = \pm \sum_{x} |x\rangle$

Balanced case: $|\psi\rangle$ is *orthogonal* to $\pm \sum_{\chi} |\chi\rangle$ *Why?* How to distinguish between the cases? What is $H^{\otimes n}|\psi\rangle$? Constant case: $H^{\otimes n}|\psi\rangle = \pm |00...0\rangle$ Balanced case: $H^{\otimes n}|\psi\rangle$ is orthogonal to $|0...00\rangle$

Why?

Last step of the algorithm: if the measured result is 000 then output "constant", otherwise output "balanced" 12

Probabilistic *classical* algorithm solving constant vs balanced

But here's a classical procedure that makes only **2** queries and performs fairly well probabilistically:

- 1. pick $x_1, x_2 \in \{0,1\}^n$ randomly
- 2. <u>if</u> $f(x_1) \neq f(x_2)$ <u>then</u> output balanced <u>else</u> output constant

What happens if f is constant? The algorithm always succeeds What happens if f is balanced? Succeeds with probability $\frac{1}{2}$

By repeating the above procedure k times: 2k queries and one-sided error probability $(\frac{1}{2})^k$

Therefore, for large n, $<< 2^n$ queries are likely sufficient

Recap: query algorithms

- One-out-of-four search
- Constant vs. balanced
- $H \otimes H \otimes \dots \otimes H$
- Simon's problem

About $H \otimes H \otimes ... \otimes H = H^{\otimes n}$

Theorem: for $x \in \{0,1\}^n$, $H^{\otimes n} |x\rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$ where $x \cdot y = x_1 y_1 \oplus ... \oplus x_n y_n$

Example: $H \otimes H = \frac{1}{2} \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$

Pf: For all $x \in \{0,1\}^n$, $H|x\rangle = |0\rangle + (-1)^x |1\rangle = \sum_y (-1)^{xy} |y\rangle$ Thus, $H^{\otimes n}|x_1 \dots x_n\rangle = \left(\sum_{y_1} (-1)^{x_1y_1} |y_1\rangle\right) \dots \left(\sum_{y_n} (-1)^{x_ny_n} |y_n\rangle\right)$ $= \sum_y (-1)^{x_1y_1 \oplus \dots \oplus x_ny_n} |y_1 \dots y_n\rangle$

Recap: query algorithms

- One-out-of-four search
- Constant vs. balanced
- $H \otimes H \otimes \ldots \otimes H$
- Simon's problem

Quantum vs. classical separations

black-box problem	quantum	classical	
constant vs. balanced	1 (query)	2 (queries)	
1-out-of-4 search	1	3	
constant vs. balanced	1	¹ / ₂ 2 ⁿ + 1	(only for exact)
Simon's problem			(probabilistic)

Simon's problem

Let $f: {\mathbf{0},\mathbf{1}}^n \rightarrow {\mathbf{0},\mathbf{1}}^n$ have the property that there exists an $r \in {\mathbf{0},\mathbf{1}}^n$ such that f(x) = f(y) iff $x \oplus y = r$ or x = y

Example:

X	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

What is r is this case?

Answer: *r* = 101

A classical algorithm for Simon

Search for a *collision*, an $x \neq y$ such that f(x) = f(y)

1. Choose $x_1, x_2, ..., x_k \in \{0,1\}^n$ randomly (independently)

2. For all $i \neq j$, if $f(x_i) = f(x_j)$ then output $x_i \oplus x_j$ and halt

A hard case is where *r* is chosen randomly from $\{0,1\}^n - \{0^n\}$ and then the "table" for f is filled out randomly subject to the structure implied by *r*

How big does k have to be for the probability of a collision to be a constant, such as $\frac{3}{4}$?

Answer: order $2^{n/2}$ (each (x_i, x_j) collides with prob. $O(2^{-n})$)

Classical lower bound

Theorem: *any* classical algorithm solving Simon's problem must make $\Omega(2^{n/2})$ queries

Proof is omitted here—note that the performance analysis of the previous algorithm does *not* imply the theorem

... how can we know that there isn't a *different* algorithm that performs better?

