
1

Introduction to Introduction to 
Quantum Information ProcessingQuantum Information Processing

CS 467 / CS 667CS 467 / CS 667
Phys 667 / Phys 767Phys 667 / Phys 767
C&O 481 / C&O 681C&O 481 / C&O 681

Richard Cleve 
DC 653
cleve@cs.uwaterloo.ca

Course web site at: 
http://www.cs.uwaterloo.ca/~cleve

Lecture 4 (2005)

mailto:cleve@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~cleve


2

ContentsContents

• Recap: query algorithms

• One-out-of-four search

• Constant vs. balanced

• H⊗H⊗ ... ⊗H

• Simon’s problem



3

• Recap: query algorithms

• One-out-of-four search

• Constant vs. balanced

• H⊗H⊗ ... ⊗H

• Simon’s problem



4

Query algorithmsQuery algorithms

Last time: quantum algorithm for computing  
f (0)⊕f (1) making just 1 query to f, whereas 
any classical algorithm requires 2 queries

This time: other, stronger quantum vs. classical separations

f
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OneOne--outout--ofof--four searchfour search
Let  f : {0,1}2 {0,1} have the property that there is exactly 
one x ∈ {0,1}2 for which f (x) = 1

Four possibilities: x f00(x)
00
01
10
11

1
0
0
0

Goal: find x ∈ {0,1}2 for which f (x) = 1

x f01(x)
00
01
10
11

0
1
0
0

x f10(x)
00
01
10
11

0
0
1
0

x f11(x)
00
01
10
11

0
0
0
1

What is the minimum number of queries classically? ____

Quantumly? ____
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Quantum algorithm (I)Quantum algorithm (I)

f
|x1〉
|x2〉
|y〉

|x2〉
|x1〉

|y ⊕ f(x1,x2)〉

Black box for 1-4 search:

((–1) f(00)|00〉 + (–1) f(01)|01〉 + (–1) f(10)|10〉 + (–1) f(11)|11〉)(|0〉 – |1〉)
Output state of query?

Start by creating phases in superposition of all inputs to f:

Input state to query?fH
H

H|1〉

|0〉
|0〉 (|00〉 + |01〉 + |10〉 + |11〉)(|0〉 – |1〉)
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Quantum algorithm (II)Quantum algorithm (II)

Output state of the first two qubits in the four cases:

fH
H

H|1〉

|0〉
|0〉

Case of f00?
|ψ01〉 = + |00〉 – |01〉 + |10〉 + |11〉
|ψ10〉 = + |00〉 + |01〉 – |10〉 + |11〉
|ψ11〉 = + |00〉 + |01〉 + |10〉 – |11〉

What noteworthy property do these states have?

U

Challenge Exercise: simulate the above U in terms of H, 
Toffoli, and NOT gates

|ψ00〉 = – |00〉 + |01〉 + |10〉 + |11〉
Case of f01?
Case of f10?
Case of f11?

Orthogonal!

Apply the U that maps 
|ψ00〉, |ψ01〉, |ψ10〉, |ψ11〉 to 
|00〉, |01〉, |10〉, |11〉 (resp.)
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one-out-of-N search?

Natural question: what about search problems in spaces 
larger than four (and without uniqueness conditions)?

For spaces of size eight (say), the previous method breaks 
down—the state vectors will not be orthogonal

Later on, we’ll see how to search a space of size N with 
O(√N ) queries ...
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Constant vs. balancedConstant vs. balanced
Let  f : {0,1}n {0,1} be either constant or balanced, where
• constant means f (x) = 0 for all x, or f (x) = 1 for all x
• balanced means Σx f (x) = 2n−1 

Goal: determine whether  f is constant or balanced

How many queries are there needed classically? ____

Quantumly? ____

Example: if  f (0000) = f (0001) = f (0010) = ... = f (0111) = 0 
then it still could be either

[Deutsch & Jozsa, 1992]
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Quantum algorithmQuantum algorithm

f
H
H

H|1〉

|0〉
|0〉

H|0〉

Constant case: |ψ〉 = ± Σx |x〉 Why?

How to distinguish between the cases? What is H⊗n|ψ〉?

