Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681

Lecture 17 (2005)

Richard Cleve

DC 3524 <u>cleve@cs.uwaterloo.ca</u>

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- The Bell inequality and its violation
 - Physicist's perspective
 - Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting

- Physicist's perspective
- Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem.

Simultaneous message passing and fingerprinting

Bell's Inequality and its violation Part II: computer scientist's view:

Rules: 1. No communication after inputs received 2. They *win* if $a \oplus b = s \wedge t$

With classical resources, $\Pr[a \oplus b = s \land t] \le 0.75$

input:

output:

But, with prior entanglement state $|00\rangle - |11\rangle$, $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

The quantum strategy

- Alice and Bob start with entanglement $|\phi\rangle = |00\rangle |11\rangle$
- Alice: if s = 0 then rotate by $\theta_A = -\pi/16$ else rotate by $\theta_A = +3\pi/16$ and measure
- **Bob:** if t = 0 then rotate by $\theta_{\rm B} = -\pi/16$ else rotate by $\theta_{\rm B} = +3\pi/16$ and measure

st = 11 $3\pi/8$ st = 01 or 10 $\pi/8$ $-\pi/8$ st = 00

 $\cos(\theta_{\rm A}-\theta_{\rm B}~)~(|00\rangle-|11\rangle)+\sin(\theta_{\rm A}-\theta_{\rm B}~)~(|01\rangle+|10\rangle)$

Success probability: $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

Nonlocality in operational terms

- Physicist's perspective
- Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem

Simultaneous message passing and fingerprinting

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

8

Game: ask Alice to fill in one row and Bob to fill in one column

They *win* iff parities are correct and bits agree at intersection

Success probabilities: 8/9 classical and 1 quantum

[Aravind, 2002]

(details omitted here)

- Physicist's perspective
- Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem

Simultaneous message passing and fingerprinting

Classical communication complexity

[Yao, 1979]

E.g. equality function: f(x,y) = 1 if x = y, and 0 if $x \neq y$

Any *deterministic* protocol requires *n* bits communication

Probabilistic protocols can solve with only $O(\log(n/\epsilon))$ bits communication (error probability ϵ), via random hashing

Quantum communication complexity

Qubit communication

Prior entanglement

- Physicist's perspective
- Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting

Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq 3/4$

For all $\varepsilon > 0$, $O(n^{1/2} \log n)$ qubits sufficient for error prob. < ε

[KS '87] [BCW '98]

Search problem

Given: $x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & n \\ 0 & 0 & 0 & 1 & 0 & \dots & 1 \end{bmatrix}$ accessible via *queries*

$$\log n \left\{ \begin{array}{c} |\mathbf{i}\rangle & \hline \chi \\ 1 \\ |\mathbf{b}\rangle & \hline |\mathbf{b} \oplus x_{\mathbf{i}}\rangle \end{array} \right.$$

Goal: find $i \in \{1, 2, ..., n\}$ such that $x_i = 1$

Classically: $\Omega(n)$ queries are necessary

Quantum mechanically: $O(n^{1/2})$ queries are sufficient

[Grover, 1996]

Communication per $x \wedge y$ -query: $2(\log n + 3) = O(\log n)$

Appointment scheduling: epilogue

Bit communication:

 $\mathsf{Cost:}\, \theta(\mathcal{N})$

Bit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

Qubit communication:

Cost: $\theta(n^{1/2})$ (with refinements)

Qubit communication & prior entanglement:

- Physicist's perspective
- Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem.
- Simultaneous message passing and fingerprinting

Restricted version of equality

Precondition (i.e. promise): either x = y or $\Delta(x,y) = n/2$

Hamming distance

(Distributed variant of "constant" vs. "balanced")

Classically, $\Omega(n)$ bits communication are necessary *for an exact solution*

Quantum mechanically, $O(\log n)$ qubits communication are sufficient *for an exact solution*

Classical lower bound

Theorem: If $S \subseteq \{0,1\}^n$ has the property that, for all $x, x' \in S$, their *intersection* size is *not* n/4 then $|S| < 1.99^n$

Let **some** protocol solve restricted equality with k bits comm.

