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BellBell’’s Inequality and its violations Inequality and its violation

b

s t

a

input:

output:

With classical resources, Pr[a⊕b = s∧t] ≤ 0.75

But, with prior entanglement state |00〉 – |11〉,  
Pr[a⊕b = s∧t] = cos2(π/8) = ½ + ¼√2 = 0.853…

Rules: 1. No communication after inputs received
2. They win if a⊕b = s∧t

st a⊕b
00 0
01 0
10 0
11 1

Part II: computer scientist’s view:
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The quantum strategyThe quantum strategy
• Alice and Bob start with entanglement 

|φ〉 = |00〉 – |11〉

• Alice: if s = 0 then rotate by θA = −π/16 
else rotate by θA = + 3π/16 and measure 

• Bob: if t = 0 then rotate by θB = −π/16 
else rotate by θB = + 3π/16 and measure 

st = 01 or 10

π/8

3π/8

-π/8

st = 11

st = 00

cos(θA – θB ) (|00〉 – |11〉) + sin(θA – θB ) (|01〉 + |10〉)

Success probability: 
Pr[a⊕b = s∧t] = cos2(π/8) = ½ + ¼√2 = 0.853…
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NonlocalityNonlocality in operational termsin operational terms

information 
processing 

task

quantum 
entanglement

!

classically,
communication

is needed
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Magic square gameMagic square game

a11 a12 a13

a21 a22 a23

a31 a32 a33

Problem: fill in the matrix with bits such that each row has 
even parity and each column has odd parity

even

odd oddodd

even

evenIMPOSSIBLE

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: classical and 1 quantum8/9
[Aravind, 2002] (details omitted here)
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Classical communication complexityClassical communication complexity

f (x,y)

x1x2 … xn y1y2 … yn

E.g. equality function: f (x,y) = 1 if x = y, and 0 if x ≠ y

Any deterministic protocol requires n bits communication

Probabilistic protocols can solve with only O(log(n/ε)) bits 
communication (error probability ε), via random hashing

[Yao, 1979]
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Quantum communication complexityQuantum communication complexity

Qubit communication 

Prior entanglement 

f (x,y)

x1x2 … xn y1y2 … yn

qubits

f (x,y)

x1x2 … xn y1y2 … yn

… …entangled qubits

bits
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Appointment schedulingAppointment scheduling

i  (xi = yi = 1)

Classically, Ω(n) bits necessary to succeed with prob. ≥ 3/4

For all ε > 0, O(n1/2 log n) qubits sufficient for error prob. < ε

0 1 1 0 1 … 0
1    2    3    4    5    . . .    n

1 0 0 1 1 … 1
1    2    3    4    5    . . .    n

x = y =

[KS ‘87] [BCW ‘98]



14

Search problemSearch problem

0 0 0 0 1 0 … 1
1    2    3    4    5    6    . . .    n

x =Given: accessible via queries

|i〉
|b ⊕ xi〉

|i〉
|b〉

i
b ⊕ xi

i
b

Goal: find i∈{1, 2, …, n} such that xi = 1
Classically: Ω(n) queries are necessary

Quantum mechanically: O(n1/2) queries are sufficient

log n

1

x

[Grover, 1996]
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0 1 1 0 1 0 … 0
1    2    3    4    5    6    . . .    n

x =

1 0 0 1 1 0 … 1y =

0 0 0 0 1 0 … 0x∧y =

Alice

Bob

|i〉

|0〉
|0〉
|b〉

x∧y
≡
|i〉

|0〉
|0〉
|b〉

Bob

y

Bob

y

Alice

x x

Communication per x∧y-query: 2(log n + 3) = O(log n) 



16

Appointment scheduling: epilogueAppointment scheduling: epilogue
Bit communication:

Cost: θ(n)

Qubit communication:

Cost: θ(n1/2) (with refinements)

Bit communication    
& prior entanglement:

Cost: θ(n1/2)

Qubit communication 
& prior entanglement:

Cost: θ(n1/2)

[R ‘02] [AA ‘03] 
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Restricted version of equalityRestricted version of equality
Precondition (i.e. promise): either x = y or Δ(x,y) = n/2

Hamming distance

Classically, Ω(n) bits communication are necessary 
for an exact solution

Quantum mechanically, O(log n) qubits communication 
are sufficient for an exact solution 

[BCW ‘98]

(Distributed variant of “constant” vs. “balanced”)
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Classical lower boundClassical lower bound
Theorem: If  S ⊆ {0,1}n  has the property that, for all  x, x′ ∈ S, 
their intersection size is not n/4 then  |S| < 1.99n

[Frankl and Rödl, 1987]

Let some protocol solve restricted equality with k bits comm.

● approximately 2n/√n input pairs  (x, x),  where Δ(x) = n/2
Therefore,  2n/2k√n input pairs  (x, x) that yield same conv. C

● 2k conversations of length k

Define S = {x : Δ(x) = n/2  and  (x, x) yields conv. C }
For any x, x′ ∈ S, input pair (x, x′ ) also yields conversation C

Therefore,  Δ(x, x′) ≠ n/2, implying intersection size is not n/4
Theorem implies  2n/2k√n < 1.99n , so  k > 0.007n
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Quantum protocolQuantum protocol
j

n

j

jx
x ∑

=

−=
1

)1(ψFor each x ∈ {0,1}n, define

Protocol:
1. Alice sends |ψx〉 to Bob  (log(n) qubits)
2. Bob measures state in a basis that includes |ψy〉

If x = y then Bob’s result is definitely |ψy〉
If Δ(x,y) = n/2 then 〈ψx|ψy〉 = 0, so result is definitely not |ψy〉

Question: How much communication if error ¼ is permitted?

