Introduction to Quantum Information Processing CS 467 I CS 667 Phys 667 I Phys 767 C\&O 481 / C\&O 681

Lecture 4 (2005)

Richard Cleve
DC 653
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve

Contents

- Recap: query algorithms
- One-out-offofour search
- Constant vs. balanced
- $H \otimes H \otimes \ldots \otimes H$
- Simon's problem

Recap: query algorithms

 One-out-afifour ceareh Constant vs. balanced $H \otimes H \otimes$ CH aimonion hatan
Query algorithms

Last time: quantum algorithm for computing $f(0) \oplus f(1)$ making just 1 query to f, whereas any classical algorithm requires 2 queries

This time: other, stronger quantum vs. classical separations

```
- Recap: query algorithms
- One-out-of-four search
Constant vs. balanced
H\otimesH\otimes
                                O
ammonerymanm
```


One-out-of-four search

Let $f:\{0,1\}^{2} \rightarrow\{0,1\}$ have the property that there is exactly one $x \in\{0,1\}^{2}$ for which $f(x)=1$
Four possibilities:

x	$f_{00}(x)$		x	$f_{01}(x)$		x	$f_{10}(x)$		x	$f_{11}(x)$
	00	1		00	0		00	0		00
01	0		01	1		01	0		01	0
10	0		10	0		10	1		10	0
11	0		11	0		11	0		11	1

Goal: find $x \in\{0,1\}^{2}$ for which $f(x)=1$
What is the minimum number of queries classically? \qquad
Quantumly?

Quantum algorithm (I)

Black box for 1-4 search:

Start by creating phases in superposition of all inputs to f :

$$
\begin{aligned}
& \text { Input state to query? } \\
& (|00\rangle+|01\rangle+|10\rangle+|11\rangle)(|0\rangle-|1\rangle)
\end{aligned}
$$

Output state of query?
$\left((-1)^{f(00)}|00\rangle+(-1)^{f(01)}|01\rangle+(-1)^{f(10)}|10\rangle+(-1)^{f(11)}|11\rangle\right)(|0\rangle-|1\rangle)$

Quantum algorithm (II)

Output state of the first two qubits in the four cases:
Case of $f_{00} ? \quad\left|\psi_{00}\right\rangle=-|00\rangle+|01\rangle+|10\rangle+|11\rangle$
Case of $f_{01} ? \quad\left|\psi_{01}\right\rangle=+|00\rangle-|01\rangle+|10\rangle+|11\rangle$
Case of $f_{10} ? \quad\left|\psi_{10}\right\rangle=+|00\rangle+|01\rangle-|10\rangle+|11\rangle$
Case of $f_{11} ? \quad\left|\psi_{11}\right\rangle=+|00\rangle+|01\rangle+|10\rangle-|11\rangle$
What noteworthy property do these states have? Orthogonal!
Challenge Exercise: simulate the above U in terms of H, Toffoli, and NOT gates

one-out-of- N search?

Natural question: what about search problems in spaces larger than four (and without uniqueness conditions)?

For spaces of size eight (say), the previous method breaks down-the state vectors will not be orthogonal

Later on, we'll see how to search a space of size N with $O(\sqrt{ } N)$ queries ...

Constant vs. balanced

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be either constant or balanced, where

- constant means $f(x)=0$ for all x, or $f(x)=1$ for all x
- balanced means $\Sigma_{x} f(x)=2^{n-1}$

Goal: determine whether f is constant or balanced
How many queries are there needed classically? \qquad
Example: if $f(0000)=f(0001)=f(0010)=\ldots=f(0111)=0$ then it still could be either

Quantumly?

[Deutsch \& Jozsa, 1992]

Quantum algorithm

Constant case: $|\psi\rangle= \pm \sum_{x}|x\rangle \quad$ Why?
Balanced case: $|\psi\rangle$ is orthogonal to $\pm \Sigma_{x}|x\rangle \quad$ Why? How to distinguish between the cases? What is $H^{\otimes n}|\psi\rangle$?
Constant case: $H^{\otimes n}|\psi\rangle= \pm|00 \ldots 0\rangle$
Balanced case: $H^{\otimes n}|\psi\rangle$ is orthogonal to $|0 \ldots 00\rangle$
Last step of the algorithm: if the measured result is 000 then output "constant", otherwise output "balanced"