A quantum algorithm for Simon I

Queries: $\begin{vmatrix} x_1 \\ x_2 \\ x_2 \\ x_n \\ \begin{vmatrix} x_n \\ y_1 \\ y_2 \\ y_n \\ \end{vmatrix} = \begin{cases} |x_1 \\ x_2 \\ |x_2 \\ y_n \\ \end{vmatrix}$

Not clear what *eigenvector* of target registers is ...

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?

A quantum algorithm for Simon II

Answer: the output state is

$$\sum_{x\in\{0,1\}^n} |x\rangle |f(x)\rangle$$

Let $T \subseteq {\{0,1\}}^n$ be such that **one** element from each matched pair is in T (assume $r \neq 00...0$)

Example: could take $T = \{000, 001, 111, 110\}$

Then the output state can be written as:

$$\sum_{x \in T} |x\rangle |f(x)\rangle + |x \oplus r\rangle |f(x \oplus r)\rangle$$

$$= \sum_{x \in T} \left(\left| x \right\rangle + \left| x \oplus r \right\rangle \right) \left| f(x) \right\rangle$$

x	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle + |x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain **some** information about r?

Try applying $H^{\otimes n}$ to the state, yielding:

$$\sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} |y\rangle + \sum_{y \in \{0,1\}^n} (-1)^{(x \oplus r) \bullet y} |y\rangle$$

$$= \sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} \left(1 + (-1)^{r \bullet y} \right) | y \rangle$$

Measuring this state yields y with prob. $\begin{cases} (1/2)^{n-1} & \text{if } r \cdot y = 0 \\ 0 & \text{if } r \cdot y \neq 0 \end{cases}$

A quantum algorithm for Simon IV

Executing this algorithm k = O(n) times yields random $y_1, y_2, ..., y_k \in \{0,1\}^n$ such that $r \cdot y_1 = r \cdot y_2 = ... = r \cdot y_n = 0$

How does this help?

This is a system of k linear equations:

$$\begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{k1} & y_{k2} & \cdots & y_{kn} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra) ²⁵

Preview of applications of black-box results

Period-finding

Given: $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that f is (strictly) *r*-periodic, in the sense that f(x) = f(y) iff x - y is a multiple of *r* (unknown)

Goal: find *r*

Classically, the number of queries required can be *"huge"* (essentially as hard as finding a collision)

There is a quantum algorithm that makes only a *constant* number of queries (which will be explained later on)

Simon's problem vs. period-finding

Period-finding problem: domain is **Z** and property is f(x) = f(y) iff x - y is a multiple of r

This problem meaningfully generalizes to domain Z^n

Deutsch's problem: domain is Z_2 and property is f(x) = f(y) iff $x \oplus y$ is a multiple of r $(r = 0 \text{ means } f(0) = f(1) \text{ and } r = 1 \text{ means } f(0) \neq f(1))$

Simon's problem: domain is $(\mathbf{Z}_2)^n$ and property is f(x) = f(y) iff $x \oplus y$ is a multiple of r

Application of period-finding algorithm

Order-finding problem: given *a* and *m* (positive integers such that gcd(a,m) = 1), find the minimum positive *r* such that $a^r \mod m = 1$

Note that this is *not* a black-box problem!

No classical polynomial-time algorithm is known for this problem (in fact, the factoring problem reduces to it)

The problem reduces to finding the period of $f(x) = a^x \mod m$, and the aforementioned period-finding algorithm in the blackbox model can be used to solve it in polynomial-time

The function f is substituted into the black-box ...

