Introduction to
 Quantum Information Processing CS 467 I CS 667 Phys 667 I Phys 767 C\&O 481 / C\&O 681

 Lecture 2 (2005)Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca

Superdense coding

How much classical information in \boldsymbol{n} qubits?

$2^{n}-1$ complex numbers apparently needed to describe an arbitrary n-qubit pure quantum state:
$\alpha_{000}|000\rangle+\alpha_{001}|001\rangle+\alpha_{010}|010\rangle+\ldots+\alpha_{111}|111\rangle$
Does this mean that an exponential amount of classical information is somehow stored in n qubits?

Not in an operational sense ...

For example, Holevo's Theorem (from 1973) implies: one cannot convey more than n classical bits of information in n qubits

Holevo's Theorem

Easy case:

$b_{1} b_{2} \ldots b_{n}$ certainly cannot convey more than n bits!

Hard case (the general case):

The difficult proof is beyond the scope of this course

Superdense coding (prelude)

Suppose that Alice wants to convey two classical bits to Bob sending just one qubit

By Holevo's Theorem, this is impossible

Superdense coding

In superdense coding, Bob is allowed to send a qubit to Alice first

How can this help?

How superdense coding works

1. Bob creates the state $|00\rangle+|11\rangle$ and sends the first qubit to Alice
2. Alice: if $a=1$ then apply X to qubit if $b=1$ then apply Z to qubit

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$ send the qubit back to Bob

$\left.\begin{array}{|l|l|}\hline a b & \text { state } \\ \hline 00 & |00\rangle+|11\rangle \\ 01 & |00\rangle-|11\rangle \\ 10 & |01\rangle+|10\rangle \\ 11 & |01\rangle-|10\rangle \\ \hline\end{array}\right\}$ Bell basis
3. Bob measures the two qubits in the Bell basis

Measurement in the Bell basis

Specifically, Bob applies

input	output
$\|00\rangle+\|11\rangle$	$\|00\rangle$
$\|01\rangle+\|10\rangle$	$\|01\rangle$
$\|00\rangle-\|11\rangle$	$\|10\rangle$
$\|01\rangle-\|10\rangle$	$\|11\rangle$

to his two qubits ... and then measures them, yielding $a b$

This concludes superdense coding

Teleportation

Incomplete measurements (I)

Measurements up until now are with respect to orthogonal one-dimensional subspaces:

The orthogonal subspaces can have other dimensions:

Incomplete measurements (II)

Such a measurement on $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle+\alpha_{2}|2\rangle$
(renormalized)
results in $\left\{\begin{array}{cl}\alpha_{0}|0\rangle+\alpha_{1}|1\rangle & \text { with prob }\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2} \\ |2\rangle & \text { with prob }\left|\alpha_{2}\right|^{2}\end{array}\right.$

Measuring the first qubit of a two-qubit system

$$
\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

Defined as the incomplete measurement with respect to the two dimensional subspaces:

- span of $|00\rangle \&|01\rangle$ (all states with first qubit 0), and
- span of $|10\rangle \&|11\rangle$ (all states with first qubit 1)

Result is the mixture $\left\{\begin{array}{l}\alpha_{00}|00\rangle+\alpha_{01}|01\rangle \text { with prob }\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2} \\ \alpha_{10}|10\rangle+\alpha_{11}|11\rangle \text { with prob }\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}\end{array}\right.$

Easy exercise: show that measuring the first qubit and then measuring the second qubit gives the same result as measuring both qubits at once

Teleportation (prelude)

Suppose Alice wishes to convey a qubit to Bob by sending just classical bits
$\square \alpha|0\rangle+\beta|1\rangle$

If Alice knows α and β, she can send approximations of them -but this still requires infinitely many bits for perfect precision

Moreover, if Alice does not know α or β, she can at best acquire one bit about them by a measurement

Teleportation scenario

In teleportation, Alice and Bob also start with a Bell state

and Alice can send two classical bits to Bob
Note that the initial state of the three qubit system is:

$$
\begin{aligned}
& (1 / \sqrt{ } 2)(\alpha|0\rangle+\beta|1\rangle)(|00\rangle+|11\rangle) \\
& =(1 / \sqrt{ } 2)(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle)
\end{aligned}
$$