Probabilistic classical algorithm solving constant vs balanced

But here's a classical procedure that makes only $\mathbf{2}$ queries and performs fairly well probabilistically:

1. pick $x_{1}, x_{2} \in\{0,1\}^{n}$ randomly
2. if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ then output balanced else output constant

What happens if f is constant? The algorithm always succeeds What happens if f is balanced? Succeeds with probability $1 / 2$

By repeating the above procedure k times:
$2 k$ queries and one-sided error probability $(1 / 2)^{k}$
Therefore, for large $n, \ll 2^{n}$ queries are likely sufficient

```
- Recap: query algorithms
```



```
    Constant vs. balanced
• H\otimesH\otimes ...\otimesH
    Simon's problem
```


About $\boldsymbol{H} \otimes \boldsymbol{H} \otimes \ldots \otimes \boldsymbol{H}=\boldsymbol{H}^{\otimes \boldsymbol{n}}$

Theorem: for $x \in\{0,1\}^{n}, H^{\otimes n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle$ where $x \cdot y=x_{1} y_{1} \oplus \ldots \oplus x_{n} y_{n}$

Example: $H \otimes H=\frac{1}{2}\left[\begin{array}{llll}+1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1\end{array}\right]$
Pf: For all $x \in\{0,1\}^{n}, H|x\rangle=|0\rangle+(-1)^{x}|1\rangle=\Sigma_{y}(-1)^{x y}|y\rangle$
Thus, $H^{\otimes n}\left|x_{1} \ldots x_{n}\right\rangle=\left(\sum_{y_{1}}(-1)^{x_{1} y_{1}}\left|y_{1}\right\rangle\right) \ldots\left(\sum_{y_{n}}(-1)^{x_{n} y_{n}}\left|y_{n}\right\rangle\right)$

$$
=\Sigma_{y}(-1)^{x_{1} y_{1} \oplus \ldots \oplus x_{n} y_{n}}\left|y_{1} \ldots y_{n}\right\rangle
$$

Quantum vs. classical separations

black-box problem	quantum	classical
constant vs. balanced	$\mathbf{1}$ (query)	$\mathbf{2}$ (queries)
1-out-of-4 search	$\mathbf{1}$	$\mathbf{3}$
constant vs. balanced	$\mathbf{1}$	$11 / 2 \mathbf{2}^{\mathbf{n}}+\mathbf{1}$
Simon's problem		
(only for exact)		
(probabilistic)		

Simon's problem

Let $f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{n}$ have the property that there exists an $r \in\{\mathbf{0}, \mathbf{1}\}^{n}$ such that $f(x)=f(y)$ iff $x \oplus y=r$ or $x=y$

Example:

x	$f(x)$
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

What is r is this case?
Answer: $r=101$

A classical algorithm for Simon

Search for a collision, an $x \neq y$ such that $f(x)=f(y)$

1. Choose $x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n}$ randomly (independently)
2. For all $i \neq j$, if $f\left(x_{i}\right)=f\left(x_{j}\right)$ then output $x_{i} \oplus x_{j}$ and halt

A hard case is where r is chosen randomly from $\{\mathbf{0}, \mathbf{1}\}^{n}-\left\{\mathbf{0}^{n}\right\}$ and then the "table" for f is filled out randomly subject to the structure implied by r

How big does k have to be for the probability of a collision to be a constant, such as $3 / 4$?

Answer: order $2^{n / 2}$ (each $\left(x_{i}, x_{j}\right)$ collides with prob. $O\left(2^{-n}\right)$)

Classical lower bound

Theorem: any classical algorithm solving Simon's problem must make $\Omega\left(2^{n / 2}\right)$ queries

Proof is omitted here-note that the performance analysis of the previous algorithm does not imply the theorem
... how can we know that there isn't a different algorithm that performs better?

A quantum algorithm for Simon I

Queries:

Not clear what eigenvector of target registers is ...

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?