On simulating black boxes

How not to simulate a black box

Given an explicit function, such as $f(x) = a^x \mod m$, and a finite domain $\{0, 1, 2, ..., 2^n - 1\}$, simulate *f*-queries over that domain

Easy to compute mapping $|x\rangle|y\rangle|00...0\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|g(x)\rangle$, where the third register is "work space" with accumulated "garbage" (e.g., two such bits arise when a Toffoli gate is used to simulate an AND gate)

This works fine as long as f is not queried in superposition

If *f* is queried in superposition then the resulting state can be $\sum_{x} \alpha_{x} |x\rangle |y \oplus f(x)\rangle |g(x)\rangle$ Can we just discard the third register?

No ... there could be entanglement ...

Overview of Lecture 4

- The one-out-of-four search problem
- The constant vs. balanced problem
- $H \otimes H \otimes ... \otimes H$
- Fourier sampling
- Preview of where black-box results are headed: period-finding
- Simulating black boxes

Overview of Lecture 8

- BV problem: **1** vs. *n* separation robust against probabilistic algorithms
- Preview of where black-box results are headed: period-finding
- Simulating black boxes
- Simon's problem: 1 vs. 2^{n/2} separation robust against probabilistic algorithms

How to simulate a black box

Simulate the mapping $|x\rangle|y\rangle|00...0\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|00...0\rangle$, (i.e., clean up the "garbage")

To do this, use an additional register and:

- 1. compute $|x\rangle|y\rangle|00...0\rangle|00...0\rangle \rightarrow |x\rangle|y\rangle|f(x)\rangle|g(x)\rangle$ (ignoring the 2nd register in this step)
- 2. compute $|x\rangle|y\rangle|f(x)\rangle|g(x)\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|f(x)\rangle|g(x)\rangle$ (using CNOT gates between the 2nd and 3rd registers)
- 3. compute $|x\rangle|y\oplus f(x)\rangle|f(x)\rangle|g(x)\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|00...0\rangle|00...0\rangle$ (by reversing the procedure in step 1)
- **Total cost:** around twice the cost of computing f, plus n auxiliary gates

Quantum vs. classical separations

black-box problem	quantum	classical
constant vs. balanced	1 (query)	2 (queries)
1-out-of-4 search	1	3
constant vs. balanced	1	¹ / ₂ 2 ^{<i>n</i>} + 1
BV problem	1	n

(only for exact) (probabilistic)

BV problem
BV problem

[Bernstein & Vazirani, 1993]

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be of the form $f(x) = a_1 x_1 \oplus ... \oplus a_n x_n$, where $(a_1, ..., a_n) \in \{0,1\}^n$ is unknown

Goal: determine (a_1, \ldots, a_n)

Classically: *n* queries needed, even to succeed with probability > $\frac{1}{2}$ (why?)

Quantumly: 1 query suffices

Quantum algorithm for BV

where
$$|\Psi\rangle = \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} (-1)^{a \bullet x} |x\rangle$$

Question: what is $|\psi\rangle$? **Answer:** $|\psi\rangle = H^{\otimes n}|a_1, \dots, a_n\rangle$ Therefore, $H^{\otimes n}|\psi\rangle = |a_1, \dots, a_n\rangle$

Final algorithm:

Output state of the first two qubits in the four cases:

$$\begin{split} |\psi_{00}\rangle &= -\left|00\rangle + \left|01\rangle + \left|10\rangle + \left|11\right\rangle \right. \\ |\psi_{01}\rangle &= +\left|00\rangle - \left|01\rangle + \left|10\rangle + \left|11\rangle \right. \\ |\psi_{10}\rangle &= +\left|00\rangle + \left|01\rangle - \left|10\rangle + \left|11\rangle \right. \\ |\psi_{11}\rangle &= +\left|00\rangle + \left|01\rangle + \left|10\rangle - \left|11\right\rangle \right. \end{split}$$

Note that these states are *orthogonal!*

Challenge Exercise: simulate the above U in terms of H, Toffoli, and NOT gates

Simple quantum algorithms in the query scenario

Query scenario

Input: a function *f*, given as a black box (a.k.a. oracle)

x - f - f(x)

Goal: determine some information about f making as few queries to f (and other operations) as possible

Example: polynomial interpolation

Let: $f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_d x^d$

Goal: determine c_0 , c_1 , c_2 , ... , c_d

Question: How many *f*-queries does one require for this?

