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Private communicationPrivate communication

• Suppose Alice and Bob would like to communicate privately 
in the presence of an eavesdropper Eve

• A provably secure (classical) scheme exists for this, called 
the one-time pad

• The one-time pad requires Alice & Bob to share a secret 
key: k ∈ {0,1}n, uniformly distributed (secret from Eve)

Alice Bob

k1k2 … kn
k1k2 … kn

Eve
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Private communicationPrivate communication

• Alice sends c = m⊕k to Bob 
• Bob receives computes c⊕k, which is (m⊕k)⊕k = m

k1k2 … kn
k1k2 … kn

One-time pad protocol:

This is secure because, what Eve sees is c, and c is uniformly 
distributed, regardless of what m is

m1m2…mn
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Key distribution scenarioKey distribution scenario
• For security, Alice and Bob must never reuse the 

key bits
– E.g., if Alice encrypts both  m and  m'  using the same 

key k  then Eve can deduce m⊕m' = c⊕c' 
• Problem: how do they distribute the secret key bits 

in the first place?
– Presumably, there is some trusted preprocessing stage 

where this is set up (say, where Alice and Bob get 
together, or where they use a trusted third party)

• Key distribution problem: set up a large number 
of secret key bits



7

Key distribution based on Key distribution based on 
computational hardnesscomputational hardness

• The RSA protocol can be used for key distribution: 
– Alice chooses a random key, encrypts it using Bob’s public key, 

and sends it to Bob
– Bob decrypts Alice’s message using his secret (private) key

• The security of RSA is based on the presumed 
computational difficulty of factoring integers

• More abstractly, a key distribution protocol can be based 
on any trapdoor one-way function

• Most such schemes are breakable by quantum computers
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Quantum key distribution (QKD)Quantum key distribution (QKD)
• A protocol that enables Alice and Bob to set up a secure*

secret key, provided that they have:
– A quantum channel, where Eve can read and modify messages
– An authenticated classical channel, where Eve can read 

messages, but cannot tamper with them (the authenticated classical 
channel can be simulated by Alice and Bob having a very short
classical secret key)

• There are several protocols for QKD, and the first one 
proposed is called “BB84” [Bennett & Brassard, 1984]:
– BB84 is “easy to implement” physically, but “difficult” to prove secure
– [Mayers, 1996]: first true security proof (quite complicated)
– [Shor & Preskill, 2000]: “simple” proof of security

∗ Information-theoretic security
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BB84BB84
• First, define:

• Alice begins with two random n-bit strings a, b ∈ {0,1}n

• Alice sends the state  |ψ〉 = |ψa1b1
〉|ψa2b2

〉 … |ψanbn
〉 to Bob

• Note: Eve may see these qubits (and tamper wth them)
• After receiving  |ψ〉,  Bob randomly chooses b' ∈ {0,1}n and 

measures each qubit as follows:
– If b'i = 0 then measure qubit in basis {|0〉, |1〉}, yielding outcome a'i
– If b'i = 1 then measure qubit in basis {|+〉, |−〉}, yielding outcome a'i

|ψ00〉 = |0〉
|ψ10〉 = |1〉

|ψ01〉 = |+〉 = |0〉 + |1〉
|ψ11〉 = |−〉 = |0〉 − |1〉

|ψ00〉

|ψ10〉
|ψ01〉

|ψ11〉
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BB84BB84• Note:
– If b'i = bi then a'i = ai

– If b'i≠ bi then Pr[a'i = ai] = ½

• Bob informs Alice when he has performed                        
his measurements (using the public channel)

• Next, Alice reveals b and Bob reveals b' over the public 
channel

• They discard the cases where b'i ≠ bi and they will use the 
remaining bits of a and a' to produce the key

• Note:
– If Eve did not disturb the qubits then the key can be just a (= a' )
– The interesting case is where Eve may tamper with  |ψ〉 while      

it is sent from Alice to Bob  

|ψ00〉

|ψ10〉
|ψ01〉

|ψ11〉
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BB84BB84
• Intuition:

– Eve cannot acquire information about  |ψ〉 without disturbing it, 
which will cause some of the bits of a and a' to disagree

– It can be proven* that: the more information Eve acquires about a, 
the more bit positions of a and a' will be different

