Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681

Lecture 15 (2005)

Richard Cleve DC 3524 <u>cleve@cs.uwaterloo.ca</u>

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

Grover's quantum search algorithmOptimality of Grover's algorithm

Grover's quantum search algorithm Optimality of Grover's algorithm

Quantum search problem

Given: a black box computing $f: \{0,1\}^n \rightarrow \{0,1\}$

Goal: determine if f is **satisfiable** (if $\exists x \in \{0,1\}^n$ s.t. f(x) = 1)

In positive instances, it makes sense to also *find* such a satisfying assignment x

Classically, using probabilistic procedures, order 2^n queries are necessary to succeed—even with probability $\frac{3}{4}$ (say)

Grover's **quantum** algorithm that makes only $O(\sqrt{2^n})$ queries

Query:
$$|x_1\rangle$$
 U_f $|x_n\rangle$
 $|x_n\rangle$ $|x_n\rangle$ $|x_n\rangle$
[Grover '96] $|y\rangle$ \oplus $|y \oplus f(x_1,...,x_n)\rangle$ 4

Applications of quantum search

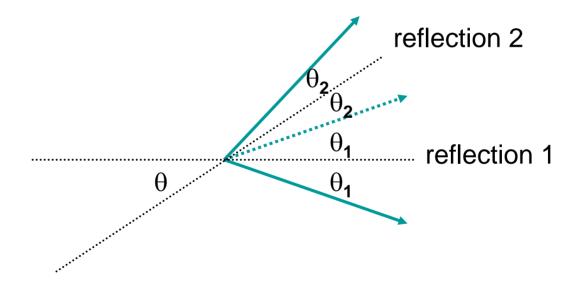
The function f could be realized as a **3-CNF formula**:

 $f(x_1,\ldots,x_n) = (x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land \cdots \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n)$

PSPACE Alternatively, the search could be for a certificate ŃΡ CO-NR for any problem in **NP 3-CNF-SAT** The resulting quantum algorithms appear to be FACTORING quadratically more P efficient than the best classical algorithms known 5

Prelude to Grover's algorithm: two reflections = a rotation

Consider two lines with intersection angle θ :



Net effect: rotation by angle 2θ , *regardless of starting vector*

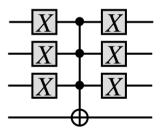
Grover's algorithm: description I

Basic operations used:

$$\begin{array}{c} |x_1\rangle \\ \hline U_f \\ |x_n\rangle \\ |y\rangle \end{array} \begin{array}{c} |x_1\rangle \\ |x_n\rangle \\ |x_n\rangle \\ |y \oplus f(x_1, \dots, x_n)\rangle \end{array}$$

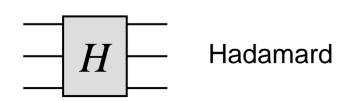
$$U_f |x\rangle| - \rangle = (-1)^{f(x)} |x\rangle| - \rangle$$

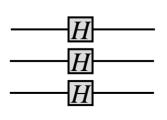
Implementation?



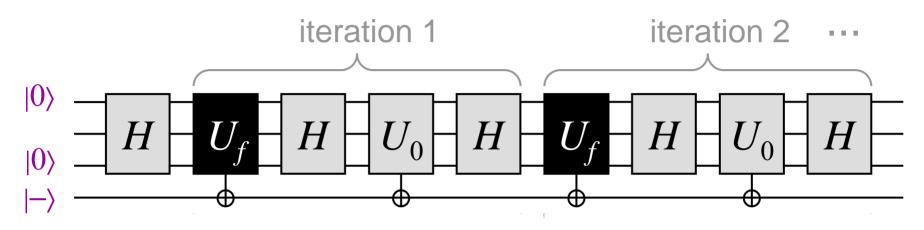
$$\begin{array}{c|c} |x_1\rangle \\ \hline U_0 \\ |x_n\rangle \\ |y\rangle \end{array} \begin{array}{c} |x_1\rangle \\ |x_n\rangle \\ |x_n\rangle \\ |y \oplus [x = 0...0]\rangle \end{array}$$

