Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681

Lecture 12 (2005)

Richard Cleve DC 3524 <u>cleve@cs.uwaterloo.ca</u>

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- Correction to Lecture 11: $2/3 \rightarrow \sqrt{2/3}$
- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Correction to Lecture 11: $\sqrt{2/3}$ instead of 2/3

General quantum operations (III)

Example 3 (trine state "measurent"):

Let $|\phi_0\rangle = |0\rangle$, $|\phi_1\rangle = -1/2|0\rangle + \sqrt{3/2}|1\rangle$, $|\phi_2\rangle = -1/2|0\rangle - \sqrt{3/2}|1\rangle$ Define $A_0 = \sqrt{2/3}|\phi_0\rangle\langle\phi_0| = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}$ $A_1 = \sqrt{2/3}|\phi_1\rangle\langle\phi_1| = \frac{1}{4} \begin{bmatrix} \sqrt{2/3} & +\sqrt{2}\\ +\sqrt{2} & \sqrt{6} \end{bmatrix}$ $A_2 = \sqrt{2/3}|\phi_2\rangle\langle\phi_2| = \frac{1}{4} \begin{bmatrix} \sqrt{2/3} & -\sqrt{2}\\ -\sqrt{2} & \sqrt{6} \end{bmatrix}$ Then $A_0^{\dagger}A_0 + A_1^{\dagger}A_1 + A_2^{\dagger}A_2 = I$

The probability that state $|\varphi_k\rangle$ results in "outcome" A_k is 2/3, and this can be adapted to actually yield the value of k with this success probability

4

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Distinguishing mixed states (I)

What's the best distinguishing strategy between these two mixed states?

Distinguishing mixed states (II)

We've effectively found an orthonormal basis $|\phi_0\rangle$, $|\phi_1\rangle$ in which both density matrices are diagonal:

$$\rho_{2}' = \begin{bmatrix} \cos^{2}(\pi/8) & 0 \\ 0 & \sin^{2}(\pi/8) \end{bmatrix} \qquad \rho_{1}' = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Rotating $|\phi_0\rangle$, $|\phi_1\rangle$ to $|0\rangle$, $|1\rangle$ the scenario can now be examined using classical probability theory:

Distinguish between two *classical* coins, whose probabilities of "heads" are $\cos^2(\pi/8)$ and $\frac{1}{2}$ respectively (details: exercise)

Question: what do we do if we aren't so lucky to get two density matrices that are simultaneously diagonalizable?

0

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Basic properties of the trace

The *trace* of a square matrix is defined as $TrM = \sum_{k,k}^{d} M_{k,k}$

It is easy to check that Tr(M+N) = TrM + TrN and Tr(MN) = Tr(NM)The second property implies $Tr(M) = Tr(U^{-1}MU) = \sum_{k=1}^{d} \lambda_k$

Calculation maneuvers worth remembering are: $\operatorname{Tr}(|a\rangle\langle b|M) = \langle b|M|a\rangle$ and $\operatorname{Tr}(|a\rangle\langle b|c\rangle\langle d|) = \langle b|c\rangle\langle d|a\rangle$

Also, keep in mind that, in general, $Tr(MN) \neq TrMTrN$

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Recap: general quantum ops

General quantum operations (a.k.a. "completely positive trace preserving maps"):

Let $A_1, A_2, ..., A_m$ be matrices satisfying $\sum_{j=1}^m A_j^{\dagger} A_j = I$

Then the mapping $\rho \mapsto \sum_{j=1}^{m} A_{j} \rho A_{j}^{\dagger}$ is a general quantum op

Example: applying U to ρ yields $U\rho U^{\dagger}$

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Partial trace (I)

Two quantum registers (e.g. two qubits) in states σ and μ (respectively) are *independent* if then the combined system is in state $\rho = \sigma \otimes \mu$

In such circumstances, if the second register (say) is discarded then the state of the first register remains σ

In general, the state of a two-register system may not be of the form $\sigma \otimes \mu$ (it may contain *entanglement* or *correlations*)

We can define the **partial trace**, $Tr_2 \rho$, as the unique linear operator satisfying the identity $Tr_2(\sigma \otimes \mu) = \sigma$ index means 2^{nd} system

For example, it turns out that $\mathsf{Tr}_{2}\left(\left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}\langle 00| + \frac{1}{\sqrt{2}}\langle 11|\right)\right) = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

13

traced out

Partial trace (II)

We've already seen this defined in the case of 2-qubit systems: discarding the second of two qubits

Let $A_0 = I \otimes \langle \mathbf{0} | = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ and $A_1 = I \otimes \langle \mathbf{1} | = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

For the resulting quantum operation, state $\sigma \otimes \mu$ becomes σ

For *d*-dimensional registers, the operators are $A_k = I \otimes \langle \phi_k |$, where $|\phi_0\rangle$, $|\phi_1\rangle$, ..., $|\phi_{d-1}\rangle$ are an orthonormal basis

Partial trace (III)