- 2^k conversations of length k
- approximately $2^n/\sqrt{n}$ input pairs (x, x), where $\Delta(x) = n/2$

Therefore, $2^{n}/2^{k}\sqrt{n}$ input pairs (x, x) that yield **same** conv. *C*

Define $S = \{x : \Delta(x) = n/2 \text{ and } (x, x) \text{ yields conv. } C \}$

For any $x, x' \in S$, input pair (x, x') **also** yields conversation *C*

Therefore, $\Delta(x, x') \neq n/2$, implying intersection size is **not** n/4Theorem implies $2^n/2^k \sqrt{n} < 1.99^n$, so k > 0.007n

[Frankl and Rödl, 1987]

Quantum protocol

For each $x \in \{0,1\}^n$, define $|\Psi_x\rangle = \sum_{j=1}^n (-1)^{x_j} |j\rangle$

Protocol:

- 1. Alice sends $|\psi_x\rangle$ to Bob (log(*n*) qubits)
- 2. Bob measures state in a basis that includes $|\psi_{\nu}\rangle$

Correctness of protocol:

If x = y then Bob's result is definitely $|\psi_y\rangle$ If $\Delta(x,y) = n/2$ then $\langle \psi_x | \psi_y \rangle = 0$, so result is definitely **not** $|\psi_y\rangle$

Question: How much communication if error ¹/₄ is permitted? **Answer:** just **2** bits are sufficient!

Exponential quantum vs. classical separation in <u>bounded-error models</u>

 $O(\log n)$ quantum vs. $\Omega(n^{1/4} / \log n)$ classical

|ψ⟩: a log(*n*)-qubit state
(described *classically*) *M*: two-outcome measurement

Output: result of applying M to $U|\psi\rangle$

U: unitary operation on log(n) qubits

[Raz, 1999]

- Physicist's perspective
- Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem
- Simultaneous message passing and fingerprinting

Inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols **also** require $\Omega(n)$ communication

Recall the BV problem

Let $f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + ... + a_n x_n \mod 2$

Goal: determine a_1, a_2, \ldots, a_n

Classically, *n* queries are necessary

Quantum mechanically, 1 query is sufficient

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Since *n* bits are conveyed from Alice to Bob, *n* qubits communication necessary (by Holevo's Theorem)

- Physicist's perspective
- Computer Scientist's perspective
- The magic square game
- Communication complexity
 - Equality checking
 - Appointment scheduling (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem

Simultaneous message passing and fingerprinting

Exact protocols: require 2*n* bits communication

Bounded-error protocols with a shared random key: require only O(1) bits communication

Error-correcting code: e(x) = 101111010110011001e(y) = 01101001001100100100100random k

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum fingerprints

Question 1: how many orthogonal states in m qubits? **Answer:** 2^m

Let ε be an arbitrarily small positive constant **Question 2:** how many *almost orthogonal** states in *m* qubits? (* where $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$)

Answer: $2^{2^{am}}$, for some constant a > 0

The states can be constructed via a suitable (classical) errorcorrecting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ where, for all $x \neq y$, $dcn \leq \Delta(e(x), e(y)) \leq (1-d)cn$ (*c*, *d* are constants)

Construction of *almost* orthogonal states

Set $|\psi_x\rangle = \frac{1}{\sqrt{cn}} \sum_{k=1}^{cn} (-1)^{e(x)_k} |k\rangle$ for each $x \in \{0,1\}^n$ (log(*cn*) qubits)

Then $\langle \Psi_{x} | \Psi_{y} \rangle = \frac{1}{cn} \sum_{k=1}^{cn} (-1)^{[e(x) \oplus e(y)]_{k}} | k \rangle = 1 - \frac{2\Delta(e(x), e(y))}{cn}$

Since $dcn \le \Delta(e(x), e(y)) \le (1-d)cn$, we have $|\langle \psi_x | \psi_y \rangle| \le 1-2d$

By duplicating each state, $|\psi_x\rangle \otimes |\psi_x\rangle \otimes \dots \otimes |\psi_x\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2d)^r \le \varepsilon$

Result: $m = r \log(cn)$ qubits storing $2^n = 2^{(1/c)2^{m/r}}$ different states

Quantum fingerprints

Let $|\psi_{000}\rangle$, $|\psi_{001}\rangle$, ..., $|\psi_{111}\rangle$ be 2^n states on $O(\log n)$ qubits such that $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$ for all $x \ne y$

Given $|\psi_x\rangle|\psi_y\rangle$, one can check if x = y or $x \neq y$ as follows:

if x = y, Pr[output = 0] = 1 if $x \neq y$, Pr[output = 0] = $(1 + \varepsilon^2)/2$

Note: error probability can be reduced to $((1 + \varepsilon^2)/2)^r$

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum protocol for equality in simultaneous message model

