Introduction to Quantum Information Processing

CS 467 / CS 667

Phys 467 / Phys 767

C&O 481 / C&O 681

Lecture 16 (2005)

Richard Cleve

DC 3524

cleve@cs.uwaterloo.ca

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- Preliminary remarks about quantum communication
- The GHZ "paradox"
- The Bell inequality and its violation
 - Physicist's perspective
 - Computer Scientist's perspective
- The magic square game

- Preliminary remarks about quantum communication
- The GHZ "paradox"
- The Bell inequality and its violation
 - Physicist's perspective
 - Computer Scientist's perspective
- The magic square game

Quantum information can apparently be used to substantially reduce *computation* costs for a number of interesting problems

How does quantum information affect the *communication costs* of information processing tasks?

We explore this issue ...

Entanglement and signaling

Recall that Entangled states, such as $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$,

can be used to perform some intriguing feats, such as *teleportation* and *superdense coding*

—but they *cannot* be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

Basic communication scenario

Goal: convey *n* bits from Alice to Bob

Basic communication scenario

Bit communication:

Cost: n

Bit communication & prior entanglement:

Cost: \mathcal{N} (can be deduced)

Qubit communication:

Cost: n [Holevo's Theorem, 1973]

Qubit communication & prior entanglement:

Cost: n/2 superdense coding

[Bennett & Wiesner, 1992]

- Preliminary remarks about quantum communication
- The GHZ "paradox"
- The Bell inequality and its violation
 - Physicist's perspective
 - Computer Scientist's perspective
- The magic square game

GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]

Rules of the game:

- 1. It is promised that $r \oplus s \oplus t = 0$
- 2. No communication after inputs received
- 3. They **win** if $a \oplus b \oplus c = r \lor s \lor t$

rst	$a \oplus b \oplus c$	abc
000	0 😀	011
011	1 😀	001
101	1 😀	111
110	1 😩	101

No perfect strategy for GHZ

Input:

Output:

General deterministic strategy:

$$a_0, a_1, b_0, b_1, c_0, c_1$$

rst	$a\oplus b\oplus c$
000	0
011	1
101	1
110	1

Has no solution, thus no perfect strategy exists
$$\begin{cases} a_0 \oplus b_0 \oplus c_0 = 0 \\ a_0 \oplus b_1 \oplus c_1 = 1 \\ a_1 \oplus b_0 \oplus c_1 = 1 \\ a_1 \oplus b_1 \oplus c_0 = 1 \end{cases}$$

GHZ: preventing communication

Input and output events can be **space-like** separated: so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol still keep on winning?

"GHZ Paradox" explained

Prior entanglement: $|\psi\rangle = |000\rangle - |011\rangle - |101\rangle - |110\rangle$

Alice's strategy:

- 1. if r = 1 then apply H to qubit
- 2. measure qubit and set *a* to result

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Bob's & Carol's strategies: similar

Case 2 (rst = 000): attates ta the pastree of th

Cases 3 & 4 (rst = 101 & 110): similar by symmetry

GHZ: conclusions

- For the GHZ game, any classical team succeeds with probability at most ³/₄
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1
- Thus, entanglement is a useful resource for the task of winning the GHZ game

- Preliminary remarks about quantum communication
- The GHZ "paradox"
- The Bell inequality and its violation
 - Physicist's perspective
 - Computer Scientist's perspective
- The magic square game

Bell's Inequality and its violation

Part I: physicist's view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

qubit:

where the "manuscript" is something like this:

called *hidden variables*

[Bell, 1964] [Clauser, Horne, Shimony, Holt, 1969] if $\{|0\rangle, |1\rangle\}$ measurement then output **0**

if $\{|+\rangle, |-\rangle\}$ measurement then output **1**

if ... (etc)

table could be implicitly given by some formula

Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_0 and M_1 , will be applied to each qubit:

