Introduction to Quantum Information Processing CS 467 I CS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 19 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

Quantum key distribution

- Schmidt decomposition

- Quantum key distribution Shlulid decon position

Private communication

- Suppose Alice and Bob would like to communicate privately in the presence of an eavesdropper Eve
- A provably secure (classical) scheme exists for this, called the one-time pad
- The one-time pad requires Alice \& Bob to share a secret key: $k \in\{0,1\}^{n}$, uniformly distributed (secret from Eve)

Private communication

One-time pad protocol:

- Alice sends $c=m \oplus k$ to Bob
- Bob receives computes $c \oplus k$, which is $(m \oplus k) \oplus k=m$

This is secure because, what Eve sees is c, and c is uniformly distributed, regardless of what m is

Key distribution scenario

- For security, Alice and Bob must never reuse the key bits
- E.g., if Alice encrypts both m and m^{\prime} using the same key k then Eve can deduce $m \oplus m^{\prime}=c \oplus c^{\prime}$
- Problem: how do they distribute the secret key bits in the first place?
- Presumably, there is some trusted preprocessing stage where this is set up (say, where Alice and Bob get together, or where they use a trusted third party)
- Key distribution problem: set up a large number of secret key bits

Key distribution based on computational hardness

- The RSA protocol can be used for key distribution:
- Alice chooses a random key, encrypts it using Bob's public key, and sends it to Bob
- Bob decrypts Alice's message using his secret (private) key
- The security of RSA is based on the presumed computational difficulty of factoring integers
- More abstractly, a key distribution protocol can be based on any trapdoor one-way function
- Most such schemes are breakable by quantum computers

Quantum key distribution (QKD)

- A protocol that enables Alice and Bob to set up a secure* secret key, provided that they have:
- A quantum channel, where Eve can read and modify messages
- An authenticated classical channel, where Eve can read messages, but cannot tamper with them (the authenticated classical channel can be simulated by Alice and Bob having a very short classical secret key)
- There are several protocols for QKD, and the first one proposed is called "BB84" [Bennett \& Brassard, 1984]:
- BB84 is "easy to implement" physically, but "difficult" to prove secure
- [Mayers, 1996]: first true security proof (quite complicated)
- [Shor \& Preskill, 2000]: "simple" proof of security
* Information-theoretic security

BB84

- First, define: $\left|\psi_{00}\right\rangle=|0\rangle$

- Alice begins with two random n-bit strings $a, b \in\{0,1\}^{n}$
- Alice sends the state $|\psi\rangle=\left|\psi_{a_{1} b_{1}}\right\rangle\left|\psi_{a_{2} b_{2}}\right\rangle \ldots\left|\psi_{a_{n} b_{n}}\right\rangle$ to Bob
- Note: Eve may see these qubits (and tamper wth them)
- After receiving $|\psi\rangle$, Bob randomly chooses $b^{\prime} \in\{0,1\}^{n}$ and measures each qubit as follows:
- If $b_{i}^{\prime}=0$ then measure qubit in basis $\{|0\rangle,|1\rangle\}$, yielding outcome a_{i}^{\prime}
- If $b_{i}^{\prime}=1$ then measure qubit in basis $\{|+\rangle,|-\rangle\}$, yielding outcome a_{i}^{\prime}

BB84

- Note:
- If $b_{i}^{\prime}=b_{i}$ then $a_{i}^{\prime}=a_{i}$
- If $b_{i}^{\prime} \neq b_{i}$ then $\operatorname{Pr}\left[a_{i}^{\prime}=a_{i}\right]=1 / 2$
- Bob informs Alice when he has performed
 his measurements (using the public channel)
- Next, Alice reveals b and Bob reveals b^{\prime} over the public channel
- They discard the cases where $b_{i}^{\prime} \neq b_{i}$ and they will use the remaining bits of a and a^{\prime} to produce the key
- Note:
- If Eve did not disturb the qubits then the key can be just $a\left(=a^{\prime}\right)$
- The interesting case is where Eve may tamper with $|\psi\rangle$ while it is sent from Alice to Bob

BB84

- Intuition:
- Eve cannot acquire information about $|\psi\rangle$ without disturbing it, which will cause some of the bits of a and a^{\prime} to disagree
- It can be proven* that: the more information Eve acquires about a, the more bit positions of a and a^{\prime} will be different
- From Alice and Bob's remaining bits, a and a^{\prime} (where the positions where $b_{i}^{\prime} \neq b_{i}$ have already been discarded):
- They take a random subset and reveal them in order to estimate the fraction of bits where a and a^{\prime} disagree
- If this fraction is not too high then they proceed to distill a key from the bits of a and a^{\prime} that are left over (around $n / 4$ bits)
* To prove this rigorously is nontrivial

BB84

- If the error rate between a and a^{\prime} is below some threshold (around 11\%) then Alice and Bob can produce a good key using techniques from classical cryptography:
- Information reconciliation ("distributed error correction"): to produce shorter a and a^{\prime} such that (i) $a=a^{\prime}$, and (ii) Eve doesn't acquire much information about a and a^{\prime} in the process
- Privacy amplification: to produce shorter a and a^{\prime} such that Eve's information about a and a^{\prime} is very small
- There are already commercially available implementations of BB84, though assessing their true security is a subtle matter (since their physical mechanisms are not ideal)