A quantum algorithm for Simon II

Let $T \subseteq\{\mathbf{0}, \mathbf{1}\}^{n}$ be such that one element from each matched pair is in T (assume $r \neq 00 \ldots 0$)

Example: could take $T=\{000,001,111,110\}$
Then the output state can be written as:
$\sum_{x \in T}|x\rangle|f(x)\rangle+|x \oplus r\rangle|f(x \oplus r)\rangle$
$=\sum_{x \in T}(|x\rangle+|x \oplus r\rangle)|f(x)\rangle$

x	$f(x)$
$\mathbf{0 0 0}$	011
$\mathbf{0 0 1}$	101
$\mathbf{0 1 0}$	000
$\mathbf{0 1 1}$	010
100	101
101	011
110	010
111	000

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle+|x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain some information about r ?
Try applying $H^{\otimes n}$ to the state, yielding:

$$
\begin{aligned}
& \sum_{y \in\left\{0,11^{1}\right.}(-1)^{x \bullet y}|y\rangle+\sum_{y \in\{0,1\}^{n}}(-1)^{(x \oplus r) \bullet y}|y\rangle \\
= & \sum_{y \in\{0,1\}^{n}}(-1)^{x \bullet y}\left(1+(-1)^{r \bullet y}\right)|y\rangle
\end{aligned}
$$

Measuring this state yields y with prob. $\begin{cases}(1 / 2)^{n-1} & \text { if } r \cdot y=0 \\ 0 & \text { if } r \cdot y \neq 0\end{cases}$

A quantum algorithm for Simon IV

Executing this algorithm $k=O(n)$ times yields random $y_{1}, y_{2}, \ldots, y_{k} \in\{0,1\}^{n}$ such that $r \cdot y_{1}=r \cdot y_{2}=\ldots=r \cdot y_{n}=0$
How does this help?

This is a system of k linear equations:

$$
\left[\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{k 1} & y_{k 2} & \cdots & y_{k n}
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra)

Preview of applications of black-box results

Period-finding

Given: $f: \mathbf{Z} \rightarrow \mathbf{Z}$ such that f is (strictly) r-periodic, in the sense that $f(x)=f(y)$ iff $x-y$ is a multiple of r (unknown)

Goal: find r
Classically, the number of queries required can be "huge" (essentially as hard as finding a collision)

There is a quantum algorithm that makes only a constant number of queries (which will be explained later on)

Simon's problem vs. period-finding

Period-finding problem: domain is \mathbf{Z} and property is $f(x)=f(y)$ iff $x-y$ is a multiple of r

This problem meaningfully generalizes to domain $\mathbf{Z}^{\boldsymbol{n}}$
Deutsch's problem: domain is $\mathbf{Z}_{\mathbf{2}}$ and property is $f(x)=f(y)$ iff $x \oplus y$ is a multiple of r ($r=0$ means $f(0)=f(1)$ and $r=1$ means $f(0) \neq f(1)$)

Simon's problem: domain is $\left(Z_{2}\right)^{n}$ and property is $f(x)=f(y)$ iff $x \oplus y$ is a multiple of r

Application of period-finding algorithm

Order-finding problem: given a and m (positive integers such that $\operatorname{gcd}(a, m)=1$), find the minimum positive r such that $a^{r} \bmod m=1$
Note that this is not a black-box problem!
No classical polynomial-time algorithm is known for this problem (in fact, the factoring problem reduces to it)
The problem reduces to finding the period of $f(x)=a^{x} \bmod m$, and the aforementioned period-finding algorithm in the blackbox model can be used to solve it in polynomial-time

The function f is substituted into the black-box ...

On simulating black boxes

How not to simulate a black box

Given an explicit function, such as $f(x)=a^{x} \bmod m$, and a finite domain $\left\{0,1,2, \ldots, 2^{n}-1\right\}$, simulate f-queries over that domain

Easy to compute mapping $|x\rangle|y\rangle|00 \ldots 0\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|g(x)\rangle$, where the third register is "work space" with accumulated "garbage" (e.g., two such bits arise when a Toffoli gate is used to simulate an AND gate)

This works fine as long as f is not queried in superposition If f is queried in superposition then the resulting state can be $\Sigma_{x} \alpha_{x}|x\rangle|y \oplus f(x)\rangle|g(x)\rangle \quad$ Can we just discard the third register?

No ... there could be entanglement ...