Deutsch's problem

Let $f: \{0,1\} \rightarrow \{0,1\}$

There are *four* possibilities:

Goal: determine whether or not f(0) = f(1) (i.e. $f(0) \oplus f(1)$)

Any classical method requires *two* queries

What about a quantum method?

Reversible black box for f

2 queries + 1 auxiliary operation

Quantum algorithm for Deutsch

1 query + 4 auxiliary operations

 $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

How does this algorithm work?

Each of the three H operations can be seen as playing a different role ...

1. Creates the state $|0\rangle - |1\rangle$, which is an eigenvector of $\begin{cases}
NOT & \text{with eigenvalue } -1 \\
I & \text{with eigenvalue } +1
\end{cases}$

This causes f to induce a **phase shift** of $(-1)^{f(x)}$ to $|x\rangle$

$$|x\rangle - f - (-1)^{f(x)}|x\rangle$$
$$|0\rangle - |1\rangle - 0 - |1\rangle$$

Quantum algorithm (2)

2. Causes f to be queried *in superposition* (at $|0\rangle + |1\rangle$)

$$|0\rangle - H - f - (-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle$$
$$|0\rangle - |1\rangle - H - f - (-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle$$

Quantum algorithm (3)

3. Distinguishes between $\pm (|0\rangle + |1\rangle)$ and $\pm (|0\rangle - |1\rangle)$

$$\pm (|0\rangle + |1\rangle) \xleftarrow{H} \pm |0\rangle$$

$$\pm (|0\rangle - |1\rangle) \xleftarrow{H} \pm |1\rangle$$

Summary of Deutsch's algorithm

Makes only one query, whereas two are needed classically

universality of two-qubit gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of $O(k^2 4^k)$) : We first show how to simulate a controlled-U, for any onequbit unitary U

Fact: for any one-qubit unitary *U*, there exist *A*, *B*, *C*, and λ , such that:

- A B C = I
- $e^{i\lambda} A X B X C = U$, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

The aforementioned fact implies

Using such controlled-U gates, one can simulate controlledcontrolled-V gates, for any unitary V, as follows:

When U = X, this construction yields the 3-qubit **Toffoli gate**

From this gate, *generalized* Toffoli gates can be constructed:

From generalized Toffoli gates, *generalized controlled-U* gates (controlled-controlled- ... -U) can be constructed:

(1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	U_{00}	U_{01}
0	0	0	0	0	0	U_{10}	U_{11}

The approach essentially enables any k-qubit operation of the simple form

(1	0	0	0	0	0	0	0)
0	U_{00}	0	0	U_{01}	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	U_{10}	0	0	U_{11}	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1

to be computed with $O(k^2)$ CNOT and one-qubit gates

Any $2^k \times 2^k$ unitary matrix can be decomposed into a product of $O(4^k)$ such simple matrices

This completes the proof sketch

Thus, the set of *all* one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Universal sets of gates

Universal gate set

Theorem 1: The CNOT gate, along with all one-qubit unitaries is a universal set in that any k-qubit unitary operation can be decomposed into $O(4^k)$ such gates

Some key steps of the proof:

For any unitary operation *U*, there exist one-qubit unitaries *P*, *A*, *B*, *C* such that: P = P

Universal gate set (II)

controlled-controlled-V

From this gate, *generalized* Toffoli gates can be constructed:

Universal gate set (III)

The approach leads to the k-qubit operations of the form

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & U_{00} & 0 & 0 & U_{01} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & U_{10} & 0 & 0 & U_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

with $O(k^2)$ CNOT and one-qubit gates

Any $2^k \times 2^k$ unitary matrix can be decomposed into a product of $O(4^k)$ such simple matrices

Approximately universal gate set

Theorem 2: the gates CNOT, *H*, and $S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ are *approximately universal*, in that any unitary operation on *k* qubits can be simulated within precision ε by applying $O(4^k \log^c(1/\varepsilon))$ of them (*c* is a constant)

