Introduction to
 Quantum Information Processing CS 467 / CS 667
 Phys 467 / Phys 767 C\&O 481 / C\&O 681

Lecture 17 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- The Bell inequality and its violation
- Computer Scientist's perspective
- The magic square game
- Communication complexity
- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
- Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting
- The Bell inequality and its violation
- Physicist's perspective
- Computer Scientist's perspective

The magic square game
Communication comolexity

- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
-Lower bound for the inner product problem
Simultaneous mescege pacsing and finge printing

Bell's Inequality and its violation Part II: computer scientist's view:

 input:
output:
a

Rules: 1. No communication after inputs received 2. They win if $a \oplus b=s \wedge t$

With classical resources, $\operatorname{Pr}[a \oplus b=s \wedge t] \leq 0.75$
But, with prior entanglement state $|00\rangle-|11\rangle$,

$s t$	$a \oplus b$
00	0
01	0
10	0
11	1

The quantum strategy

- Alice and Bob start with entanglement
$|\phi\rangle=|00\rangle-|11\rangle$
- Alice: if $S=0$ then rotate by $\theta_{\mathrm{A}}=-\pi / 16$ else rotate by $\theta_{\mathrm{A}}=+3 \pi / 16$ and measure
- Bob: if $t=0$ then rotate by $\theta_{\mathrm{B}}=-\pi / 16$ else rotate by $\theta_{\mathrm{B}}=+3 \pi / 16$ and measure

$$
\cos \left(\theta_{\mathrm{A}}-\theta_{\mathrm{B}}\right)(|00\rangle-|11\rangle)+\sin \left(\theta_{\mathrm{A}}-\theta_{\mathrm{B}}\right)(|01\rangle+|10\rangle)
$$

Success probability:
$\operatorname{Pr}[a \oplus b=s \wedge t]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{2}=0.853 \ldots$

Nonlocality in operational terms

information
processing task

The Bell inequality and its violation

- Physicist's perspective
-Computer Scientists pers hecture
- The magic square game

Communication complexity

- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
-hower bound for the inner product problem
Simultaneous meccege pecsing and finge printing

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column
They win iff parities are correct and bits agree at intersection
Success probabilities: 8/9 classical and 1 quantum

The Bell inequality and its violation

- Physicist's perspective
- Computer Scientist's perspective

The magic square game

- Communication complexity
- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
- Lower bound for the inner product problem

Simultaneous message passing and fingerprinting

Classical communication complexity

[Yao, 1979]

$$
\begin{aligned}
& x_{1} x_{2} \ldots x_{n} \\
& y_{1} y_{2} \ldots y_{n} \\
& f(x, y)
\end{aligned}
$$

E.g. equality function: $f(x, y)=1$ if $x=y$, and 0 if $x \neq y$

Any deterministic protocol requires n bits communication Probabilistic protocols can solve with only $O(\log (n / \varepsilon))$ bits communication (error probability ε), via random hashing

Quantum communication complexity

$x_{1} x_{2} \ldots x_{n} \quad y_{1} y_{2} \ldots y_{n}$
Qubit communication

Prior entanglement

The Bell inequality and its violation

- Physicist's perspective
- Computer Scientist's perspective

The magic square game
Communication comnlexitı

- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
-Lower bound for the inner product problem
Simultaneous message passing and fingerprinting

Appointment scheduling

$$
x=\begin{array}{|llllll}
123 & 4 & 5 & \ldots & n \\
011 & 1 & 1 & \ldots & 0 \\
\hline
\end{array}
$$

Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq 3 / 4$

For all $\varepsilon>0, O\left(n^{1 / 2} \log n\right)$ qubits sufficient for error prob. $<\varepsilon$

Search problem

Given: $x=\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & \ldots & n \\ 0 & 0 & 0 & 0 & 1 & 0 & \ldots & 1\end{array} \quad$ accessible via queries

$$
\begin{aligned}
& \log n\{|i\rangle \overline{\mathcal{L}}|\boldsymbol{i}\rangle \\
& 1\left\{|b\rangle=\bigoplus \quad\left|b \oplus x_{i}\right\rangle\right.
\end{aligned}
$$