Overview of Lecture 4

- The one-out-of-four search problem
- The constant vs. balanced problem
- $H \otimes H \otimes \ldots \otimes H$
- Fourier sampling
- Preview of where black-box results are headed: period-finding
- Simulating black boxes

Overview of Lecture 8

- BV problem: 1 vs. \boldsymbol{n} separation robust against probabilistic algorithms
- Preview of where black-box results are headed: period-finding
- Simulating black boxes
- Simon's problem: 1 vs. $2^{n / 2}$ separation robust against probabilistic algorithms

How to simulate a black box

Simulate the mapping $|x\rangle|y\rangle|00 \ldots 0\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|00 \ldots 0\rangle$, (i.e., clean up the "garbage")

To do this, use an additional register and:

1. compute $|x\rangle|y\rangle|00 \ldots 0\rangle 00 \ldots 0\rangle \rightarrow|x\rangle|y\rangle|f(x)\rangle|g(x)\rangle$
(ignoring the $2^{\text {nd }}$ register in this step)
2. compute $|x\rangle|y\rangle|f(x)\rangle|g(x)\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|f(x)\rangle|g(x)\rangle$
(using CNOT gates between the $2^{\text {nd }}$ and $3^{\text {rd }}$ registers)
3. compute $|x\rangle|y \oplus f(x)\rangle\rangle f(x)\rangle|g(x)\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle|00 \ldots 0\rangle|00 \ldots 0\rangle$ (by reversing the procedure in step 1)

Total cost: around twice the cost of computing f, plus n auxiliary gates

Quantum vs. classical separations

black-box problem	quantum	classical
constant vs. balanced	1 (query)	2 (queries)
1-out-of-4 search	1	3
constant vs. balanced	1	$1 / 22^{n}+1$
BV problem	1	n
(only for exact)		
(probabilistic)		

BV problem

BV problem

[Bernstein \& Vazirani, 1993]

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be of the form $f(x)=a_{1} x_{1} \oplus \ldots \oplus a_{n} x_{n}$, where $\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ is unknown

Goal: determine $\left(a_{1}, \ldots, a_{n}\right)$
Classically: n queries needed, even to succeed with probability > $1 / 2$ (why?)

Quantumly: 1 query suffices

Quantum algorithm for BV

where $|\psi\rangle=\frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}(-1)^{a \bullet x}|x\rangle$

Question: what is $|\psi\rangle$?
Answer: $|\psi\rangle=H^{\otimes n}\left|a_{1}, \ldots, a_{n}\right\rangle$
Therefore, $H^{\otimes n}|\psi\rangle=\left|a_{1}, \ldots, a_{n}\right\rangle$
Final algorithm:

Quantum algorithm

Output state of the first two qubits in the four cases:
$\left|\psi_{00}\right\rangle=-|00\rangle+|01\rangle+|10\rangle+|11\rangle$
$\left|\psi_{01}\right\rangle=+|00\rangle-|01\rangle+|10\rangle+|11\rangle$
$\left|\psi_{10}\right\rangle=+|00\rangle+|01\rangle-|10\rangle+|11\rangle$
$\left|\psi_{11}\right\rangle=+|00\rangle+|01\rangle+|10\rangle-|11\rangle$
Note that these states are orthogonal!
Challenge Exercise: simulate the above U in terms of H, Toffoli, and NOT gates

Simple quantum algorithms in the query scenario

Query scenario

Input: a function f, given as a black box (a.k.a. oracle)

Goal: determine some information about f making as few queries to f (and other operations) as possible

Example: polynomial interpolation
Let: $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{d} x^{d}$
Goal: determine $c_{0}, c_{1}, c_{2}, \ldots, c_{d}$
Question: How many f-queries does one require for this?

Answer: $d+1$

Deutsch's problem

Let $f:\{0,1\} \rightarrow\{0,1\}$

There are four possibilities:

x	$f_{1}(x)$			
0	0			
1	0	\quad	x	$f_{2}(x)$
:---	:---			
0	1			
	1			

x	$f_{3}(x)$
0	0
1	1

x	$f_{4}(x)$
0	1
1	0

Goal: determine whether or not $f(0)=f(1)$ (i.e. $f(0) \oplus f(1)$)
Any classical method requires two queries
What about a quantum method?

Reversible black box for \boldsymbol{f}

A classical algorithm: (still requires 2 queries)

2 queries + $\mathbf{1}$ auxiliary operation

Quantum algorithm for Deutsch

How does this algorithm work?
Each of the three H operations can be seen as playing a different role ...