• From Alice and Bob’s remaining bits, a and a' (where the 
positions where b'i ≠ bi have already been discarded):
– They take a random subset and reveal them in order to estimate 

the fraction of bits where a and a' disagree
– If this fraction is not too high then they proceed to distill a key from 

the bits of a and a' that are left over (around n /4 bits)

|ψ00〉

|ψ10〉
|ψ01〉

|ψ11〉

∗ To prove this rigorously is nontrivial
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BB84BB84
• If the error rate between a and a' is below some threshold 

(around 11%) then Alice and Bob can produce a good key 
using techniques from classical cryptography:
– Information reconciliation (“distributed error correction”): to produce 

shorter a and a' such that (i) a = a', and (ii) Eve doesn’t acquire much 
information about a and a' in the process

– Privacy amplification: to produce shorter a and a' such that Eve’s 
information about a and a' is very small

• There are already commercially available implementations of 
BB84, though assessing their true security is a subtle matter 
(since their physical mechanisms are not ideal)
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• Quantum key distribution

• Schmidt decomposition

This will have some cryptographic applications 
for analyzing “bit-commitment” schemes
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Schmidt decompositionSchmidt decomposition
Let |ψ〉 be any bipartite quantum state: 

|ψ〉 = (where we can assume n ≤ m)∑∑
= =

⊗
n

a

m

b
ba ba

1 1
,α

Eigenvectors of Tr1|ψ〉〈ψ|

Then there exist orthonormal states 
|μ1〉, |μ2〉, …, |μn〉 and |ϕ1〉, |ϕ2〉, …, |ϕn〉 such that 

|ψ〉 = ∑
=

⊗
n

c
cccp

1
ϕμ
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Schmidt decomposition: proof (I)Schmidt decomposition: proof (I)

∑
=

m

c
cccp

1
ϕϕ

Tracing out the first system, we obtain the density matrix 
of the second system, ρ = Tr1|ψ〉〈ψ|

Since ρ is a density matrix, we can express  ρ = ,

where |ϕ1〉, |ϕ2〉, …, |ϕm〉 are orthonormal eigenvectors of ρ

The density matrix for state |ψ〉 is given by |ψ〉〈ψ|

Now, returning to |ψ〉, we can express |ψ〉 =                      , 
where |ν1〉, |ν2〉, …, |νm〉 are just some arbitrary vectors (not 
necessarily valid quantum states; for example, they might not 
have unit length, and we cannot presume they’re orthogonal)

∑
=

⊗
m

c
cc

1

ϕν

We will next show that  〈νc|νc′ 〉 =     pc     if c = c′
0 if c ≠ c′
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Schmidt decomposition: proof (II)Schmidt decomposition: proof (II)

∑∑∑∑
= ===

⊗=⎟
⎠

⎞
⎜
⎝

⎛
⊗⎟

⎠

⎞
⎜
⎝

⎛
⊗=

m

c

m

c
cccc

m

c
cc

m

c
cc

1 1'
''

1'
''

1
ϕϕννϕνϕνψψ

The claimed result about 〈νc|νc′ 〉 now follows

To show that  〈νc|νc′ 〉 =     pc     if c = c′
0 if c ≠ c′,

we compute the partial trace Tr1 of |ψ〉〈ψ| in terms of

A careful calculation (shown later) of this partial trace yields

∑∑
= =

⊗
m

c

m

c
cccc

1 1'
'' ϕϕνν which must equal ∑

=

m

c
cccp

1
ϕϕ

Next, setting                         completes the constructionc
c

c p
νμ 1

=

(where pc = 0 for c > n)
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Schmidt decomposition: proof (III)Schmidt decomposition: proof (III)

⎟
⎠
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1 1'
''1Tr ϕϕνν

For completeness, we now give the “careful calculation” of

( ) ( )IaIa
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c
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(by definition of Tr1)

(linearity, and properties of ⊗)

(〈v|w 〉 = Tr(〈v|w〉) = Tr(|w〉〈v|))

Iaa
n

a
=∑

=1
(            )∑∑

= =

⊗=
m

c

m

c
cccc

1 1'
'' ϕϕνν

(linearity)
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