Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681

Lecture 17 (2005)

Richard Cleve DC 3524 <u>cleve@cs.uwaterloo.ca</u>

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- Communication complexity
 - Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting
- Hidden matching problem
- Nonlocality revisited

- Communication complexity
 - Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting
- Hidden matching problem
- Nonlocality revisited

Inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols **also** require $\Omega(n)$ communication

The BV black-box problem Bernstein & Vazirani Let $f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + ... + a_n x_n \mod 2$ $H^{\downarrow} |a_1\rangle$ Given: H_2 $|a_2\rangle$ $|0\rangle x H$ H+H $|H_n\rangle |a_n\rangle$ $|0\rangle |x|$ $H \oplus f(x_1, x_2, \dots, x_n)$ $|1\rangle |b|_H$

Goal: determine a_1, a_2, \ldots, a_n

Classically, *n* queries are necessary

Quantum mechanically, 1 query is sufficient

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo's Theorem)

Communication complexity Lower bound for the inner product problem

- Simultaneous message passing and fingerprinting
- Hidden matching problem
- Nonlocality revisited

Exact protocols: require 2*n* bits communication

Bounded-error protocols with a shared random key: require only O(1) bits communication

Error-correcting code: e(x) = 1011111010110011001e(y) = 01101001001100100100100random k

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum fingerprints

Question 1: how many orthogonal states in m qubits? **Answer:** 2^m

Let ε be an arbitrarily small positive constant **Question 2:** how many *almost orthogonal** states in *m* qubits? (* where $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$)

Answer: $2^{2^{am}}$, for some constant a > 0

Construction of *almost* **orthogonal states**: start with a suitable (classical) error-correcting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ where, for all $x \neq y$, $dcn \leq \Delta(e(x), e(y)) \leq (1-d)cn$ (*c*, *d* are constants)

Construction of *almost* orthogonal states

Set $|\Psi_{x}\rangle = \frac{1}{\sqrt{cn}} \sum_{k=1}^{cn} (-1)^{e(x)_{k}} |k\rangle$ for each $x \in \{0,1\}^{n}$ (log(*cn*) qubits)

Then $\langle \Psi_{x} | \Psi_{y} \rangle = \frac{1}{cn} \sum_{k=1}^{cn} (-1)^{[e(x) \oplus e(y)]_{k}} | k \rangle = 1 - \frac{2\Delta(e(x), e(y))}{cn}$

Since $dcn \le \Delta(e(x), e(y)) \le (1-d)cn$, we have $|\langle \psi_x | \psi_y \rangle| \le 1-2d$

By duplicating each state, $|\psi_x\rangle \otimes |\psi_x\rangle \otimes \dots \otimes |\psi_x\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2d)^r \le \varepsilon$

Result: $m = r \log(cn)$ qubits storing $2^n = 2^{(1/c)2^{m/r}}$ different states (as opposed to *n* qubits!)

What are almost orthogonal states good for?

Question 3: can they be used to somehow store n bits using only $O(\log n)$ qubits?

Answer: NO—recall that Holevo's theorem forbids this

Here's what we can do: given two states from an almost orthogonal set, we can distinguish between these two cases:

- they're both the same state
- they're almost orthogonal

Question 4: How?

Quantum fingerprints

Let $|\psi_{000}\rangle$, $|\psi_{001}\rangle$, ..., $|\psi_{111}\rangle$ be 2^n states on $O(\log n)$ qubits such that $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$ for all $x \ne y$

Given $|\psi_x\rangle|\psi_y\rangle$, one can check if x = y or $x \neq y$ as follows:

if x = y, Pr[output = 0] = 1 if $x \neq y$, Pr[output = 0] = $(1 + \varepsilon^2)/2$

Note: error probability can be reduced to $((1 + \varepsilon^2)/2)^r$

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum protocol for equality in simultaneous message model

Communication complexity

- Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting
- Hidden matching problem
- Nonlocality revisited

Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol—even with a shared key

Only one-way communication (Alice to Bob) is permitted

[Bar-Yossef, Jayram, Kerenidis, 2004]

Classically, one-way communication is $\Omega(\sqrt{n})$, even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn't know which edges are in M, so she apparently has to send $\Omega(\sqrt{n})$ bits of the form $x_i \oplus x_j \dots$

The hidden matching problem

Inputs: $x \in \{0,1\}^n$

Output: $(i, j, x_i \oplus x_j), (i, j) \in M$

Quantum protocol: Alice sends $\frac{1}{\sqrt{n}}\sum_{k=1}^{n}(-1)^{x_k}|k\rangle$ (log *n* qubits)

Bob measures in $|i\rangle \pm |j\rangle$ basis, $(i, j) \in M$, and uses the outcome's relative phase to determine $x_i \bigoplus x_j$

Communication complexity

- Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting
- Hidden matching problem
- Nonlocality revisited

Restricted-equality nonlocality

23

Precondition: either x = y or $\Delta(x,y) = n/2$

Required postcondition: a = b iff x = y

With classical resources, $\Omega(n)$ bits of communication needed for an exact solution*

With $(|00\rangle + |11\rangle)^{\otimes \log n}$ prior entanglement, no communication is needed at all*

* Technical details similar to restricted equality of Lecture 17 [BCT '99]

Restricted-equality nonlocality

Bit communication:

 $\mathsf{Cost:}\, \theta(\mathcal{N})$

Bit communication & prior entanglement:

Cost: Zero

Qubit communication:

Cost: $\log n$

Qubit communication & prior entanglement:

Cost: Zero

Nonlocality and communication complexity conclusions

- Quantum information affects communication complexity in interesting ways
- There is a rich interplay between quantum communication complexity and:
 - -quantum algorithms
 - -quantum information theory
 - -other notions of complexity theory ...