Last step of the algorithm: if the measured result is 000 then 
output “constant”, otherwise output “balanced”

|ψ〉

Constant case: H⊗n|ψ〉 = ± |00...0〉
Balanced case: H⊗n |ψ〉 is orthogonal to |0...00〉

H
f

H
H

H|1〉

|0〉
|0〉

H|0〉
H
H

Balanced case: |ψ〉 is orthogonal to  ± Σx |x〉 Why?
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Probabilistic Probabilistic classicalclassical algorithm algorithm 
solving constant solving constant vsvs balancedbalanced

But here’s a classical procedure that makes only 2 queries 
and performs fairly well probabilistically:

1. pick  x1, x2 ∈{0,1}n randomly
2. if f(x1) ≠ f(x2) then output balanced else output constant

What happens if  f is constant?

Succeeds with probability ½

By repeating the above procedure k times:
2k queries and one-sided error probability (½)k

Therefore, for large n, << 2n queries are likely sufficient

The algorithm always succeeds

What happens if  f is balanced?
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About  About  HH⊗⊗HH⊗⊗ ... ... ⊗⊗H = HH = H⊗⊗nn

{ }
yxH

n,y
/n

yxn ∑ −=
∈

⋅⊗

10
2 )1(

2
1Theorem: for  x ∈ {0,1}n,

Thus,  H⊗n|x1 ... xn〉 = (Σy1
(–1)x1y1|y1〉) ... (Σyn

(–1)xnyn|yn〉)
Pf: For all x ∈ {0,1}n,  H |x〉 = |0〉 + (–1) x|1〉 = Σy (–1)xy|y〉

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−+
−−++
−+−+
++++

=⊗

1111
1111
1111
1111

2
1HHExample:

where x·y = x1y1 ⊕ ... ⊕ xnyn

= Σy (–1) x1y1 ⊕ ... ⊕ xnyn|y1 ... yn〉 █
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Quantum vs. classical separationsQuantum vs. classical separations

black-box problem quantum classical

Simon’s problem

constant vs. balanced 1 (query) 2 (queries)
1-out-of-4 search 1 3
constant vs. balanced 1 ½ 2n + 1 (only for exact)

(probabilistic)
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SimonSimon’’s problems problem
Let f : {0,1}n {0,1}n have the property that there exists 
an r ∈ {0,1}n such that f (x) = f (y) iff x⊕y = r or x = y

x f (x)
000
001
010
011
100
101
110
111

011
101
000
010
101
011
010
000

Example:
What is r is this case? ________

Answer: r = 101
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A classical algorithm for SimonA classical algorithm for Simon
Search for a collision, an x ≠ y such that  f (x) = f (y) 

A hard case is where r is chosen randomly from {0,1}n– {0n} 
and then the “table” for f is filled out randomly subject to the 
structure implied by r

1. Choose x1, x2 ,..., xk ∈ {0,1}n randomly (independently)

2. For all i ≠ j, if f (xi) = f (xj) then output xi⊕xj and halt

How big does k have to be for the probability of a collision 
to be a constant, such as ¾?

Answer: order 2n/2 (each (xi , xj) collides with prob. O(2–n))
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Classical lower boundClassical lower bound

Theorem: any classical algorithm solving Simon’s problem 
must make  Ω(2n/2) queries

Proof is omitted here—note that the performance analysis 
of the previous algorithm does not imply the theorem

… how can we know that there isn’t a different algorithm 
that performs better?



21

A A quantumquantum algorithm for Simon Ialgorithm for Simon I

|x2〉
|xn〉

|x1〉
f

|y2〉
|yn〉

|y1〉

|x2〉
|xn〉

|x1〉

|y⊕ f (x)〉

Queries: Not clear what eigenvector
of target registers is ...

Proposed start of quantum 
algorithm: query all values 
of  f in superposition

f
H
H

|0〉

|0〉
|0〉

H|0〉

|0〉
|0〉

What is the output state of 
this circuit?