 $U_0 |x\rangle |-\rangle = (-1)^{[x = 0...0]} |x\rangle |-\rangle$





Grover's algorithm: description II



- 1. construct state $H|0...0\rangle|-\rangle$
- 2. repeat k times:

apply $-HU_0HU_f$ to state

3. measure state, to get $x \in \{0,1\}^n$, and check if f(x)=1

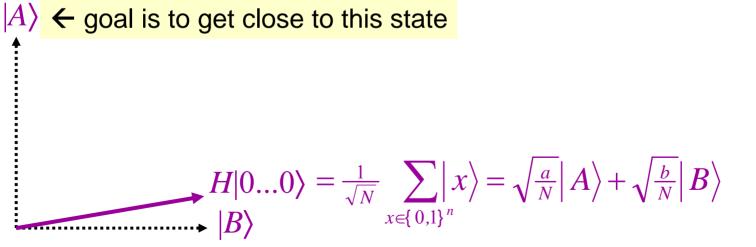
(The setting of *k* will be determined later)

Grover's algorithm: analysis I

Let $A = \{x \in \{0,1\}^n : f(x) = 1\}$ and $B = \{x \in \{0,1\}^n : f(x) = 0\}$ and $N = 2^n$ and a = |A| and b = |B|

Let
$$|A\rangle = \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle$$
 and $|B\rangle = \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$

Consider the space spanned by $|A\rangle$ and $|B\rangle$



Interesting case: *a* << *N*

9

Grover's algorithm: analysis II $|A\rangle$ Algorithm: $(-HU_0HU_f)^kH|0...0\rangle$ $H|0...0\rangle$

Observation:

 U_f is a reflection about $|B\rangle$: $U_f |A\rangle = -|A\rangle$ and $U_f |B\rangle = |B\rangle$ Question: what is $-HU_0H$? U_0 is a reflection about $H|0...0\rangle$

Partial proof:

 $-HU_0HH|0...0\rangle = -HU_0|0...0\rangle = -H(-|0...0\rangle) = H|0...0\rangle$

Grover's algorithm: analysis III

 $\begin{array}{c} A \\ 2\theta \\ 2\theta \\ 2\theta \\ 2\theta \\ 2\theta \\ \theta \\ \theta \\ B \\ \end{array}$

Algorithm: $(-HU_0HU_f)^k H|0...0\rangle$

Since $-HU_0HU_f$ is a composition of two reflections, it is a rotation by 20, where $\sin(\theta) = \sqrt{a/N} \approx \sqrt{a/N}$

When a = 1, we want $(2k+1)(1/\sqrt{N}) \approx \pi/2$, so $k \approx (\pi/4)\sqrt{N}$

More generally, it suffices to set $k \approx (\pi/4)\sqrt{N/a}$

Question: what if *a* **is not known in advance?**

Grover's quantum search algorithm Optimality of Grover's algorithm

Theorem: any quantum search algorithm for $f: \{0,1\}^n \rightarrow \{0,1\}$ must make $\Omega(\sqrt{2^n})$ queries to f (if f is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form

$$|x\rangle \equiv f \equiv (-1)^{f(x)} |x\rangle$$

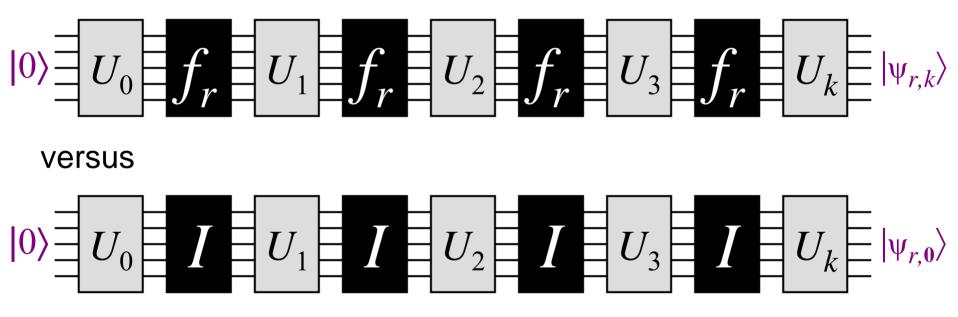
and that a k-query algorithm is of the form