Quantum algorithm (1)

1. Creates the state $|0\rangle-|1\rangle$, which is an eigenvector of $\left\{\begin{array}{cc}\text { NOT } \text { with eigenvalue }-1 \\ \boldsymbol{I} & \text { with eigenvalue }+1\end{array}\right.$

This causes f to induce a phase shift of $(-1)^{f(x)}$ to $|x\rangle$

$$
\begin{array}{r}
|x\rangle-f-(-1)^{f(x)}|x\rangle \\
|0\rangle-|1\rangle-\wp-|0\rangle-|1\rangle
\end{array}
$$

Quantum algorithm (2)

2. Causes f to be queried in superposition (at $|0\rangle+|1\rangle$)

x	$f_{4}(x)$
0	1
1	0

$$
\pm(|0\rangle+|1\rangle)
$$

$$
\pm(|0\rangle-|1\rangle)
$$

Quantum algorithm (3)

3. Distinguishes between $\pm(|0\rangle+|1\rangle)$ and $\pm(|0\rangle-|1\rangle)$

$$
\begin{aligned}
& \pm(|0\rangle+|1\rangle) \stackrel{H}{\longleftrightarrow} \pm|0\rangle \\
& \pm(|0\rangle-|1\rangle) \longleftrightarrow H \\
& \longleftrightarrow|1\rangle
\end{aligned}
$$

Summary of Deutsch's algorithm

 Makes only one query, whereas two are needed classically

universality of two-qubit gates

A universal set of gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates
(This was stated in Lecture 5 without a proof)
Proof sketch (for a slightly worse bound of $O\left(k^{2} 4^{k}\right)$):
We first show how to simulate a controlled- U, for any onequbit unitary U

Fact: for any one-qubit unitary U, there exist A, B, C, and λ, such that:

- $A B C=I$
- $e^{\mathrm{i} \lambda} A X B X C=U$, where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

A universal set of gates

The aforementioned fact implies

Using such controlled- U gates, one can simulate controlledcontrolled $-V$ gates, for any unitary V, as follows:

where $V=U^{2}$

A universal set of gates

When $U=X$, this construction yields the 3-qubit Toffoli gate
From this gate, generalized Toffoli gates can be constructed:

A universal set of gates

From generalized Toffoli gates, generalized controlled- \boldsymbol{U} gates (controlled-controlled- ... -U) can be constructed:

$\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{10} & U_{11}\end{array}\right)$

A universal set of gates

The approach essentially enables any k-qubit operation of the simple form

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & U_{00} & 0 & 0 & U_{01} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & U_{10} & 0 & 0 & U_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

to be computed with $O\left(k^{2}\right)$ CNOT and one-qubit gates
Any $2^{k} \times 2^{k}$ unitary matrix can be decomposed into a product of $O\left(4^{k}\right)$ such simple matrices

A universal set of gates

This completes the proof sketch
Thus, the set of all one-qubit gates and the CNOT gate are universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?
Answer 1: strictly speaking, no, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Universal sets of gates

Universal gate set

Theorem 1: The CNOT gate, along with all one-qubit unitaries is a universal set in that any k-qubit unitary operation can be decomposed into $O\left(4^{k}\right)$ such gates

Some key steps of the proof:

For any unitary operation U, there exist one-qubit unitaries P, A, B, C such that:

Universal gate set (II)

From this gate, generalized Toffoli gates can be constructed:

Universal gate set (III)

The approach leads to the k-qubit operations of the form

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & U_{00} & 0 & 0 & U_{01} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & U_{10} & 0 & 0 & U_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

with $O\left(k^{2}\right)$ CNOT and one-qubit gates
Any $2^{k} \times 2^{k}$ unitary matrix can be decomposed into a product of $O\left(4^{k}\right)$ such simple matrices

Approximately universal gate set

Theorem 2: the gates CNOT, H, and $S=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right)$ are approximately universal, in that any unitary operation on k qubits can be simulated within precision ε by applying $O\left(4^{k} \log ^{c}(1 / \varepsilon)\right)$ of them (c is a constant)

Density matrices

Until now, we've represented quantum states as state vectors (e.g. $|\psi\rangle$, and such states are called pure states)

An alternative way of representing quantum states is in terms of density matrices (aka. density operators)