Density operators

Density matrices

Until now, we've represented quantum states as state vectors (e.g. $|\psi\rangle$, and such states are called *pure states*)

An alternative way of representing quantum states is in terms of *density matrices* (aka. *density operators*)

The density matrix of a pure state $|\psi\rangle$ is the matrix $|\psi\rangle\langle\psi|$

Example: the density matrix of $\alpha |0\rangle + \beta |1\rangle$ is

$$\begin{bmatrix} \alpha^* \\ \beta^* \end{bmatrix} \begin{bmatrix} \alpha & \beta \end{bmatrix} = \begin{bmatrix} |\alpha|^2 & \alpha^* \beta \\ \alpha \beta^* & |\beta|^2 \end{bmatrix}$$

Density matrices (II)

A probability distribution on pure states is called a *mixed state*: $((p_1, |\psi_1\rangle), (p_2, |\psi_2\rangle), ..., (p_n, |\psi_n\rangle))$

The *density matrix* associated with such a mixture is:

$$\rho = \sum_{k=1}^{n} p_{k} | \psi_{k} \rangle \langle \psi_{k} |$$

Example: the density matrix for $((\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle))$ is:

$$\begin{bmatrix} 1/2 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$$

 $((\frac{1}{2}, |0\rangle + |1\rangle), (\frac{1}{2}, |0\rangle - |1\rangle))$ has the same density matrix! ₆₃

General quantum operations

General quantum operations

Characterizing properties of ρ :

- ρ positive semi-definite
- $\operatorname{Tr}\rho = 1$

$$\rho = \sum_{k=1}^{n} p_{k} | \psi_{k} \rangle \langle \psi_{k} |$$

General quantum operations (aka. completely positive trace preserving operations, admissible operations):

Let $A_1, A_2, ..., A_m$ be matrices satisfying $\sum_{j=1}^m A_j^t A_j = I$ Then the mapping $\rho \mapsto \sum_{j=1}^m A_j \rho A_j^t$ is a general quantum op

Example 1 (unitary op): applying U to ρ yields $U\rho U^{\dagger}$

General quantum operations (II)

Example 2: let $A_0 = |\mathbf{0}\rangle\langle\mathbf{0}|$ and $A_1 = |\mathbf{1}\rangle\langle\mathbf{1}|$

This quantum op maps ρ to $|0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

For
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, $\begin{bmatrix} |\alpha|^2 & \alpha^* \beta \\ \alpha \beta^* & |\beta|^2 \end{bmatrix} \mapsto \begin{bmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{bmatrix}$

Corresponds to measuring ho "without looking at the outcome"

After looking at the outcome, ρ becomes $\begin{cases} |0\rangle\langle 0| & \text{with prob. } |\alpha|^2 \\ |1\rangle\langle 1| & \text{with prob. } |\beta|^2 \end{cases}$

General quantum operations (III)

Example 3 (discarding second of two qubits):

Let $A_0 = I \otimes \langle \mathbf{0} | = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ and $A_1 = I \otimes \langle \mathbf{1} | = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

State $\rho \otimes \sigma$ becomes ρ

State
$$\left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}\langle 00| + \frac{1}{\sqrt{2}}\langle 11|\right)$$
 becomes $\begin{bmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix}$

Note 1: it's the same density matrix as for $((\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle))$

Note 2: the operation is the *partial trace* $Tr_2 \rho$

Separable states

Separable states

A bipartite (ie. two register) state ρ is a:

• product state if $\rho = \sigma \otimes \xi$

• separable state if
$$\rho = \sum_{j=1}^{m} p_j \sigma_j \otimes \xi_j$$
 $(p_1, \dots, p_m \ge 0)$
(ie. a mixture of product states)