?
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A quantum algorithm for Simon IIA quantum algorithm for Simon II
Answer: the output state is

{ }
∑
∈ n,x

xfx
10

)(

)()( rxfrxxfx
Tx

⊕⊕+∑
∈

Let T ⊆ {0,1}n be such that one element from 
each matched pair is in T (assume r ≠ 00...0)

x f (x)
000
001
010
011
100
101
110
111

011
101
000
010
101
011
010
000

Example: could take T = {000, 001, 111, 110}

Then the output state can be written as:

( )∑
∈

⊕+=
Tx

xfrxx )(
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A quantum algorithm for Simon IIIA quantum algorithm for Simon III
Measuring the second register yields  |x〉 + |x⊕r〉 in the first 
register, for a random  x ∈ T

How can we use this to obtain some information about r?

Try applying H⊗n to the state, yielding:

{ } { }
yy

n,yn,y

yrxyx ∑ −+∑ −
∈∈

•⊕•

1010

)()1()1(

{ }
y

n,y

yryx∑ −+−=
∈

⎟
⎠
⎞⎜

⎝
⎛ ••

10

)1(1)1(
(1/2)n–1 if r ·y = 0
0   if r ·y ≠ 0Measuring this state yields  y  with prob.  
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A quantum algorithm for Simon IVA quantum algorithm for Simon IV
Executing this algorithm  k = O(n) times 
yields random y1, y2 ,..., yk ∈ {0,1}n such 
that r ·y1 = r ·y2 = ... = r ·yn = 0 

f
H
H

|0〉

|0〉
|0〉

H|0〉

|0〉
|0〉

H
H
H

This is a system of  k linear equations:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0
0

2

1

21

22221

11211

MM

L

MOMM

L

K

nknkk

n

n

r

r
r

yyy

yyy
yyy

With high probability, there is a unique non-zero solution 
that is  r (which can be efficiently found by linear algebra) 

How does this help?
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Preview of applications 
of  black-box results
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PeriodPeriod--findingfinding
Given: f : Z Z such that  f is (strictly) r-periodic, in the 
sense that f (x) = f (y) iff x − y is a multiple of r (unknown)

r
Goal: find r
Classically, the number of queries required can be “huge”
(essentially as hard as finding a collision)

There is a quantum algorithm that makes only a constant 
number of queries (which will be explained later on)
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SimonSimon’’s problem vs. periods problem vs. period--findingfinding
Period-finding problem: domain is Z and
property is f (x) = f (y) iff x − y is a multiple of r

Simon’s problem: domain is (Z2)n and
property is f (x) = f (y) iff x⊕y is a multiple of r

Deutsch’s problem: domain is Z2 and
property is f (x) = f (y) iff x⊕y is a multiple of r  
(r = 0 means  f (0) = f (1) and r = 1 means  f (0) ≠ f (1) )

This problem meaningfully generalizes to domain Zn
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ApplicationApplication of periodof period--finding algorithmfinding algorithm
Order-finding problem: given a and m (positive integers 
such that gcd(a,m) = 1), find the minimum positive r such 
that ar mod m = 1
Note that this is not a black-box problem!

No classical polynomial-time algorithm is known for this 
problem (in fact, the factoring problem reduces to it)

The problem reduces to finding the period of  f (x) = ax mod m, 
and the aforementioned period-finding algorithm in the black-
box model can be used to solve it in polynomial-time

The function  f is substituted into the black-box ... 
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On simulating 
black boxes
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How How notnot to simulate a black boxto simulate a black box
Given an explicit function, such as f (x) = ax mod m, and a 
finite domain {0, 1, 2, ..., 2n – 1}, simulate f-queries over that 
domain
Easy to compute mapping |x〉|y〉|00...0〉 |x〉|y⊕f (x)〉|g(x)〉, 
where the third register is “work space” with accumulated 
“garbage” (e.g., two such bits arise when a Toffoli gate is 
used to simulate an AND gate)

If  f is queried in superposition then the resulting state can be 
Σx αx |x〉|y⊕f (x)〉|g(x)〉 Can we just discard the third register?

No ... there could be entanglement ...