The density matrix of a pure state $|\psi\rangle$ is the matrix $|\psi\rangle\langle\psi|$
Example: the density matrix of $\alpha|0\rangle+\beta|1\rangle$ is

$$
\left[\begin{array}{c}
\alpha^{*} \\
\beta^{*}
\end{array}\right]\left[\begin{array}{ll}
\alpha & \beta
\end{array}\right]=\left[\begin{array}{cc}
|\alpha|^{2} & \alpha^{*} \beta \\
\alpha \beta^{*} & |\beta|^{2}
\end{array}\right]
$$

Density matrices (II)

A probability distribution on pure states is called a mixed state:
$\left(\left(p_{1},\left|\psi_{1}\right\rangle\right),\left(p_{2},\left|\psi_{2}\right\rangle\right), \ldots,\left(p_{n},\left|\psi_{n}\right\rangle\right)\right)$
The density matrix associated with such a mixture is:

$$
\rho=\sum_{k=1}^{n} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

Example: the density matrix for $((1 / 2,|0\rangle),(1 / 2,|1\rangle))$ is:

$$
\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

$((1 / 2,|0\rangle+|1\rangle),(1 / 2,|0\rangle-|1\rangle))$ has the same density matrix!

$$
\begin{gathered}
\text { General } \\
\text { quantum } \\
\text { operations }
\end{gathered}
$$

General quantum operations

Characterizing properties of ρ :

- ρ positive semi-definite
- $\operatorname{Tr} \rho=1$

$$
\rho=\sum_{k=1}^{n} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

General quantum operations (aka. completely positive trace preserving operations, admissible operations):
Let $A_{1}, A_{2}, \ldots, A_{m}$ be matrices satisfying $\sum_{j=1}^{m} A_{j}^{\mathrm{t}} A_{j}=I$
Then the mapping $\rho \mapsto \sum_{j=1}^{m} A_{j} \rho A_{j}^{\mathrm{t}} \quad$ is a general quantum op
Example 1 (unitary op): applying U to ρ yields $U \rho U^{\dagger}$

General quantum operations (II)

Example 2: let $A_{0}=|0\rangle\langle 0|$ and $A_{1}=|1\rangle\langle 1|$
This quantum op maps ρ to $|0\rangle\langle 0| \rho|0\rangle\langle 0|+|1\rangle\langle 1| \rho|1\rangle\langle 1|$
For $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad\left[\begin{array}{cc}|\alpha|^{2} & \alpha^{*} \beta \\ \alpha \beta^{*} & |\beta|^{2}\end{array}\right] \mapsto\left[\begin{array}{cc}|\alpha|^{2} & 0 \\ 0 & |\beta|^{2}\end{array}\right]$
Corresponds to measuring ρ "without looking at the outcome"

After looking at the outcome, ρ becomes
$\left\{\begin{array}{l}|0\rangle\langle 0| \text { with prob. }|\alpha|^{2} \\ |1\rangle\langle 1| \text { with prob. }|\beta|^{2}\end{array}\right.$

General quantum operations (III)

Example 3 (discarding second of two qubits):
Let $A_{0}=I \otimes\langle 0|=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ and $A_{1}=I \otimes\langle 1|=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
State $\rho \otimes \sigma$ becomes ρ
State $\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}\langle 00|+\frac{1}{\sqrt{2}}\langle 11|\right)$ becomes $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right]$
Note 1: it's the same density matrix as for $((1 / 2,|0\rangle),(1 / 2,|1\rangle))$
Note 2: the operation is the partial trace $\operatorname{Tr}_{2} \rho$

Separable states

Separable states

A bipartite (ie. two register) state ρ is a:

- product state if $\rho=\sigma \otimes \xi$
- separable state if $\rho=\sum_{j=1}^{m} p_{j} \sigma_{j} \otimes \xi_{j} \quad\left(p_{1}, \ldots, p_{m} \geq 0\right)$
(ie. a mixture of product states)
Example: the state

$$
\rho=\frac{1}{2}(|00\rangle+|11\rangle)(\langle 00|+\langle 11|)+\frac{1}{2}(|00\rangle-|11\rangle)(\langle 00|-\langle 11|)
$$

is separable, since $\rho=\frac{1}{2}|0\rangle\langle 0| \otimes|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| \otimes|1\rangle\langle 1|$

