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Inner productInner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

Classically, Ω(n) bits of communication are required, 
even for bounded-error protocols

Quantum protocols also require Ω(n) communication

[KY ‘95] [CNDT ‘98] [NS ‘02]
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The BV blackThe BV black--box problembox problem
Let  f(x1, x2, …, xn) = a1 x1 + a2 x2 + … + an xn mod 2

Given:
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Goal: determine a1, a2 , …, an

Classically, n queries are necessary

Quantum mechanically, 1 query is sufficient

Bernstein & Bernstein & VaziraniVazirani
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Lower bound for inner productLower bound for inner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

|y1〉 |yn〉|y2〉

Alice and Bob’s IP protocol

|x2〉|x1〉 |xn〉

|z⊕IP(x, y)〉

Alice and Bob’s IP protocol inverted

|y1〉 |y2〉 |yn〉|x1〉 |x2〉 |xn〉

|z〉Proof:
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Lower bound for inner productLower bound for inner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

Since n bits are conveyed from Alice to Bob, n qubits
communication necessary (by Holevo’s Theorem)

Alice and Bob’s IP protocol

|x2〉|x1〉 |xn〉

Alice and Bob’s IP protocol inverted

|x1〉 |x2〉 |xn〉
|x1〉 |x2〉 |xn〉

H H H

HHH
|1〉

|0〉 |1〉|0〉|0〉

H

H

Proof:
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Equality function:
f (x,y) = 1 if x = y

0   if x ≠ y

Exact protocols: require 2n bits communication
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error protocols with a shared random key:
require only O(1) bits communication
Error-correcting code: e(x) = 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1

e(y) = 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0

Pr[00] = Pr[11] = ½

random k 

classical
correlations

classical
correlations
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error 
protocols without
a shared key:

Classical: θ(n1/2)
Quantum: θ(log n)
[A ’96] [NS ’96] [BCWW ’01]
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Quantum fingerprintsQuantum fingerprints
Question 1: how many orthogonal states in m qubits?
Answer: 2m

Answer: 22am, for some constant a > 0

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?
(* where |〈ψx|ψy〉| ≤ ε )

Construction of Construction of almostalmost orthogonal statesorthogonal states: start with a 
suitable (classical) error-correcting code, which is a function  
e :{0,1}n {0,1}cn where, for all x ≠ y,
dcn ≤ Δ(e(x),e(y)) ≤ (1−d)cn (c, d are constants)
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Construction of Construction of almostalmost
orthogonal statesorthogonal states

Since dcn ≤ Δ(e(x),e(y)) ≤ (1−d)cn,  we have |〈ψx|ψy〉| ≤ 1−2d

Set  |ψx〉 for each x∈{0,1}n    (log(cn) qubits) ∑
=

−=
cn

k
kkxe

cn 1
11 )()(

Then 〈ψx|ψy〉
( )
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yexek
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kyexe

cn
)(),()( )]()([ Δ

−=−= ∑
=

⊕ 211
1

1

By duplicating each state, |ψx〉⊗|ψx〉⊗ … ⊗|ψx〉, the pairwise
inner products can be made arbitrarily small:  (1−2d )r ≤ ε

Result: m = rlog(cn) qubits storing 2n = 2(1/c)2m/r different states
(as opposed to n qubits!)
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What are almost orthogonal What are almost orthogonal 
states good for?states good for?

Question 3: can they be used to somehow store n bits 
using only O(log n) qubits?

Answer: NO—recall that Holevo’s theorem forbids this

Here’s what we can do: given two states from an almost 
orthogonal set, we can distinguish between these two cases:
• they’re both the same state
• they’re almost orthogonal

Question 4: How?
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Quantum fingerprintsQuantum fingerprints

if x = y, Pr[output = 0] = 1
if x ≠ y, Pr[output = 0] = (1+ ε2)/2

Given |ψx〉|ψy〉, one can check if x = y or x ≠ y as follows:

Let |ψ000〉, |ψ001〉, …, |ψ111〉 be 2n states on O(log n) qubits such 
that |〈ψx|ψy〉| ≤ ε for all x ≠ y

H
S
W
A
P

H
|ψx〉

|ψy〉

|0〉

Intuition: |0〉|ψx〉|ψy〉 + |1〉|ψy〉|ψx〉
Note: error probability can 
be reduced to ((1+ ε2)/2)r
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error 
protocols without
a shared key:

Classical: θ(n1/2)
Quantum: θ(log n)
[A ’96] [NS ’96] [BCWW ’01]
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Quantum protocol for equality       Quantum protocol for equality       
in simultaneous message modelin simultaneous message model

x1x2 … xn y1y2 … yn

|ψx〉 |ψy〉

Orthogonality
test

|ψx〉 |ψy〉
Recall that, with a 
shared key, the 
problem is easy 
classically ...
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Hidden matching problemHidden matching problem
For this problem, a quantum protocol is exponentially more 
efficient than any classical protocol—even with a shared key

x ∈ {0,1}n
matching on 
{1, 2, …, n}Inputs: M =

[Bar-Yossef, Jayram, Kerenidis, 2004]

(i, j, xi⊕xj), such that 
(i, j) ∈ M

Output:

Only one-way communication (Alice to Bob) is permitted
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The hidden matching problemThe hidden matching problem
x ∈ {0,1}n

matching on 
{1,2, …, n}Inputs:

Output: (i, j, xi⊕xj),  (i, j) ∈ M

M =

Rough intuition: Alice doesn’t know which edges are in M, 
so she apparently has to send Ω(√n) bits of the form xi⊕xj …

Classically, one-way communication is Ω(√n), even with a 
shared classical key (the proof is omitted here)



21

The hidden matching problemThe hidden matching problem
x ∈ {0,1}n

matching on 
{1,2, …, n}Inputs: M =

Output: (i, j, xi⊕xj),  (i, j) ∈ M

Quantum protocol: Alice sends                          (log n qubits)∑
=

−
n

k
kkx

n 1
11 )(

Bob measures in |i〉 ± |j〉 basis, (i, j) ∈ M, 
and uses the outcome’s relative phase to 
determine xi⊕xj
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RestrictedRestricted--equality equality nonlocalitynonlocality

b

x y

a

inputs:

outputs:

(n bits)

(log n bits)

(n bits)

(log n bits)

With classical resources, Ω(n) bits of communication needed 
for an exact solution*

With  (|00〉 + |11〉)⊗log n prior entanglement, no communication 
is needed at all*

Precondition: either x = y or Δ(x,y) = n/2

Required postcondition: a = b iff x = y

[BCT ‘99]
∗ Technical details similar to restricted equality of Lecture 17
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RestrictedRestricted--equality equality nonlocalitynonlocality
Bit communication:

Cost: θ(n)

Qubit communication:

Cost: log n

Bit communication    
& prior entanglement:

Cost: zero Cost: zero

Qubit communication 
& prior entanglement:
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NonlocalityNonlocality and communication and communication 
complexity conclusionscomplexity conclusions

• Quantum information affects communication 
complexity in interesting ways

• There is a rich interplay between quantum 
communication complexity and:
– quantum algorithms
– quantum information theory
– other notions of complexity theory …
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