Goal: find $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1$
Classically: $\Omega(n)$ queries are necessary
Quantum mechanically: $O\left(n^{1 / 2}\right)$ queries are sufficient

$$
\begin{aligned}
& \text { Alice } \quad x=\begin{array}{|llllllll}
1 & 2 & 3 & 4 & 5 & 6 & \ldots & n \\
0 & 1 & 1 & 0 & 1 & 0 & \ldots & 0 \\
\hline
\end{array} \\
& \text { Bob } \quad y=100110 \ldots 1 \\
& x \wedge y=000010 \ldots 0
\end{aligned}
$$

Communication per $x \wedge y$-query: $2(\log n+3)=O(\log n)$

Appointment scheduling：epilogue

Bit communication：

Cost：$\theta(n)$

Bit communication
\＆prior entanglement：

Cost：$\theta\left(n^{1 / 2}\right)$

Qubit communication：

cost：$\theta\left(n^{1 / 2}\right)$（with refinements）

Qubit communication
\＆prior entanglement：
aner
日旬可

Cost：$\theta\left(n^{1 / 2}\right)$

The Bell inequality and its violation

- Physicist's perspective
- Computer Scientist's perspective

The magic square game
Communication complevitl

- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
- Lower bound for the inner product problem

Simultaneous message passing and fingerprinting

Restricted version of equality

Precondition (i.e. promise): either $x=y$ or $\Delta(x, y)=n / 2$
Hamming distance
(Distributed variant of "constant" vs. "balanced")

Classically, $\Omega(n)$ bits communication are necessary for an exact solution

Quantum mechanically, $O(\log n)$ qubits communication are sufficient for an exact solution

Classical lower bound

Theorem: If $S \subseteq\{0,1\}^{n}$ has the property that, for all $x, x^{\prime} \in S$, their intersection size is not $n / 4$ then $|S|<1.99^{n}$

Let some protocol solve restricted equality with k bits comm.

- 2^{k} conversations of length k
- approximately $2^{n} / \sqrt{ } n$ input pairs (x, x), where $\Delta(x)=n / 2$

Therefore, $2^{n} / 2^{k} \sqrt{n}$ input pairs (x, x) that yield same conv. C
Define $S=\{x: \Delta(x)=n / 2$ and (x, x) yields conv. $C\}$
For any $x, x^{\prime} \in S$, input pair $\left(x, x^{\prime}\right)$ also yields conversation C
Therefore, $\Delta\left(x, x^{\prime}\right) \neq n / 2$, implying intersection size is not $n / 4$ Theorem implies $2^{n} / 2^{k} \sqrt{n}<1.99^{n}$, so $k>0.007 n$ [Frankl and Rödl, 1987]

Quantum protocol

For each $x \in\{0,1\}^{n}$, define $\left|\psi_{x}\right\rangle=\sum_{j=1}^{n}(-1)^{x_{j}}|j\rangle$

Protocol:

1. Alice sends $\left|\psi_{x}\right\rangle$ to Bob ($\log (n)$ qubits)
2. Bob measures state in a basis that includes $\left|\psi_{y}\right\rangle$

Correctness of protocol:
If $x=y$ then Bob's result is definitely $\left|\psi_{y}\right\rangle$
If $\Delta(x, y)=n / 2$ then $\left\langle\psi_{x} \mid \psi_{y}\right\rangle=0$, so result is definitely not $\left|\psi_{y}\right\rangle$

Question: How much communication if error $1 / 4$ is permitted?
Answer: just $\mathbf{2}$ bits are sufficient!