Universal gate set

Theorem 1: The CNOT gate, along with all one-qubit unitaries is a universal set in that any k-qubit unitary operation can be decomposed into $O\left(4^{k}\right)$ such gates

Some components of the proof:

where $V=U^{2}$
controlled-controlled- V

How teleportation works

Initial state: $\quad(\alpha|0\rangle+\beta|1\rangle)(|00\rangle+|11\rangle) \quad$ (omitting the $1 / \sqrt{ } 2$ factor)

$$
\begin{aligned}
& =\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle \\
& =1 / 2(|00\rangle+|11\rangle)(\alpha|0\rangle+\beta|1\rangle) \\
& +1 / 2(|00\rangle-|11\rangle)(\alpha|1\rangle+\beta|0\rangle) \\
& +1 / 2(|01\rangle+|10\rangle)(\alpha|0\rangle-\beta|1\rangle) \\
& +1 / 2(|01\rangle-|10\rangle)(\alpha|1\rangle-\beta|0\rangle)
\end{aligned}
$$

Protocol: Alice measures her two qubits in the Bell basis and sends the result to Bob (who then "corrects" his state)

Review of partial measurements

Suppose one measures just the first qubit of the state

$$
\left.\frac{1}{2}|00\rangle+\frac{i}{\sqrt{3}}|01\rangle+\sqrt{\frac{5}{12}}|11\rangle=\sqrt{\frac{7}{12}}|0\rangle\left(\sqrt{\frac{3}{7}}|0\rangle+i \sqrt{\frac{4}{7}}| \rangle\right)+\sqrt{\frac{5}{12}}|1\rangle 1\right\rangle
$$

What is the result?

$$
\left\{\begin{array}{ll}
\left.0, \sqrt{\frac{3}{7}}|0\rangle+i \sqrt{\frac{4}{7}} 1\right\rangle & \text { with prob. } 7 / 12 \\
1, & |1\rangle
\end{array} \quad \text { with prob. } 5 / 12\right.
$$

A universal set of gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates
(This was stated in Lecture 5 without a proof)
Proof sketch (for a slightly worse bound of $O\left(k^{2} 4^{k}\right)$):
We first show how to simulate a controlled- U, for any onequbit unitary U

Fact: for any one-qubit unitary U, there exist A, B, C, and λ, such that:

- $A B C=I$
- $e^{i \lambda} A X B X C=U$, where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Universal sets of gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates

Therefore, CNOT and all one-qubit gates are universal (classical analogue: AND and NOT gates)

Example: Toffoli gate "controlled-controlled-NOT"

Can be simulated by CNOT, H, and $W=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$

A universal set of gates

From generalized Toffoli gates, generalized controlled- \boldsymbol{U} gates (controlled-controlled- ... -U) can be constructed:

$\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{10} & U_{11}\end{array}\right)$

A universal set of gates

This completes the proof sketch*
Thus, the set of all one-qubit gates and the CNOT gate are universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?
Answer 1: strictly speaking, no, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

* Actually proved a slightly worse bound of $O\left(k^{2} 4^{k}\right)$

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense
As an illustrative example, any rotation can be approximated within any precision by repeatedly applying
$R=\left(\begin{array}{cc}\cos (\sqrt{2} \pi) & -\sin (\sqrt{2} \pi) \\ \sin (\sqrt{2} \pi) & \cos (\sqrt{2} \pi)\end{array}\right)$
some number of times
In this sense, R is approximately universal for the set of all one-qubit rotations: any rotation S can be approximated within precision ε by applying R a suitable number of times

It turns out that $O\left((1 / \varepsilon)^{c}\right)$ times suffices (for a constant c)

Approximately universal gate sets

Theorem: the gates CNOT, H, and $S=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right)$
are approximately universal, in the sense that any unitary operation on k qubits can be simulated within precision ε by applying $O\left(4^{k} \log ^{c}(1 / \varepsilon)\right)$ of them (c is a constant)

Say something about basic idea ...?