This works fine as long as  f is not queried in superposition
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Overview of Lecture 4Overview of Lecture 4
• The one-out-of-four search problem
• The constant vs. balanced problem

• H⊗H⊗ ... ⊗H
• Fourier sampling
• Preview of where black-box results are headed: 

period-finding
• Simulating black boxes
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Overview of Lecture 8Overview of Lecture 8
• BV problem: 1 vs. n separation robust against 

probabilistic algorithms
• Preview of where black-box results are headed: 

period-finding
• Simulating black boxes
• Simon’s problem: 1 vs. 2n/2 separation robust 

against probabilistic algorithms
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How How toto simulate a black boxsimulate a black box
Simulate the mapping |x〉|y〉|00...0〉 |x〉|y⊕f (x)〉|00...0〉, 
(i.e., clean up the “garbage”)

To do this, use an additional register and:
1. compute |x〉|y〉|00...0〉|00...0〉 |x〉|y〉|f (x)〉|g(x)〉

(ignoring the 2nd register in this step)
2. compute |x〉|y〉|f (x)〉|g(x)〉 |x〉|y⊕f (x)〉|f (x)〉|g(x)〉

(using CNOT gates between the 2nd and 3rd registers)
3. compute |x〉|y⊕f (x)〉|f (x)〉|g(x)〉 |x〉|y⊕f (x)〉|00...0〉|00...0〉

(by reversing the procedure in step 1)

Total cost: around twice the cost of computing  f , plus n
auxiliary gates 
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Quantum vs. classical separationsQuantum vs. classical separations

black-box problem quantum classical
constant vs. balanced 1 (query) 2 (queries)
1-out-of-4 search 1 3
constant vs. balanced 1 ½ 2n + 1
BV problem 1 n

(only for exact)

(probabilistic)
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BV problem
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BV problemBV problem
[Bernstein & Vazirani, 1993]

Let f : {0,1}n {0,1} be of the form f (x) = a1x1 ⊕ ... ⊕ anxn, 
where  (a1, ... , an) ∈ {0,1}n is unknown

Goal: determine (a1, ... , an)

Classically: n queries needed, even to succeed with 
probability > ½ (why?)

Quantumly: 1 query suffices
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Quantum algorithm for BVQuantum algorithm for BV

f
H
H

H|1〉

|0〉
|0〉

H|0〉
|ψ〉

Question: what is |ψ〉?

{ }
∑ −ψ

∈

•=
n,x

xa x/n
10

)1(22
1

Therefore, H⊗n|ψ〉 = |a1, ... , an 〉

where

Answer: |ψ〉 = H⊗n|a1, ... , an 〉

f
H
H

H|1〉

|0〉
|0〉

H|0〉

H
H
HFinal algorithm:



39

Quantum algorithmQuantum algorithm

Output state of the first two qubits in the four cases:

fH
H

H|1〉

|0〉
|0〉

|ψ00〉 = – |00〉 + |01〉 + |10〉 + |11〉
|ψ01〉 = + |00〉 – |01〉 + |10〉 + |11〉
|ψ10〉 = + |00〉 + |01〉 – |10〉 + |11〉
|ψ11〉 = + |00〉 + |01〉 + |10〉 – |11〉

Note that these states are orthogonal!

U where

Challenge Exercise: simulate the above U in terms of H, 
Toffoli, and NOT gates

{ }
∑
∈

ψ=
210 ,ab

ababU
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Simple quantum algorithms 
in the query scenario
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Query scenarioQuery scenario
Input: a function f, given as 
a black box (a.k.a. oracle) fx f (x)

Goal: determine some information about  f making as few 
queries to  f (and other operations) as possible

Example: polynomial interpolation

Let: f (x) = c0 + c1x + c2 x2 + ... + cd xd

Goal: determine c0 , c1 , c2 , ... , cd

Question: How many f-queries does one 
require for this?

