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Recap (I)Recap (I)

• n-qubit quantum state: 2n-dimensional unit vector

• Unitary op: 2n×2n linear operation U such that U†U = I
(where U† denotes the conjugate transpose of U ) 

U|0000〉 = the 1st column of U
U|0001〉 = the 2nd column of U          the columns of U
:     :            :     :      :           : are orthonormal

U|1111〉 = the (2n)th column of U
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Recap (II)Recap (II)
• von Neumann Measurement: associated with a partition of 

the space into mutually orthogonal subspaces

When the measurement is performed, the state collapses to 
each subspace with probability the square of the length of 
its projection on that subspace

|00〉 |01〉

|10〉

span of |00〉 and |01〉

|10〉
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Classical (Classical (booleanboolean logic) gateslogic) gates

NOT gate a ¬a ¬a ¬a

ΛAND gate
b
a a Λ b

a

b
a Λ b

“old” notation “new” notation

Note: an OR gate can be simulated by one AND gate 
and three NOT gates (since  a V b = ¬(¬a Λ ¬b) )
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Models of computationModels of computation
Classical 
circuits:

|0〉

|1〉
|1〉
|0〉

|1〉

1
0
1
0
1

Quantum 
circuits:
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¬

Λ
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data flow
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Multiplication problemMultiplication problem

• “Grade school” algorithm costs O(n2)
• Best currently-known classical algorithm costs 

O(n log n loglog n)

• Best currently-known quantum method: same

Input: two n-bit numbers (e.g. 101 and 111)

Output: their product (e.g. 100011)



11

Factoring problemFactoring problem

• Trial division costs  ≈ 2n/2

• Best currently-known classical algorithm costs  ≈ 2n⅓

• Hardness of factoring is the basis of the security of many 
cryptosystems (e.g. RSA)

• Shor’s quantum algorithm costs ≈ n2

• Implementation would break RSA and many other 
cryptosystems

Input: an n-bit number (e.g. 100011)

Output: their product (e.g. 101, 111)
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(Sometimes called a “controlled-controlled-NOT” gate)

|(a Λ b)⊕c 〉

|b〉

|a〉|a〉

|b〉

|c〉

ToffoliToffoli gategate

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

01000000
10000000
00100000
00010000
00001000
00000100
00000010
00000001

Matrix representation:

In the computational basis, it 
negates the third qubit iff the 
first two qubits are both |0〉
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Quantum simulation of classical Quantum simulation of classical 
Theorem: a classical circuit of size s can be simulated by a 
quantum circuit of size O(s)

Idea: using Toffoli gates, one can simulate: 

AND gates

|a Λ b〉

|b〉

|a〉|a〉

|b〉

|0〉

NOT gates

|¬a〉

|1〉

|1〉|1〉

|1〉

|a〉
garbage

This garbage will have to be reckoned with later on …



15

Simulating probabilistic algorithmsSimulating probabilistic algorithms
Since quantum gates can simulate AND and NOT, the 
outstanding issue is how to simulate randomness

To simulate “coin flips”, 
one can use the circuit:

It can also be done without intermediate measurements:

|0〉 H random bit

|0〉

|0〉 use in place of coin flip

isolate this qubit

H

Exercise: prove that this works
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Classical simulation of quantumClassical simulation of quantum
Theorem: a quantum circuit of size s acting on n qubits can 
be simulated by a classical circuit of size O(sn22n) = O(2cn)
Idea: to simulate an n-qubit state, use an array of size 2n 

containing values of all 2n amplitudes within precision 2−n

α000

α001

α010

α011
:

α111

Can adjust this state vector whenever a unitary 
operation is performed at cost O(n22n)

From the final amplitudes, can determine how to 
set each output bit

Exercise: show how to do the simulation using 
only a polynomial amount of space (memory) 
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Some complexity classesSome complexity classes
• P (polynomial time): problems solved by O(nc)-size 

classical circuits (decision problems and uniform circuit 
families)

• BPP (bounded error probabilistic polynomial time):
problems solved by O(nc)-size probabilistic circuits that 
err with probability ≤ ¼

• BQP (bounded error quantum polynomial time):
problems solved by O(nc)-size quantum circuits that err 
with probability ≤ ¼

• EXP (exponential time): problems solved by O(2nc )-size 
circuits.
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Summary of basic containmentsSummary of basic containments

P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP

P

BPP

BQP

PSPACE

EXP

This picture will be fleshed 
out more later on
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Query scenarioQuery scenario
Input: a function f, given as 
a black box (a.k.a. oracle) fx f (x)

Goal: determine some information about  f making as few 
queries to  f (and other operations) as possible

Example: polynomial interpolation

Let: f (x) = c0 + c1x + c2 x2 + ... + cd xd

Goal: determine c0 , c1 , c2 , ... , cd

Question: How many f-queries does one 
require for this?

Answer: d +1
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DeutschDeutsch’’s problems problem
Let  f : {0,1} {0,1} f
There are four possibilities:

x f1(x)
0
1

0
0

x f2(x)
0
1

1
1

x f3(x)
0
1

0
1

x f4(x)
0
1

1
0

Goal: determine whether or not  f(0) = f(1)  (i.e. f(0) ⊕ f(1)) 

Any classical method requires two queries

What about a quantum method?
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ReversibleReversible black box for black box for ff

Uf

a

b

a

b⊕ f(a)

falternate 
notation:

A classical algorithm: 
(still requires 2 queries)

f f0

0

1

f(0) ⊕ f(1)

2 queries + 1 auxiliary operation
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Quantum algorithm for Deutsch Quantum algorithm for Deutsch 

H f

H

H

|1〉

|0〉 f(0) ⊕ f(1)

1 query + 4 auxiliary operations ⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

2
1H1

2 3

How does this algorithm work?

Each of the three H operations can be seen as playing 
a different role ...
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Quantum algorithm (Quantum algorithm (11) ) 
H f

H

H

|1〉

|0〉

1

2 3

1. Creates the state |0〉 – |1〉, which is an eigenvector of

NOT with eigenvalue –1 
I with eigenvalue +1

This causes f  to induce a phase shift of (–1) f(x) to |x〉

f

|0〉 – |1〉

|x〉 (–1) f(x)|x〉

|0〉 – |1〉



26

Quantum algorithm (Quantum algorithm (22) ) 
2. Causes  f to be queried in superposition (at |0〉 + |1〉)

f

|0〉 – |1〉

|0〉 (–1) f(0)|0〉 + (–1) f(1)|1〉

|0〉 – |1〉

H

x f1(x)
0
1

0
0

x f2(x)
0
1

1
1

x f3(x)
0
1

0
1

x f4(x)
0
1

1
0

±(|0〉 + |1〉) ±(|0〉 – |1〉)
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Quantum algorithm (Quantum algorithm (33) ) 
3. Distinguishes between  ±(|0〉 + |1〉)  and  ±(|0〉 – |1〉)

H

±(|0〉 + |1〉)                 ±|0〉

±(|0〉 – |1〉)                 ±|1〉

H
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Summary of  DeutschSummary of  Deutsch’’s algorithm s algorithm 

H f

H

H

|1〉

|0〉 f(0) ⊕ f(1)

1

2 3

constructs eigenvector so f-queries 
induce phases: |x〉 (–1) f(x)|x〉

produces superpositions
of inputs to f :  |0〉 + |1〉

extracts phase differences from

(–1) f(0)|0〉 + (–1) f(1)|1〉

Makes only one query, whereas two are needed classically 
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