Schmidt decomposition

This will have some cryptographic applications for analyzing "bit-commitment" schemes

Schmidt decomposition

Let $|\psi\rangle$ be any bipartite quantum state:
$|\psi\rangle=\sum_{a=1}^{n} \sum_{b=1}^{m} \alpha_{a, b}|a\rangle \otimes|b\rangle \quad$ (where we can assume $n \leq m$)

Then there exist orthonormal states
$\left|\mu_{1}\right\rangle,\left|\mu_{2}\right\rangle, \ldots,\left|\mu_{n}\right\rangle$ and $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle$ such that
$|\psi\rangle=\sum_{c=1}^{n} \sqrt{p_{c}}\left|\mu_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle$
Eigenvectors of $\mathrm{Tr}_{1}|\psi\rangle\langle\psi|$

Schmidt decomposition: proof (I)

The density matrix for state $|\psi\rangle$ is given by $|\psi\rangle\langle\psi|$
Tracing out the first system, we obtain the density matrix of the second system, $\rho=\operatorname{Tr}_{1}|\psi\rangle\langle\psi|$
Since ρ is a density matrix, we can express $\rho=\sum_{c=1}^{m} p_{c}\left|\varphi_{c}\right\rangle\left\langle\varphi_{c}\right|$, where $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{m}\right\rangle$ are orthonormal eigenvectors of ρ
Now, returning to $|\psi\rangle$, we can express $|\psi\rangle=\sum_{c=1}^{m}\left|v_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle$, where $\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{m}\right\rangle$ are just some arbitrary vectors (not necessarily valid quantum states; for example, they might not have unit length, and we cannot presume they're orthogonal)

We will next show that $\left\langle v_{c} \mid v_{c^{\prime}}\right\rangle=\left\{\begin{array}{cl}p_{c} & \text { if } c=c^{\prime} \\ 0 & \text { if } c \neq c^{\prime}\end{array}\right.$

Schmidt decomposition: proof (II)

To show that $\left\langle v_{c} \mid v_{c^{\prime}}\right\rangle=\left\{\begin{array}{cl}p_{c} & \text { if } c=c^{\prime} \\ 0 & \text { if } c \neq c^{\prime},\end{array} \quad\left(\right.\right.$ where $p_{c}=0$ for $\left.c>n\right)$
we compute the partial trace Tr_{1} of $|\psi\rangle\langle\psi|$ in terms of
$|\psi\rangle\langle\psi|=\left(\sum_{c=1}^{m}\left|v_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle\right)\left(\sum_{c^{\prime}=1}^{m}\left\langle v_{c^{\prime}}\right| \otimes\left\langle\varphi_{c^{\prime}}\right|\right)=\sum_{c=1}^{m} \sum_{c^{\prime}=1}^{m}\left|v_{c}\right\rangle\left\langle v_{c^{\prime}}\right| \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|$
A careful calculation (shown later) of this partial trace yields $\sum_{c=1}^{m} \sum_{c^{\prime}=1}^{m}\left\langle v_{c^{\prime}} \mid v_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right| \quad$ which must equal $\quad \sum_{c=1}^{m} p_{c}\left|\varphi_{c}\right\rangle\left\langle\varphi_{c}\right|$

The claimed result about $\left\langle v_{c} \mid v_{c^{\prime}}\right\rangle$ now follows
Next, setting $\left|\mu_{c}\right\rangle=\frac{1}{\sqrt{p_{c}}}\left|v_{c}\right\rangle \quad$ completes the construction

Schmidt decomposition: proof (III)

For completeness, we now give the "careful calculation" of

$$
\begin{aligned}
& \operatorname{Tr}_{1}\left(\sum_{c=1}^{m} \sum_{c^{\prime}=1}^{m}\left|v_{c}\right\rangle\left\langle v_{c^{\prime}}\right| \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|\right) \\
& =\sum_{\substack{a=1 \\
n}}^{(\langle a| \otimes I)\left(\sum_{c=1}^{m} \sum_{c^{\prime}=1}^{m}\left|v_{c}\right\rangle\left\langle v_{c^{\prime}}\right| \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|\right)(|a\rangle \otimes I)}
\end{aligned}
$$

$$
\text { (by definition of } \operatorname{Tr}_{1} \text {) }
$$

(linearity, and properties of \otimes)
$=\sum_{c=1}^{m} \sum_{c^{\prime}=1}^{m}\left(\sum_{a=1}^{n}\left\langle v_{c^{\prime}} \mid a\right\rangle\left\langle a \mid v_{c}\right\rangle\right) \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right| \quad(\langle\nu \mid w\rangle=\operatorname{Tr}(\langle\nu \mid w\rangle)=\operatorname{Tr}(|w\rangle\langle v|))$
$=\sum_{c=1}^{m} \sum_{c=1}^{m}\left(\left\langle v_{c^{\prime}}\left(\sum_{a=1}^{n}|a\rangle\langle a|\right) \mid v_{c}\right\rangle\right) \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|$
(linearity)
$=\sum_{c=1}^{m} \sum_{c^{\prime}=1}^{m}\left\langle v_{c^{\prime}} \mid v_{c}\right\rangle \otimes\left|\varphi_{c}\right\rangle\left\langle\varphi_{c^{\prime}}\right|$

$$
\left(\sum_{a=1}^{n}|a\rangle\langle a|=I\right)
$$