Answer: d +1
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DeutschDeutsch’’s problems problem
Let  f : {0,1} {0,1} f
There are four possibilities:

x f1(x)
0
1

0
0

x f2(x)
0
1

1
1

x f3(x)
0
1

0
1

x f4(x)
0
1

1
0

Goal: determine whether or not  f(0) = f(1)  (i.e. f(0) ⊕ f(1)) 

Any classical method requires two queries

What about a quantum method?
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ReversibleReversible black box for black box for ff

Uf

a

b

a

b⊕ f(a)

falternate 
notation:

A classical algorithm: 
(still requires 2 queries)

f f0

0

1

f(0) ⊕ f(1)

2 queries + 1 auxiliary operation
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Quantum algorithm for Deutsch Quantum algorithm for Deutsch 

H f

H

H

|1〉

|0〉 f(0) ⊕ f(1)

1 query + 4 auxiliary operations ⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

2
1H1

2 3

How does this algorithm work?

Each of the three H operations can be seen as playing 
a different role ...
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Quantum algorithm (Quantum algorithm (11) ) 
H f

H

H

|1〉

|0〉

1

2 3

1. Creates the state |0〉 – |1〉, which is an eigenvector of

NOT with eigenvalue –1 
I with eigenvalue +1

This causes f  to induce a phase shift of (–1) f(x) to |x〉

f

|0〉 – |1〉

|x〉 (–1) f(x)|x〉

|0〉 – |1〉
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Quantum algorithm (Quantum algorithm (22) ) 
2. Causes  f to be queried in superposition (at |0〉 + |1〉)

f

|0〉 – |1〉

|0〉 (–1) f(0)|0〉 + (–1) f(1)|1〉

|0〉 – |1〉

H

x f1(x)
0
1

0
0

x f2(x)
0
1

1
1

x f3(x)
0
1

0
1

x f4(x)
0
1

1
0

±(|0〉 + |1〉) ±(|0〉 – |1〉)
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Quantum algorithm (Quantum algorithm (33) ) 
3. Distinguishes between  ±(|0〉 + |1〉)  and  ±(|0〉 – |1〉)

H

±(|0〉 + |1〉)                 ±|0〉

±(|0〉 – |1〉)                 ±|1〉

H
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Summary of  DeutschSummary of  Deutsch’’s algorithm s algorithm 

H f

H

H

|1〉

|0〉 f(0) ⊕ f(1)

1

2 3

constructs eigenvector so f-queries 
induce phases: |x〉 (–1) f(x)|x〉

produces superpositions
of inputs to f :  |0〉 + |1〉

extracts phase differences from

(–1) f(0)|0〉 + (–1) f(1)|1〉

Makes only one query, whereas two are needed classically 
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universality of 
two-qubit gates
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A universal set of gatesA universal set of gates
Theorem: any unitary operation U acting on k qubits can be 
decomposed into O(4k) CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of O(k24k)) :
We first show how to simulate a controlled-U, for any one-
qubit unitary U

• A B C = I
• eiλ A X B X C = U, where

Fact: for any one-qubit unitary U, there exist  A, B, C,
and λ, such that:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
10

X
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A universal set of gatesA universal set of gates
The aforementioned fact implies

U A B C

P
where ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

λ0
01
ie

P≡

Using such controlled-U gates, one can simulate controlled-
controlled-V gates, for any unitary V, as follows:

UV U U†

≡ where V = U 2
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A universal set of gatesA universal set of gates
When U = X, this construction yields the 3-qubit Toffoli gate

From this gate, generalized Toffoli gates can be constructed:

≡
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A universal set of gatesA universal set of gates
From generalized Toffoli gates, generalized controlled-U
gates (controlled-controlled- ... -U) can be constructed:

U
|0〉

U

≡
|0〉

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1110

0100

000000
000000

00100000
00010000
00001000
00000100
00000010
00000001

UU
UU
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A universal set of gatesA universal set of gates

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

10000000
01000000
00100000
000000
00001000
00000100
000000
00000001

1110

0100

UU

UU

The approach essentially enables any k-qubit operation of 
the simple form

to be computed with O(k2) CNOT and one-qubit gates

Any 2k×2k unitary matrix can be decomposed into a product 
of O(4k) such simple matrices
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A universal set of gatesA universal set of gates

Thus, the set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

This completes the proof sketch

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)
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Universal sets 
of gates
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Universal gate setUniversal gate set
Theorem 1: The CNOT gate, along with all one-qubit
unitaries is a universal set in that any k-qubit unitary 
operation can be decomposed into O(4k) such gates