Example: the state

 $\rho = \frac{1}{2} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \left(\left\langle 00 \right| + \left\langle 11 \right| \right) + \frac{1}{2} \left(\left| 00 \right\rangle - \left| 11 \right\rangle \right) \left(\left\langle 00 \right| - \left\langle 11 \right| \right) \right)$

is separable, since $\rho = \frac{1}{2} |0\rangle \langle 0| \otimes |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1| \otimes |1\rangle \langle 1|$

Universal gate set

Theorem 1: The CNOT gate, along with all one-qubit unitaries is a universal set in that any *k*-qubit unitary operation can be decomposed into $O(4^k)$ such gates

Some components of the proof:

How teleportation works

Initial state: $(\alpha|0\rangle + \beta|1\rangle)(|00\rangle + |11\rangle)$ (omitting the $1/\sqrt{2}$ factor)

 $= \alpha |000\rangle + \alpha |011\rangle + \beta |100\rangle + \beta |111\rangle$

 $= \frac{1}{2}(|00\rangle + |11\rangle)(\alpha|0\rangle + \beta|1\rangle)$ $+ \frac{1}{2}(|00\rangle - |11\rangle)(\alpha|1\rangle + \beta|0\rangle)$ + $\frac{1}{2}(|01\rangle + |10\rangle)(\alpha|0\rangle - \beta|1\rangle)$ $+ \frac{1}{2}(|01\rangle - |10\rangle)(\alpha|1\rangle - \beta|0\rangle)$

Protocol: Alice measures her two qubits *in the Bell basis* and sends the result to Bob (who then "corrects" his state) 71

Review of partial measurements

Suppose one measures just the *first* qubit of the state

$$\frac{1}{2}|00\rangle + \frac{i}{\sqrt{3}}|01\rangle + \sqrt{\frac{5}{12}}|11\rangle = \sqrt{\frac{7}{12}}|0\rangle\left(\sqrt{\frac{3}{7}}|0\rangle + i\sqrt{\frac{4}{7}}|1\rangle\right) + \sqrt{\frac{5}{12}}|1\rangle|1\rangle$$
What is the result?

$$\begin{cases} \mathbf{0}, \quad \sqrt{\frac{3}{7}} |\mathbf{0}\rangle + i\sqrt{\frac{4}{7}} |\mathbf{1}\rangle & \text{with prob. 7/12} \\ \mathbf{1}, \quad |\mathbf{1}\rangle & \text{with prob. 5/12} \end{cases}$$
Theorem: any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of $O(k^2 4^k)$) : We first show how to simulate a controlled-U, for any onequbit unitary U

Fact: for any one-qubit unitary *U*, there exist *A*, *B*, *C*, and λ , such that:

- A B C = I
- $e^{i\lambda} A X B X C = U$, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Universal sets of gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

Therefore, CNOT and all one-qubit gates are *universal* (classical analogue: AND and NOT gates)

74

From generalized Toffoli gates, *generalized controlled-U* gates (controlled-controlled- ... -U) can be constructed:

(1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	U_{00}	U_{01}
$\left(0 \right)$	0	0	0	0	0	U_{10}	U_{11}

This completes the proof sketch*

Thus, the set of *all* one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

* Actually proved a slightly worse bound of $O(k^24^k)$

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated within any precision by repeatedly applying

 $R = \begin{pmatrix} \cos(\sqrt{2}\pi) & -\sin(\sqrt{2}\pi) \\ \sin(\sqrt{2}\pi) & \cos(\sqrt{2}\pi) \end{pmatrix}$

some number of times

In this sense, R is **approximately universal** for the set of all one-qubit rotations: any rotation S can be approximated within precision ε by applying R a suitable number of times

It turns out that $O((1/\varepsilon)^c)$ times suffices (for a constant *c*)

Approximately universal gate sets Theorem: the gates CNOT, *H*, and $S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$

are **approximately universal**, in the sense that any unitary operation on k qubits can be simulated within precision ε by applying $O(4^k \log^c(1/\varepsilon))$ of them (c is a constant)

Say something about basic idea ...?