For 2-qubit systems, the partial trace is explicitly

$$\operatorname{Tr}_{2}\begin{bmatrix}\rho_{00,00} & \rho_{00,01} & \rho_{00,10} & \rho_{00,11}\\ \rho_{01,00} & \rho_{01,01} & \rho_{01,10} & \rho_{01,11}\\ \rho_{10,00} & \rho_{10,01} & \rho_{10,10} & \rho_{10,11}\\ \rho_{11,00} & \rho_{11,01} & \rho_{11,10} & \rho_{11,11}\end{bmatrix} = \begin{bmatrix}\rho_{00,00} + \rho_{01,01} & \rho_{00,10} + \rho_{01,11}\\ \rho_{10,00} + \rho_{11,01} & \rho_{10,10} + \rho_{11,11}\end{bmatrix}$$
and

$$\operatorname{Tr}_{1}\begin{bmatrix} \rho_{00,00} & \rho_{00,01} & \rho_{00,10} & \rho_{00,11} \\ \rho_{01,00} & \rho_{01,01} & \rho_{01,10} & \rho_{01,11} \\ \rho_{10,00} & \rho_{10,01} & \rho_{10,10} & \rho_{10,11} \\ \rho_{11,00} & \rho_{11,01} & \rho_{11,10} & \rho_{11,11} \end{bmatrix} = \begin{bmatrix} \rho_{00,00} + \rho_{10,10} & \rho_{00,01} + \rho_{10,11} \\ \rho_{01,00} + \rho_{11,10} & \rho_{01,01} + \rho_{11,11} \end{bmatrix}$$

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

POVMs (I)

Positive operator valued measurement (POVM):

Let $A_1, A_2, ..., A_m$ be matrices satisfying $\sum_{i=1}^m A_j^{\dagger} A_j = I$

Then the corresponding POVM is a stochastic operation on ρ that, with probability $Tr(A_i \rho A_i^{\dagger})$ produces the outcome:

 $\begin{cases} j \quad \text{(classical information)} \\ \frac{A_j \rho A_j^{\dagger}}{\text{Tr}(A_j \rho A_j^{\dagger})} \quad \text{(the collapsed quantum state)} \end{cases}$

Example 1: $A_i = |\phi_i\rangle\langle\phi_i|$ (orthogonal projectors)

This reduces to our previously defined measurements ...

POVMs (II)

When $A_j = |\phi_j\rangle\langle\phi_j|$ are orthogonal projectors and $\rho = |\psi\rangle\langle\psi|$, $\operatorname{Tr}(A_j\rho A_j^{\dagger}) = \operatorname{Tr}|\phi_j\rangle\langle\phi_j|\psi\rangle\langle\psi|\phi_j\rangle\langle\phi_j|$ $= \langle\phi_j|\psi\rangle\langle\psi|\phi_j\rangle\langle\phi_j|\phi_j\rangle$ $= |\langle\phi_j|\psi\rangle|^2$

Moreover,
$$\frac{A_{j}\rho A_{j}^{\dagger}}{\operatorname{Tr}(A_{j}\rho A_{j}^{\dagger})} = \frac{|\varphi_{j}\rangle\langle\varphi_{j}|\psi\rangle\langle\psi|\varphi_{j}\rangle\langle\varphi_{j}|}{|\langle\varphi_{j}|\psi\rangle|^{2}} = |\varphi_{j}\rangle\langle\varphi_{j}|$$

POVMs (III)

Example 3 (trine state "measurent"):

Let $|\phi_0\rangle = |0\rangle$, $|\phi_1\rangle = -1/2|0\rangle + \sqrt{3/2}|1\rangle$, $|\phi_2\rangle = -1/2|0\rangle - \sqrt{3/2}|1\rangle$ Define $A_0 = \sqrt{2/3}|\phi_0\rangle\langle\phi_0| = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}$ $A_1 = \sqrt{2/3}|\phi_1\rangle\langle\phi_1| = \frac{1}{4} \begin{bmatrix} \sqrt{2/3} & +\sqrt{2}\\ +\sqrt{2} & \sqrt{6} \end{bmatrix}$ $A_2 = \sqrt{2/3}|\phi_2\rangle\langle\phi_2| = \frac{1}{4} \begin{bmatrix} \sqrt{2/3} & -\sqrt{2}\\ -\sqrt{2} & \sqrt{6} \end{bmatrix}$ Then $A_0^{\dagger}A_0 + A_1^{\dagger}A_1 + A_2^{\dagger}A_2 = I$

If the input itself is an unknown trine state, $|\phi_k\rangle\langle\phi_k|$, then the probability that classical outcome is k is 2/3 = 0.6666...

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Simulations among operations (I)

Fact 1: any *general quantum operation* can be simulated by applying a unitary operation on a larger quantum system:

Simulations among operations (II)

Fact 2: any **POVM** can also be simulated by applying a unitary operation on a larger quantum system and then measuring:

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Separable states

A bipartite (i.e. two register) state ρ is a:

• product state if $\rho = \sigma \otimes \xi$

• separable state if
$$\rho = \sum_{j=1}^{m} p_j \sigma_j \otimes \xi_j$$
 $(p_1, ..., p_m \ge 0)$
(i.e. a probabilistic mixture of product states)

Question: which of the following states are separable? $\rho_1 = \frac{1}{2} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \left(\left\langle 00 \right| + \left\langle 11 \right| \right)$

 $\rho_2 = \frac{1}{2} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \left(\left\langle 00 \right| + \left\langle 11 \right| \right) + \frac{1}{2} \left(\left| 00 \right\rangle - \left| 11 \right\rangle \right) \left(\left\langle 00 \right| - \left\langle 11 \right| \right) \right)$

- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution

Continuous-time evolution

Although we've expressed quantum operations in discrete terms, in real physical systems, the evolution is continuous