For any unitary operation U, there exist one-qubit unitaries
P, A, B, C such that:

U A B C

P≡

Some key steps of the proof:
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Universal gate set (II)Universal gate set (II)

UV U U†

≡ where V = U 2

controlled-controlled-V

From this gate, generalized Toffoli gates can be constructed:

≡
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Universal gate set (III)Universal gate set (III)

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

10000000
01000000
00100000
000000
00001000
00000100
000000
00000001

1110

0100

UU

UU

The approach leads to the k-qubit operations of the form

with O(k2) CNOT and one-qubit gates

Any 2k×2k unitary matrix can be decomposed into a product 
of O(4k) such simple matrices
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ApproximatelyApproximately universal gate setuniversal gate set

Theorem 2: the gates  CNOT,  H,  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 40

01
/πie

S
are approximately universal, in that any 
unitary operation on k qubits can be 

simulated within precision ε by applying 

O(4klogc(1/ε)) of them (c is a constant)



61

Density 
operators
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Density matricesDensity matrices
Until now, we’ve represented quantum states as state vectors 
(e.g. |ψ〉, and such states are called pure states)

An alternative way of representing quantum states is in terms 
of density matrices (aka. density operators)

The density matrix of a pure state |ψ〉 is the matrix |ψ〉〈ψ|

Example: the density matrix of α|0〉 + β|1〉 is 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∗

∗

∗

∗

2

2

βαβ
βαα

βα
β
α
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Density matrices (II)Density matrices (II)
A probability distribution on pure states is called a mixed state:
((p1, |ψ1〉), (p2, |ψ2〉), …, (pn, |ψn〉))
The density matrix associated with such a mixture is:

∑
=

=
n

k
kkkp

1
ψψρ

Example: the density matrix for ((½, |0〉), (½, |1〉)) is: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

2
1

2
1

2
10
00

00
02

1

0
0

((½, |0〉 + |1〉), (½, |0〉 −|1〉)) has the same density matrix!
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General 
quantum 

operations
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General quantum operationsGeneral quantum operations
Characterizing properties of ρ :
• ρ positive semi-definite
• Trρ = 1

∑
=

=
n

k
kkkp

1
ψψρ

Example 1 (unitary op): applying  U to  ρ yields UρU†

General quantum operations (aka. completely positive 
trace preserving operations, admissible operations): 

Let A1, A2 , …, Am be matrices satisfying IAA j

m

j
j =∑

=1

t

Then the mapping ∑
=

m

j
jj AA

1

tρρ a is a general quantum op
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General quantum operations (II)General quantum operations (II)

After looking at the outcome, ρ becomes
|0〉〈0| with prob. |α|2
|1〉〈1| with prob. |β|2

Example 2: let A0 = |0〉〈0| and A1 = |1〉〈1|

This quantum op maps ρ to |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|

Corresponds to measuring ρ “without looking at the outcome”

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∗

∗

2

2

2

2

0
0
β

α
βαβ
βαα

aFor |ψ〉 = α|0〉 + β|1〉,
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General quantum operations (III)General quantum operations (III)
Example 3 (discarding second of two qubits):

Let A0 = I⊗〈0| and A1 = I⊗〈1|⎥
⎦

⎤
⎢
⎣

⎡
=

0100
0001

⎥
⎦

⎤
⎢
⎣

⎡
=

1000
0010

State  ρ⊗σ becomes  ρ

State becomes( ) ( )11001100
2

1
2

1
2

1
2

1 +⊗+

Note 1: it’s the same density matrix as for ((½, |0〉), (½, |1〉))

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

2
1

2
1

0
0

Note 2: the operation is the partial trace Tr2 ρ
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Separable statesSeparable states

∑
=

⊗=
m

j
jjjp

1
ξσρ

• product state if  ρ = σ⊗ξ

• separable state if

A bipartite (ie. two register) state ρ is a:

Example: the state 

( )( ) ( )( )1100110011001100 2
1

2
1 −−+++=ρ

is separable, since 11110000 2
1

2
1 ⊗+⊗=ρ

(ie. a mixture of product states)

