Introduction to Quantum Information Processing CS 467 I CS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 17 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- Communication complexity
- Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting
- Hidden matching problem
- Nonlocality revisited
- Communication complexity
- Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting
- Hidden matching problem

Inner product

$$
\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2
$$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols also require $\Omega(n)$ communication

The BV black-box problem

 Bernstein \& VaziraniLet $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \bmod 2$
Given:

Goal: determine $a_{1}, a_{2}, \ldots, a_{n}$
Classically, n queries are necessary
Quantum mechanically, 1 query is sufficient

Lower bound for inner product $\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2$

Lower bound for inner product $\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2$

Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo's Theorem)

Communication complexity - Lower bound for the inner prodi ct problem

- Simultaneous message passing and fingerprinting
- Hidden matching problem Atontomality mivited

Equality revisited

 in simultaneous message model$$
\begin{array}{ll}
\text { Equality function: } \\
f(x, y)=\left\{\begin{array}{lll}
1 & \text { if } x=y \\
0 & \text { if } x \neq y
\end{array}\right.
\end{array}
$$

Exact protocols: require $2 n$ bits communication

Equality revisited

 in simultaneous message model$$
x_{1} x_{2} \ldots x_{n}
$$

Bounded-error protocols with a shared random key: require only $O(1)$ bits communication
Error-correcting code: $e(x)=10111$ 101 10110011001

$$
e(y)=011010010011001010
$$

Equality revisited

 in simultaneous message model$$
\overbrace{0}^{x_{x_{2}} \ldots x_{n}}=
$$

Bounded-error protocols without a shared key:

$f(x, y)$
Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$

Quantum fingerprints

Question 1: how many orthogonal states in m qubits?
Answer: 2^{m}

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?
(* where $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$)
Answer: $2^{2^{a m}}$, for some constant $a>0$
Construction of almost orthogonal states: start with a suitable (classical) error-correcting code, which is a function $e:\{0,1\}^{n} \rightarrow\{0,1\}^{c n}$ where, for all $x \neq y$, $d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n \quad(c, d$ are constants)

Construction of almost orthogonal states

Set $\left|\psi_{\chi}\right\rangle=\frac{1}{\sqrt{c n}} \sum_{k=1}^{c n}(-1)^{e\left(x_{k}\right.}|k\rangle$ for each $x \in\{0,1\}^{n} \quad(\log (c n)$ qubits)
Then $\left\langle\psi_{x} \mid \Psi_{y}\right\rangle=\frac{1}{c n} \sum_{k=1}^{c n}(-1)^{[e(x) \oplus e(y)]_{k}}|k\rangle=1-\frac{2 \Delta(e(x), e(y))}{c n}$
Since $d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n$, we have $\left|\left\langle\psi_{\chi} \mid \psi_{y}\right\rangle\right| \leq 1-2 d$

By duplicating each state, $\left|\psi_{\chi}\right\rangle \otimes\left|\psi_{\chi}\right\rangle \otimes \ldots \otimes\left|\psi_{\chi}\right\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2 d)^{r} \leq \varepsilon$

Result: $m=r \log (c n)$ qubits storing $2^{n}=2^{(1 / c) 2^{m / r}}$ different states
(as opposed to n qubits!)

What are almost orthogonal states good for?

Question 3: can they be used to somehow store n bits using only $O(\log n)$ qubits?
Answer: NO—recall that Holevo's theorem forbids this

Here's what we can do: given two states from an almost orthogonal set, we can distinguish between these two cases:

- they're both the same state
- they're almost orthogonal

Question 4: How?

Quantum fingerprints

Let $\left|\psi_{000}\right\rangle,\left|\psi_{001}\right\rangle, \ldots,\left|\psi_{111}\right\rangle$ be 2^{n} states on $O(\log n)$ qubits such that $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$ for all $x \neq y$

Given $\left.\left|\psi_{x}\right\rangle\right\rangle\left\langle\psi_{y}\right\rangle$, one can check if $x=y$ or $x \neq y$ as follows:

Intuition: $\left.\left.|0\rangle\left|\psi_{\chi}\right\rangle\right\rangle \psi_{y}\right\rangle+|1\rangle\left|\psi_{y}\right\rangle\left|\psi_{\chi}\right\rangle$

$$
\begin{aligned}
& \text { if } x=y, \operatorname{Pr}[\text { output }=0]=1 \\
& \text { if } x \neq y, \operatorname{Pr}[\text { output }=0]=\left(1+\varepsilon^{2}\right) / 2
\end{aligned}
$$

Note: error probability can be reduced to $\left(\left(1+\varepsilon^{2}\right) / 2\right)^{r}$

Equality revisited

 in simultaneous message model$$
\overbrace{0}^{x_{x_{2}} \ldots x_{n}}=
$$

Bounded-error protocols without a shared key:

Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$

Quantum protocol for equality in simultaneous message model

 0

Recall that, with a shared key, the problem is easy classically ...

- Communication complexity
 - Lower bound for the inner prodi ct problem
 Simultaneous message oassing and ingerorinting

- Hidden matching problem - Nonlocality revisited

Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol-even with a shared key

Inputs: $\quad x \in\{0,1\}^{n}$

Output: $\quad\left(i, j, x_{i} \oplus x_{j}\right)$, such that $(i, j) \in M$

Only one-way communication (Alice to Bob) is permitted

The hidden matching problem

Inputs: $\quad x \in\{0,1\}^{n}$

Output: $\left(i, j, x_{i} \oplus x_{j}\right),(i, j) \in M$

Classically, one-way communication is $\Omega(\sqrt{ } n)$, even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn't know which edges are in M, so she apparently has to send $\Omega(\sqrt{ } n)$ bits of the form $x_{i} \oplus x_{j} \ldots$

The hidden matching problem

Inputs: $\quad x \in\{0,1\}^{n}$

Output: $\left(i, j, x_{i} \oplus x_{j}\right), \quad(i, j) \in M$
Quantum protocol: Alice sends $\frac{1}{\sqrt{n}} \sum_{k=1}^{n}(-1)^{x_{k}}|k\rangle \quad$ (log n qubits)
Bob measures in $|i\rangle \pm|j\rangle$ basis, $(i, j) \in M$, and uses the outcome's relative phase to determine $x_{i} \oplus x_{j}$

Restricted-equality nonlocality

 inputs:
outputs:
a
($\log n$ bits)

Precondition: either $x=y$ or $\Delta(x, y)=n / 2$
Required postcondition: $a=b$ iff $x=y$
With classical resources, $\Omega(n)$ bits of communication needed for an exact solution*
With $(|00\rangle+|11\rangle)^{\otimes \log n}$ prior entanglement, no communication is needed at all*

* Technical details similar to restricted equality of Lecture 17

Restricted－equality nonlocality

Bit communication：

cost：$\theta(n)$

Bit communication
\＆prior entanglement：

cost：Zero

Qubit communication：

Cost： $\log n$

Qubit communication
\＆prior entanglement：
日可易
日回易

cost：Zero

Nonlocality and communication complexity conclusions

- Quantum information affects communication complexity in interesting ways
- There is a rich interplay between quantum communication complexity and:
-quantum algorithms
-quantum information theory
- other notions of complexity theory ...