Define:

$$A_0 = (-1)^{a_0}$$

$$A_1 = (-1)^{a_1}$$

$$B_0 = (-1)^{b_0}$$

$$B_1 = (-1)^{b_1}$$

Claim: $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$

Proof:
$$A_0(B_0 + B_1) + A_1(B_0 - B_1) \le 2$$

one is ± 2 and the other is 0

Bell Inequality

 $A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \le 2$ is called a **Bell Inequality***

Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: *no, not directly*, because A_0, A_1, B_0, B_1 cannot all be measured (only *one* A_SB_t term can be measured)

Answer 2: *yes, indirectly*, by making many runs of this experiment: pick a random $st \in \{00, 01, 10, 11\}$ and then measure with M_s and M_t to get the value of A_sB_t

The **average** of A_0B_0 , A_0B_1 , A_1B_0 , $-A_1B_1$ should be $\leq \frac{1}{2}$

^{*} also called CHSH Inequality

Violating the Bell Inequality

Two-qubit system in state
$$|\phi\rangle = |00\rangle - |11\rangle$$

Applying rotations θ_A and θ_B yields:

$$\cos(\theta_A + \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A + \theta_B) (|01\rangle + |10\rangle)$$

$$AB = +1$$

$$AB = -1$$

Define

 M_0 : rotate by $-\pi/16$ then measure

 M_1 : rotate by $+3\pi/16$ then measure

Then A_0B_0 , A_0B_1 , A_1B_0 , $-A_1B_1$ all have expected value $\frac{1}{2}\sqrt{2}$, which *contradicts* the upper bound of $\frac{1}{2}$

Bell Inequality violation: summary

Assuming that quantum systems are governed by *local hidden variables* leads to the Bell inequality

$$A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \le 2$$

But this is *violated* in the case of Bell states (by a factor of $\sqrt{2}$)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted

- Preliminary remarks about quantum communication
- The GHZ "paradox"
- The Bell inequality and its violation
 - Physicist's perspective
 - Computer Scientist's perspective
- The magic square game

Bell's Inequality and its violation

Part II: computer scientist's view:

input:

output:

 \boldsymbol{a}

Rules: 1. No communication after inputs received

2. They **win** if $a \oplus b = s \wedge t$

With classical resources,	$Pr[a \oplus b =$	$s \wedge t > 0.75$
vitti olaboloai 1000ai 000,		

But, with prior entanglement state $|00\rangle - |11\rangle$,

$$\Pr[a \oplus b = s \land t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$$

st	$a\oplus b$
00	0
01	0
10	0
11	1

The quantum strategy

• Alice and Bob start with entanglement $|\phi\rangle = |00\rangle - |11\rangle$

• Alice: if s=0 then rotate by $\theta_A=-\pi/16$ else rotate by $\theta_A=+3\pi/16$ and measure

• **Bob:** if t = 0 then rotate by $\theta_{\rm B} = -\pi/16$ else rotate by $\theta_{\rm B} = +3\pi/16$ and measure

$$\cos(\theta_A - \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A - \theta_B) (|01\rangle + |10\rangle)$$

Success probability:

$$\Pr[a \oplus b = s \land t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$$

Nonlocality in operational terms

- Preliminary remarks about quantum communication
- The GHZ "paradox"
- The Bell inequality and its violation
 - Physicist's perspective
 - Computer Scientist's perspective
- The magic square game

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: 8/9 classical and 1 quantum [Aravind, 2002] (details omitted here)

Preview of communication complexity

Classical Communication Complexity

[Yao, 1979]

E.g. equality function: f(x,y) = 1 if x = y, and 0 if $x \neq y$

Any *deterministic* protocol requires *n* bits communication

Probabilistic protocols can solve with only $O(\log(n/\epsilon))$ bits communication (error probability ϵ)

Quantum Communication Complexity

Qubit communication

Prior entanglement

Question: can quantum beast classical in this context?