( p1 ,…, pm ≥ 0)
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Universal gate setUniversal gate set
Theorem 1: The CNOT gate, along with all one-qubit
unitaries is a universal set in that any k-qubit unitary 
operation can be decomposed into O(4k) such gates

UV U U†

≡ where V = U 2

Some components of the proof:

controlled-controlled-V
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How teleportation worksHow teleportation works

(α|0〉 + β|1〉)(|00〉 + |11〉) (omitting the 1/√2 factor)

= α|000〉 + α|011〉 + β|100〉 + β|111〉

= ½(|00〉 + |11〉)(α|0〉 + β|1〉)
+ ½(|00〉 − |11〉)(α|1〉 + β|0〉)
+ ½(|01〉 + |10〉)(α|0〉 − β|1〉)
+ ½(|01〉 − |10〉)(α|1〉 − β|0〉)

Initial state: 

Protocol: Alice measures her two qubits in the Bell basis
and sends the result to Bob (who then “corrects” his state)
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Review of partial measurementsReview of partial measurements
Suppose one measures just the first qubit of the state 

110100
12
5

32
1

++
i

What is the result?

11100
12
5

7
4

7
3

12
7

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= i

10
7
4

7
3 i+

1

0,

1,

with prob. 7/12

with prob. 5/12
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A universal set of gatesA universal set of gates
Theorem: any unitary operation U acting on k qubits can be 
decomposed into O(4k) CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of O(k24k)) :
We first show how to simulate a controlled-U, for any one-
qubit unitary U

• A B C = I
• eiλ A X B X C = U, where

Fact: for any one-qubit unitary U, there exist  A, B, C,
and λ, such that:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
10

X
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Universal sets of gatesUniversal sets of gates
Theorem: any unitary operation U acting on k qubits can be 
decomposed into O(4k) CNOT and one-qubit gates

Example: Toffoli gate
“controlled-controlled-NOT”

Therefore, CNOT and all one-qubit gates are universal
(classical analogue: AND and NOT gates)

Can be simulated by CNOT, H, and ⎥
⎦

⎤
⎢
⎣

⎡
= π 40

01
/ie

W

|c ⊕ (a∧b)〉

|b〉

|a〉|a〉

|b〉

|c〉
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A universal set of gatesA universal set of gates
From generalized Toffoli gates, generalized controlled-U
gates (controlled-controlled- ... -U) can be constructed:

U
|0〉

U

≡
|0〉

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1110

0100

000000
000000

00100000
00010000
00001000
00000100
00000010
00000001

UU
UU
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A universal set of gatesA universal set of gates

Thus, the set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

This completes the proof sketch*

∗ Actually proved a slightly worse bound of O(k24k)

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)
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Approximately universal gate setsApproximately universal gate sets
Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated 
within any precision by repeatedly applying 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

)()(
)()(

πcosπsin
πsinπcos

22

22
R

some number of times

In this sense, R is approximately universal for the set of 
all one-qubit rotations: any rotation S can be approximated 
within precision ε by applying R a suitable number of times

It turns out that O((1/ε)c) times suffices (for a constant c)
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Approximately universal gate setsApproximately universal gate sets

Theorem: the gates CNOT, H, and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 4π0

01
/ie

S

are approximately universal, in the sense 
that any unitary operation on k qubits can be 
simulated within precision ε by applying 
O(4klogc(1/ε)) of them (c is a constant)

[Solovay, 1996][Kitaev, 1997]

Say something about basic idea …?
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Density matrices IIDensity matrices II
A probability distribution on pure states is a mixed state:
((p1, |ψ1〉), (p2, |ψ2〉), …, (pn, |ψn〉))
The density matrix associated with such a mixture is:

∑
=

=
n

k
kkkp

1
ψψρ

Example: the density matrix for ((½, |0〉), (½, |1〉)) is: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

0
0

Same for ((½, |0〉 + |1〉), (½, |1〉 |0〉 −|1〉))
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A universal set of gatesA universal set of gates
Theorem: any unitary operation U acting on k qubits can be 
decomposed into O(4k) CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of O(k24k)) :
We first show how to simulate a controlled-U, for any one-
qubit unitary U