Exponential quantum vs. classical separation in bounded-error models

$O(\log n)$ quantum vs. $\Omega\left(n^{1 / 4} / \log n\right)$ classical
$|\psi\rangle:$ a $\log (n)$-qubit state
(described classically)
M: two-outcome measurement

\boldsymbol{U} : unitary operation on $\log (n)$ qubits

Output: result of applying \boldsymbol{M} to $\boldsymbol{U}|\psi\rangle$

The Bell inequality and its violation

- Physicist's perspective
- Computer Scientist's perspective

The magic square game
Communicntion complevitı

- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
- Lower bound for the inner product problem

Simultaneous message passing and fingerprinting

Inner product

$$
\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2
$$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols also require $\Omega(n)$ communication

Recall the BV problem

Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \bmod 2$
Given:

Goal: determine $a_{1}, a_{2}, \ldots, a_{n}$
Classically, n queries are necessary
Quantum mechanically, 1 query is sufficient

Lower bound for inner product
 $$
\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2
$$

Lower bound for inner product $\operatorname{IP}(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \bmod 2$

Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo's Theorem)

The Bell inequality and its violation

- Physicist's perspective
- Computer Scientist's perspective

The magic square game
Communication complevitı

- Equality checking
- Appointment scheduling (quadratic savings)
- Are exponential savings possible?
- Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting

Equality revisited in simultaneous message model

$$
\begin{aligned}
& \text { Equality function: } \\
& f(x, y)= \begin{cases}1 & \text { if } x=y \\
0 & \text { if } x \neq y\end{cases}
\end{aligned}
$$

Exact protocols: require $2 n$ bits communication

Equality revisited

 in simultaneous message model

Bounded-error protocols with a shared random key: require only $O(1)$ bits communication
Error-correcting code: $\begin{aligned} e(x) & =101111010110011001 \\ e(y) & =01101001011001010\end{aligned}$ random k

Equality revisited in simultaneous message model

Bounded-error protocols without a shared key:

Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$

Quantum fingerprints

Question 1: how many orthogonal states in m qubits?
Answer: 2^{m}

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?
(* where $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$)
Answer: $2^{2^{a m}}$, for some constant $a>0$
The states can be constructed via a suitable (classical) errorcorrecting code, which is a function $e:\{0,1\}^{n} \rightarrow\{0,1\}^{c n}$ where, for all $x \neq y, d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n \quad(c, d$ are constants)

Construction of almost orthogonal states

Set $\left|\psi_{x}\right\rangle=\frac{1}{\sqrt{c n}} \sum_{k=1}^{c n}(-1)^{e(x)}|k\rangle$ for each $x \in\{0,1\}^{n} \quad(\log (c n)$ qubits)
Then $\left\langle\psi_{x} \mid \psi_{y}\right\rangle=\frac{1}{c n} \sum_{k=1}^{c n}(-1)^{[e(x) \oplus e(y)]_{k}}|k\rangle=1-\frac{2 \Delta(e(x), e(y))}{c n}$
Since $d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n$, we have $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq 1-2 d$

By duplicating each state, $\left|\psi_{x}\right\rangle \otimes\left|\psi_{x}\right\rangle \otimes \ldots \otimes\left|\psi_{x}\right\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2 d)^{r} \leq \varepsilon$

Result: $m=r \log (c n)$ qubits storing $2^{n}=2^{(1 / c) 2^{m / r}}$ different states

Quantum fingerprints

Let $\left|\psi_{000}\right\rangle,\left|\psi_{001}\right\rangle, \ldots,\left|\psi_{111}\right\rangle$ be 2^{n} states on $O(\log n)$ qubits such that $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$ for all $x \neq y$

Given $\left.\left.\left|\psi_{x}\right\rangle\right\rangle \psi_{y}\right\rangle$, one can check if $x=y$ or $x \neq y$ as follows:

Intuition: $|0\rangle\left|\psi_{x}\right\rangle\left\langle\psi_{y}\right\rangle+|1\rangle\left|\psi_{y}\right\rangle\left|\psi_{x}\right\rangle$

$$
\text { if } x=y, \operatorname{Pr}[\text { output }=0]=1
$$

$$
\text { if } x \neq y, \operatorname{Pr}[\text { output }=0]=\left(1+\varepsilon^{2}\right) / 2
$$

Note: error probability can be reduced to $\left(\left(1+\varepsilon^{2}\right) / 2\right)^{r}$

Equality revisited in simultaneous message model

Bounded-error protocols without a shared key:

Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$

Quantum protocol for equality in simultaneous message model

Recall that, with a shared key, the problem is easy classically ...