How teleportation works

Initial state: $\quad(\alpha|0\rangle+\beta|1\rangle)(|00\rangle+|11\rangle) \quad$ (omitting the $1 / \sqrt{ } 2$ factor)

$$
\begin{aligned}
& =\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle \\
& =1 / 2(|00\rangle+|11\rangle)(\alpha|0\rangle+\beta|1\rangle) \\
& +1 / 2(|01\rangle+|10\rangle)(\alpha|1\rangle+\beta|0\rangle) \\
& +1 / 2(|00\rangle-|11\rangle)(\alpha|0\rangle-\beta|1\rangle) \\
& +1 / 2(|01\rangle-|10\rangle)(\alpha|1\rangle-\beta|0\rangle)
\end{aligned}
$$

Protocol: Alice measures her two qubits in the Bell basis and sends the result to Bob (who then "corrects" his state)

What Alice does specifically

Alice applies

$$
\left\{\begin{array}{rll}
1 / 2|00\rangle(\alpha|0\rangle+\beta|1\rangle) & -D= \\
+1 / 2|01\rangle(\alpha|1\rangle+\beta|0\rangle) & -1 / 2|10\rangle(\alpha|0\rangle-\beta|1\rangle) & - \\
+1 / 2|11\rangle(\alpha|1\rangle-\beta|0\rangle) & =\left\{\begin{array}{ll}
(00, \alpha|0\rangle+\beta|1\rangle) & \text { with prob. } 1 / 4 \\
(01, \alpha|1\rangle+\beta|0\rangle) & \text { with prob. } 1 / 4 \\
(10, \alpha|0\rangle-\beta|1\rangle) & \text { with prob. } 1 / 4 \\
(11, \alpha|1\rangle-\beta|0\rangle) & \text { with prob. } 1 / 4
\end{array} ~\right.
\end{array}\right.
$$

to her two qubits, yielding:

Then Alice sends her two classical bits to Bob, who then adjusts his qubit to be $\alpha|0\rangle+\beta|1\rangle$ whatever case occurs

Bob's adjustment procedure

Bob receives two classical bits a, b from Alice, and: if $b=1$ he applies X to qubit if $a=1$ he applies Z to qubit

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

yielding: $\begin{cases}00, & \alpha|0\rangle+\beta|1\rangle\end{cases}$

Note that Bob acquires the correct state in each case

Summary of teleportation

Quantum circuit exercise: try to work through the details of the analysis of this teleportation protocol

No-cloning theorem

Classical information can be copied

What about quantum information?

Candidate:

works fine for $|\psi\rangle=|0\rangle$ and $|\psi\rangle=|1\rangle$
... but it fails for $|\psi\rangle=(1 / \sqrt{ } 2)(|0\rangle+|1\rangle) \ldots$
... where it yields output $(1 / \sqrt{ } 2)(|00\rangle+|11\rangle)$
instead of $|\psi\rangle|\psi\rangle=(1 / 4)(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$

No-cloning theorem

Theorem: there is no valid quantum operation that maps an arbitrary state $|\psi\rangle$ to $|\psi\rangle|\psi\rangle$

Proof:

Let $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ be two input states, yielding outputs $|\psi\rangle|\psi\rangle|\mathrm{g}\rangle$ and $\left|\psi^{\prime}\right\rangle\left|\psi^{\prime}\right\rangle\left|g^{\prime}\right\rangle$ respectively

Since U preserves inner products:

$$
\begin{aligned}
& \left\langle\psi \mid \psi^{\prime}\right\rangle=\left\langle\psi \mid \psi^{\prime}\right\rangle\left\langle\psi \mid \psi^{\prime}\right\rangle\left\langle\mathrm{g} \mid \mathrm{g}^{\prime}\right\rangle \text { so } \\
& \left\langle\psi \mid \psi^{\prime}\right\rangle\left(1-\left\langle\psi \mid \psi^{\prime}\right\rangle\left\langle\mathrm{g} \mid \mathrm{g}^{\prime}\right\rangle\right)=0 \text { so } \\
& \left|\left\langle\psi \mid \psi^{\prime}\right\rangle\right|=0 \text { or } 1
\end{aligned}
$$