• A B C = I
• eiλ A X B X C = U, where

Fact: for any one-qubit unitary U, there exist  A, B, C,
and λ, such that:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
10

X
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A universal set of gatesA universal set of gates
From generalized Toffoli gates, generalized controlled-U
gates (controlled-controlled- ... -U) can be constructed:

U
|0〉

U

≡
|0〉

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1110

0100

000000
000000

00100000
00010000
00001000
00000100
00000010
00000001

UU
UU
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A universal set of gatesA universal set of gates

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

10000000
01000000
00100000
000000
00001000
00000100
000000
00000001

1110

0100

UU

UU

The approach essentially enables any k-qubit operation of 
the simple form

to be computed with O(k2) CNOT and one-qubit gates

Any 2k×2k unitary matrix can be decomposed into a product 
of O(4k) such simple matrices
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A universal set of gatesA universal set of gates

Thus, the set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

This completes the proof sketch

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)



84

Classical (Classical (booleanboolean logic) gateslogic) gates

NOT gate a ¬a ¬a ¬a

ΛAND gate
b
a a Λ b

a

b
a Λ b

“old” notation “new” notation

Note: an OR gate can be simulated by one AND gate 
and three NOT gates
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Models of computationModels of computation

¬

¬

¬

¬

¬

0

0

1

1

1

¬

Λ

Λ ¬

Λ

Λ

Λ

¬

Λ

Λ

¬

Λ

Λ

Λ

Λ

Λ

1

0

1

0

1

Λ

Λ

¬

|0〉

|1〉
|1〉
|0〉

|1〉

1
0
1
0
1

Classical 
circuits:

Quantum 
circuits:
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Multiplication problemMultiplication problem

• “Grade school” algorithm costs O(n2)
• Best currently-known classical algorithm costs 

O(n log n loglog n)

• Best currently-known quantum method: same

Input: two n-bit numbers (e.g. 101 and 111)

Output: their product (e.g. 100011)
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Factoring problemFactoring problem

• Trial division costs  ≈ 2n/2

• Best currently-known classical algorithm costs  ≈ 2n⅓

• Hardness of factoring is the basis of the security of many 
cryptosystems (e.g. RSA)

• Shor’s quantum algorithm costs ≈ n2

• Implementation would break RSA and many other 
cryptosystems

Input: an n-bit number (e.g. 100011)

Output: their product (e.g. 101, 111)
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Quantum vs. classical circuitsQuantum vs. classical circuits
Theorem: a classical circuit of size s can be simulated by a 
quantum circuit of size O(s)

Idea: using Toffoli gates, one can simulate: 

AND gates

|a Λ b〉

|b〉

|a〉|a〉

|b〉

|0〉

NOT gates

|¬a〉

|1〉

|1〉|1〉

|1〉

|a〉
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Operations on quantum statesOperations on quantum states

Unitary operations: “rotations” to quantum states

… and quantum state collapses

Measurements: produce classical information

2
111

2
001

2
000

 probwith111

 probwith001
 probwith000

α

α
α

MMM

⎧

⎩
⎨a

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

111

001

000

α

α
α

M
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Quantum Fourier TransformQuantum Fourier Transform
The polynomial-time algorithm for factoring is based on the 
quantum Fourier transform (QFT)

The QFT “extracts information about periodicity”

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−

−

−

−

2113121

13963

12642

132

1

1
1
1

11111

1

)()()(

)(

)(

NNNN

N

N

N

ωωωω

ωωωω
ωωωω
ωωωω

NNF

L

MOMMMM

K

L

L

K

where ω = e2πi/N (and N is exponentially large)
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Computing the QFTComputing the QFT

H

4

8 4

816 4

32 16 8 4

H

H

H

H

⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

2
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mπie /2000
0100
0010
0001

H
m

Quantum circuit for F32:

Gates:

For F2n costs O(n2) gates (exact)  & O(n log n) gates (approx)
[Shor, 1994] [Coppersmith, 1994] [C, 1994]



92

OutlineOutline
• Qubits, unitary ops, and projective measurements
• Superdense coding
• Teleportation
• Universal sets of gates

• No-cloning theorem
• Density operators
• General quantum operations
• Separable states
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