Density matrices II

A probability distribution on pure states is a mixed state:
$\left(\left(p_{1},\left|\psi_{1}\right\rangle\right),\left(p_{2},\left|\psi_{2}\right\rangle\right), \ldots,\left(p_{n},\left|\psi_{n}\right\rangle\right)\right)$
The density matrix associated with such a mixture is:

$$
\rho=\sum_{k=1}^{n} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

Example: the density matrix for $((1 / 2,|0\rangle),(1 / 2,|1\rangle))$ is:

$$
\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]+\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

Same for $((1 / 2,|0\rangle+|1\rangle),(1 / 2,|1\rangle|0\rangle-|1\rangle))$

A universal set of gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates
(This was stated in Lecture 5 without a proof)
Proof sketch (for a slightly worse bound of $O\left(k^{2} 4^{k}\right)$):
We first show how to simulate a controlled- U, for any onequbit unitary U

Fact: for any one-qubit unitary U, there exist A, B, C, and λ, such that:

- $A B C=I$
- $e^{\text {i久 }} A X B X C=U$, where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

A universal set of gates

From generalized Toffoli gates, generalized controlled- \boldsymbol{U} gates (controlled-controlled- ... -U) can be constructed:

$\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & U_{10} & U_{11}\end{array}\right)$

A universal set of gates

The approach essentially enables any k-qubit operation of the simple form

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & U_{00} & 0 & 0 & U_{01} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & U_{10} & 0 & 0 & U_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

to be computed with $O\left(k^{2}\right)$ CNOT and one-qubit gates
Any $2^{k} \times 2^{k}$ unitary matrix can be decomposed into a product of $O\left(4^{k}\right)$ such simple matrices

A universal set of gates

This completes the proof sketch
Thus, the set of all one-qubit gates and the CNOT gate are universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?
Answer 1: strictly speaking, no, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Classical (boolean logic) gates

"old" notation

AND gate

NOT gate
"new" notation

Note: an OR gate can be simulated by one AND gate and three NOT gates

Models of computation

Classical circuits:

Quantum circuits:

Multiplication problem

Input: two n-bit numbers (e.g. 101 and 111)
Output: their product (e.g. 100011)

- "Grade school" algorithm costs $O\left(n^{2}\right)$
- Best currently-known classical algorithm costs $O(n \log n \log \log n)$
- Best currently-known quantum method: same

Factoring problem

Input: an n-bit number (e.g. 100011)
Output: their product (e.g. 101, 111)

- Trial division costs $\approx 2^{n / 2}$
- Best currently-known classical algorithm costs $\approx 2^{n^{1 / 3}}$
- Hardness of factoring is the basis of the security of many cryptosystems (e.g. RSA)
- Shor's quantum algorithm costs $\approx n^{2}$
- Implementation would break RSA and many other cryptosystems

Quantum vs. classical circuits

Theorem: a classical circuit of size s can be simulated by a quantum circuit of size $O(S)$

Idea: using Toffoli gates, one can simulate:

AND gates

NOT gates

Operations on quantum states

Unitary operations: "rotations" to quantum states

Measurements: produce classical information

$\left\{\begin{array}{c}000 \\ 0 \\ 001 \\ \text { with prob }\left|\alpha_{000}\right|^{2} \\ \vdots \\ \text { with prob }\left|\alpha_{001}\right|^{2} \\ \vdots \\ 111\end{array} \quad\right.$ with prob $\left|\alpha_{111}\right|^{2}$
... and quantum state collapses

Quantum Fourier Transform

The polynomial-time algorithm for factoring is based on the quantum Fourier transform (QFT)

$$
\boldsymbol{F}_{N}=\frac{1}{\sqrt{N}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(N-1)} \\
1 & \omega^{3} & \omega^{6} & \omega^{9} & \ldots & \omega^{3(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right]
$$

where $\omega=e^{2 \pi i / N}$ (and N is exponentially large)
The QFT "extracts information about periodicity"

Computing the QFT

Quantum circuit for F_{32} :

Gates: $-H-=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$

$$
=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \boldsymbol{e}^{2 \pi i / m}
\end{array}\right]
$$

For $F_{2^{n}}$ costs $O\left(n^{2}\right)$ gates (exact) \& $O(n \log n)$ gates (approx)
[Shor, 1994] [Coppersmith, 1994] [C, 1994]

Outline

- Qubits, unitary ops, and projective measurements
- Superdense coding
- Teleportation
- Universal sets of gates
- No-cloning theorem
- Density operators
- General quantum operations
- Separable states