[Solovay, 1996][Kitaev, 1997]

Density matrices II

A probability distribution on pure states is a *mixed state*: $((p_1, |\psi_1\rangle), (p_2, |\psi_2\rangle), ..., (p_n, |\psi_n\rangle))$

The *density matrix* associated with such a mixture is:

$$\rho = \sum_{k=1}^{n} p_{k} |\psi_{k}\rangle \langle \psi_{k} |$$

Example: the density matrix for $((\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle))$ is:

$$\begin{bmatrix} 1/&1/\\ /2&/2\\ 1/&1/\\ /2&/2 \end{bmatrix} + \begin{bmatrix} 1/&-1/\\ /2&/2\\ -1/&1/\\ 2&/2 \end{bmatrix} = \begin{bmatrix} 1/&0\\ /2&0\\ 0&1/\\ 0&1/\\ 2\end{bmatrix}$$

Same for $((\frac{1}{2}, |0\rangle + |1\rangle), (\frac{1}{2}, |1\rangle |0\rangle - |1\rangle))$

Theorem: any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of $O(k^2 4^k)$) : We first show how to simulate a controlled-U, for any onequbit unitary U

Fact: for any one-qubit unitary *U*, there exist *A*, *B*, *C*, and λ , such that:

- A B C = I
- $e^{i\lambda} A X B X C = U$, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

From generalized Toffoli gates, *generalized controlled-U* gates (controlled-controlled- ... -U) can be constructed:

(1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	U_{00}	U_{01}
$\left(0 \right)$	0	0	0	0	0	U_{10}	U_{11}

The approach essentially enables any k-qubit operation of the simple form

(1	0	0	0	0	0	0	0)
0	U_{00}	0	0	U_{01}	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	U_{10}	0	0	U_{11}	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
$\left(0 \right)$	0	0	0	0	0	0	1)

to be computed with $O(k^2)$ CNOT and one-qubit gates

Any $2^k \times 2^k$ unitary matrix can be decomposed into a product of $O(4^k)$ such simple matrices

This completes the proof sketch

Thus, the set of *all* one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Classical (boolean logic) gates

"old" notation

"new" notation

Note: an **OR** gate can be simulated by one **AND** gate and three **NOT** gates

Models of computation

Classical circuits:

Multiplication problem

Input: two *n*-bit numbers (e.g. 101 and 111)

Output: their product (e.g. 100011)

- "Grade school" algorithm costs $O(n^2)$
- Best currently-known *classical* algorithm costs
 O(n log n loglog n)
- Best currently-known *quantum* method: same

Factoring problem

Input: an *n*-bit number (e.g. 100011)

Output: their product (e.g. 101, 111)

- Trial division costs $\approx 2^{n/2}$
- Best currently-known *classical* algorithm costs $\approx 2^{n^{\frac{1}{3}}}$
- Hardness of factoring is the basis of the security of many cryptosystems (e.g. RSA)
- Shor's *quantum* algorithm costs $\approx n^2$
- Implementation would break RSA and many other cryptosystems

Quantum vs. classical circuits

Theorem: a classical circuit of size s can be simulated by a quantum circuit of size O(s)

Idea: using Toffoli gates, one can simulate:

AND gates

NOT gates

Operations on quantum states

Unitary operations: "rotations" to quantum states

Measurements: produce classical information

Quantum Fourier Transform

The polynomial-time algorithm for factoring is based on the *quantum Fourier transform (QFT)*

$$F_{N} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(N-1)} \\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \dots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)^{2}} \end{bmatrix}$$

where $\omega = e^{2\pi i/N}$ (and *N* is exponentially large)

The QFT "extracts information about periodicity"

Computing the QFT

Quantum circuit for F_{32} :

For F_{2^n} costs $O(n^2)$ gates (exact) & $O(n \log n)$ gates (approx) [Shor, 1994] [Coppersmith, 1994] [C, 1994] 91

Outline

- Qubits, unitary ops, and projective measurements
- Superdense coding
- Teleportation
- Universal sets of gates
- No-cloning theorem
- Density operators
- General quantum operations
- Separable states