Introduction to

Quantum Information Processing
CS 467 / CS 667
Phys 467 / Phys 767
C&O 481 / C&O 681

Lecture 19 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca

Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467



mailto:cleve@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

contents

e Quantum key distribution

e Schmidt decomposition




e Quantum key distribution




Private communication
kk, ... k, kiky ...k,

Alice g ‘ g Bob
Eve

« Suppose Alice and Bob would like to communicate privately
In the presence of an eavesdropper Eve

« A provably secure (classical) scheme exists for this, called
the one-time pad

 The one-time pad requires Alice & Bob to share a secret
key: k € {0,1}", uniformly distributed (secret from Eve)




Private communication
kk, ... k, kiky ...k,

mimy...m, g g
One-time pad protocol:

 Alice sends ¢ =m®k to Bob
« Bob receives computes c®k, which is (m®k)®k=m

This Is secure because, what Eve sees is ¢, and c¢ is uniformly
distributed, regardless of what m Is



Key distribution scenario

* For security, Alice and Bob must never reuse the
key bits
— E.g., if Alice encrypts both m and m' using the same
key k then Eve can deduce m®m'= c®c’

* Problem: how do they distribute the secret key bits
In the first place?

— Presumably, there is some trusted preprocessing stage
where this is set up (say, where Alice and Bob get
together, or where they use a trusted third party)

o Key distribution problem: set up a large number

of secret key bits



Key distribution based on
computational hardness

The RSA protocol can be used for key distribution:

— Alice chooses a random key, encrypts it using Bob’s public key,
and sends it to Bob

— Bob decrypts Alice’s message using his secret (private) key

The security of RSA is based on the presumed
computational difficulty of factoring integers

More abstractly, a key distribution protocol can be based
on any trapdoor one-way function

Most such schemes are breakable by quantum computers
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Quantum key distribution (QKD)

e A protocol that enables Alice and Bob to set up a secure*
secret key, provided that they have:
— A quantum channel, where Eve can read and modify messages
— An authenticated classical channel, where Eve can read
messages, but cannot tamper with them (the authenticated classical
channel can be simulated by Alice and Bob having a very short
classical secret key)
 There are several protocols for QKD, and the first one
proposed is called “BB84” [Bennett & Brassard, 1984]:
— BB84 is “easy to implement” physically, but “difficult” to prove secure
— [Mayers, 1996]. first true security proof (quite complicated)
— [Shor & Preskill, 2000]: “simple” proof of security

* I[nformation-theoretic security 8



BB84 Yo

Wou)
First, define: |wy,) =0)
Vi) = 1) Voo
V) =) =10)—|1) W)
Vo) = [+)=10) + 1)

Alice begins with two random n-bit strings a, b € {0,1}”

Alice sends the state |y) = |y, , )|V, ;) «-- W, , ) t0 Bob
Note: Eve may see these qubits (and tamper wth them)
After receiving |v), Bob randomly chooses b’ e {0,1}" and
measures each qubit as follows:

— If b’;= 0 then measure qubit in basis {|0), |1)}, yielding outcome a’,

— If b’.= 1 then measure qubit in basis {|+), |-)}, yielding outcome a’,
9



BB84 Yo

Note: |\V01>
— Ifb'.=b,thena’=a,
— Ifb".#£b,thenPrla’=a] =%

Bob informs Alice when he has performed Wy,
his measurements (using the public channel)

Woo)

Next, Alice reveals b and Bob reveals b' over the public
channel
They discard the cases where b'.# b, and they will use the
remaining bits of @ and a’ to produce the key

Note:

— If Eve did not disturb the qubits then the key can be just a (= a’)

— The interesting case is where Eve may tamper with |[\y) while
it is sent from Alice to Bob 10
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BB84 o

Woo)

e Intuition: W

— Eve cannot acquire information about |y) without disturbing it,
which will cause some of the bits of @ and a’ to disagree

— It can be proven* that: the more information Eve acquires about a,
the more bit positions of @ and a’ will be different

* From Alice and Bob’s remaining bits, a and a' (where the

positions where b'.# b, have already been discarded):
— They take a random subset and reveal them in order to estimate
the fraction of bits where a and a' disagree
— If this fraction is not too high then they proceed to distill a key from
the bits of @ and a'that are left over (around /4 bits)

* To prove this rigorously is nontrivial

11



BB34

« If the error rate between a and a'is below some threshold
(around 11%) then Alice and Bob can produce a good key
using techniques from classical cryptography:

— Information reconciliation (“distributed error correction”): to produce
shorter a and a’such that (i) a = a', and (ii) Eve doesn’t acquire much
information about @ and a'in the process

— Privacy amplification: to produce shorter a and a’ such that Eve’s
information about @ and a’ is very small

 There are already commercially available implementations of
BB84, though assessing their true security is a subtle matter
(since their physical mechanisms are not ideal)
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e Schmidt decomposition

This will have some cryptographic applications
for analyzing “bit-commitment” schemes

13



Schmidt decomposition

Let |\y) be any bipartite quantum state:

) = anZml%,b

a=1 b=1

a)®|b) (where we can assume n < m)

Then there exist orthonormal states
|M1>9 |M2>9 AR |“n> and |(P1>9 |(P2>9 R |(pn> such that

W)= Y plu)ele) /

Eigenvectors of Tr [y ){ |

14



Schmidt decomposition: proof (1)
The density matrix for state |y) Is given by [y){(y|

Tracing out the first system, we obtain the density matrix
of the second system, p = Tr,|y){(y|

2. ).

Since p is a density matrix, we can express p = ,p.
c=1

where |¢,), |9,), ..., |¢,,) are orthonormal eigenvectors of p

m

Now, returning to |\/), we can express |y) = Z ?.)

where |v,), |v,), ..., |v,,) are just some arbitrary vectors (not
necessarily valid guantum states; for example, they might not
have unit length, and we cannot presume they’re orthogonal)

vc>®

15

We will next show that (v |v_)= {pc if c=c'
0 ifc#c’



Schmidt decomposition: proof (ll)
To show that (v |v.)= ( p. ifc=c" (wherep_.=0 forc> n)
{ if c ¢/,

we compute the partial trace Tr, of \\p)(\m In terms of
vivl=[Sivele) | Sle. |- 3w el e

c=1 c'=1
A careful calculation (shown later) of this partial trace yields

) < v.)®|e. ).

c=1 c¢'=

c=1 c¢'=1

2. ).

which must equal ZPC
c=1

The claimed result about (v_|v..) now follows

Next, setting |, ) completes the construction

\v
/ 16



Schmidt decomposition: proof (lll)

For completeness, we now give the “careful calculation” of

T lete e

-Suler {zz ol o |9)o1) (o demivonor T
:an: @ % (linearity, and properties of ®)

Vv
jw o () =Tr(Ow)) = Tr(w)(v))

<vc'(az ><] Jelalie (neariy
valv.) @l ). (Zlaal=1)
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