Answer: just 2 bits are sufficient!

Correctness of protocol:
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Exponential quantum vs. classical Exponential quantum vs. classical 
separation in separation in boundedbounded--error modelserror models

O(log n) quantum vs. Ω(n1/4 / log n) classical

Output: result of 
applying M to U |ψ〉

|ψ〉: a log(n)-qubit state 
(described classically)
M: two-outcome measurement 

U: unitary operation 
on log(n) qubits

[Raz, 1999]
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Inner productInner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

Classically, Ω(n) bits of communication are required, 
even for bounded-error protocols

Quantum protocols also require Ω(n) communication

[KY ‘95] [CNDT ‘98] [NS ‘02]
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Recall the BV problemRecall the BV problem
Let  f(x1, x2, …, xn) = a1 x1 + a2 x2 + … + an xn mod 2

Given:

f

|b〉

|x1〉

|xn〉

|x2〉
:

|x

|b 
|x

|x

:
2〉

⊕ f(x1, x2, …, xn)〉
n〉

1〉

H
H
H
H
H

H
H
H
H
H

|1〉

|0〉

|0〉

|0〉
:

|1〉

|a1〉

|an〉

|a2〉
:

Goal: determine a1, a2 , …, an

Classically, n queries are necessary

Quantum mechanically, 1 query is sufficient
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Lower bound for inner productLower bound for inner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

|y1〉 |yn〉|y2〉

Alice and Bob’s IP protocol

|x2〉|x1〉 |xn〉

|z⊕IP(x, y)〉

Alice and Bob’s IP protocol inverted

|y1〉 |y2〉 |yn〉|x1〉 |x2〉 |xn〉

|z〉Proof:
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Lower bound for inner productLower bound for inner product
IP(x, y) = x1 y1 + x2 y2 + … + xn yn mod 2

Since n bits are conveyed from Alice to Bob, n qubits
communication necessary (by Holevo’s Theorem)

Alice and Bob’s IP protocol

|x2〉|x1〉 |xn〉

Alice and Bob’s IP protocol inverted

|x1〉 |x2〉 |xn〉
|x1〉 |x2〉 |xn〉

H H H

HHH
|1〉

|0〉 |1〉|0〉|0〉

H

H

Proof:
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Equality function:
f (x,y) = 1 if x = y

0   if x ≠ y

Exact protocols: require 2n bits communication



29

Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error protocols with a shared random key:
require only O(1) bits communication
Error-correcting code: e(x) = 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1

e(y) = 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0

Pr[00] = Pr[11] = ½

random k 

classical classical
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error 
protocols without
a shared key:

Classical: θ(n1/2)
Quantum: θ(log n)
[A ‘96] [NS ‘96] [BCWW ‘01]
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Quantum fingerprintsQuantum fingerprints
Question 1: how many orthogonal states in m qubits?
Answer: 2m

Answer: 22am, for some constant a > 0

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits? 
(* where |〈ψx|ψy〉| ≤ ε )

The states can be constructed via a suitable (classical) error-
correcting code, which is a function  e :{0,1}n {0,1}cn where, 
for all x ≠ y, dcn ≤ Δ(e(x),e(y)) ≤ (1−d)cn (c, d are constants)
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Construction of Construction of almostalmost
orthogonal statesorthogonal states

Since dcn ≤ Δ(e(x),e(y)) ≤ (1−d)cn,  we have |〈ψx|ψy〉| ≤ 1−2d

Set  |ψx〉 for each x∈{0,1}n    (log(cn) qubits) ∑
=

−=
cn

k
kkxe

cn 1
11 )()(

Then 〈ψx|ψy〉
( )

cn
yexek

cn

k

kyexe

cn
)(),()( )]()([ Δ

−=−= ∑
=

⊕ 211
1

1

By duplicating each state, |ψx〉⊗|ψx〉⊗ … ⊗|ψx〉, the pairwise
inner products can be made arbitrarily small:  (1−2d )r ≤ ε

Result: m = rlog(cn) qubits storing 2n = 2(1/c)2m/r different states
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Quantum fingerprintsQuantum fingerprints

if x = y, Pr[output = 0] = 1
if x ≠ y, Pr[output = 0] = (1+ ε2)/2

Given |ψx〉|ψy〉, one can check if x = y or x ≠ y as follows:

Let |ψ000〉, |ψ001〉, …, |ψ111〉 be 2n states on O(log n) qubits such 
that |〈ψx|ψy〉| ≤ ε for all x ≠ y

H
S
W
A
P

H
|ψx〉

|ψy〉

|0〉

Intuition: |0〉|ψx〉|ψy〉 + |1〉|ψy〉|ψx〉
Note: error probability can 
be reduced to ((1+ ε2)/2)r
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error 
protocols without
a shared key:

Classical: θ(n1/2)
Quantum: θ(log n)
[A ‘96] [NS ‘96] [BCWW ‘01]
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Quantum protocol for equality       Quantum protocol for equality       
in simultaneous message modelin simultaneous message model

x1x2 … xn y1y2 … yn

|ψx〉 |ψy〉

Orthogonality
test

|ψx〉 |ψy〉
Recall that, with a 
shared key, the 
problem is easy 
classically ...
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