$$0...0\rangle = U_0 = f = U_1 = f = U_2 = f = U_3 = f = U_k$$

where U_0 , U_1 , U_2 , ..., U_k , are arbitrary unitary operations

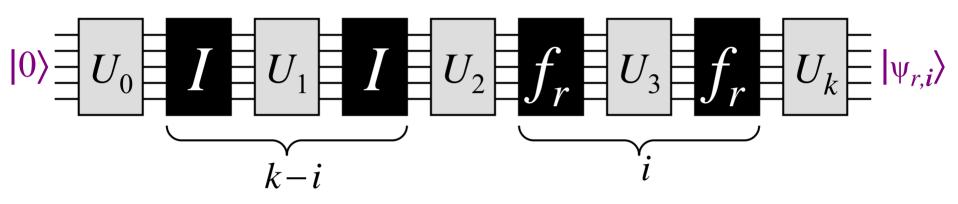
Define $f_r: \{0,1\}^n \rightarrow \{0,1\}$ as $f_r(x) = 1$ iff x = r

Consider



We'll show that, averaging over all $r \in \{0,1\}^n$, $|| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || \le 2k/\sqrt{2^n}$

Consider

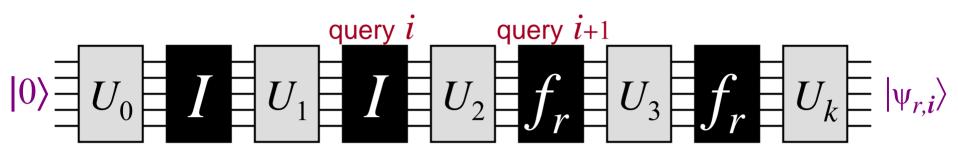


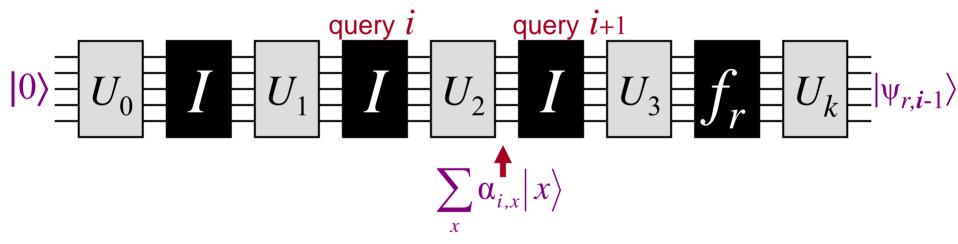
Note that

 $|\psi_{r,k}\rangle - |\psi_{r,0}\rangle = \left(|\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle\right) + \left(|\psi_{r,k-1}\rangle - |\psi_{r,k-2}\rangle\right) + \dots + \left(|\psi_{r,1}\rangle - |\psi_{r,0}\rangle\right)$

which implies

 $|| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || \leq || |\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle || + \dots + || |\psi_{r,1}\rangle - |\psi_{r,0}\rangle ||$





 $\begin{aligned} || |\psi_{r,i}\rangle - |\psi_{r,i-1}\rangle || &= |2\alpha_{i,r}|, \text{ since query only negates } |r\rangle \\ \text{Therefore, } || |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || &\leq \sum_{i=0}^{k-1} 2|\alpha_{i,r}| \end{aligned}$

Now, averaging over all $r \in \{0,1\}^n$,

$$\frac{1}{2^{n}} \sum_{r} \left\| \left| \psi_{r,k} \right\rangle - \left| \psi_{r,0} \right\rangle \right\| \leq \frac{1}{2^{n}} \sum_{r} \left(\sum_{i=0}^{k-1} 2 \left| \alpha_{i,r} \right| \right)$$
$$= \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2 \left(\sum_{r} \left| \alpha_{i,r} \right| \right)$$
$$\leq \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2 \left(\sqrt{2^{n}} \right) \quad \text{(By Cauchy-Schwarz)}$$
$$= \frac{2k}{\sqrt{2^{n}}}$$

Therefore, for some $r \in \{0,1\}^n$, the number of queries k must be $\Omega(\sqrt{2^n})$, in order to distinguish f_r from the all-zero function This completes the proof

