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« Correction to Lecture 11: 2/3 > 2/3




Correction to Lecture 11: V2/3 instead of 2/3

Example 3 (trine state “measurent”):

Let [p,) = [0), |@,) = -1/2|0) +3/2[1), |<|>2>=—1/2|0> """"""" V3/2|1>
: 211 0

Define A,=2/3|p, )X, :\E{O 0}

AI:V2/3I<PI><<P1I=L{% +ﬂ Az:@B'(sz(Pz':ﬂ% ﬂ

Thend, A, + A A + A, A, =1

The probability that state |¢,) results in “outcome” 4, is 2/3,

and this can be adapted to actually yield the value of k with
this success probability 4



« Distinguishing mixed states




Distinguishing mixed states (I)

What's the best distinguishing strategy between these two
mixed states?

{|0> with prob. % {|O> with prob. %
0) + 1) with prob. %2 1) with prob. Y2

1374 172 1110
P12 174 | 77200 1

p, also arises from this

orthogonal mixture: ... as does p, from:

{|<|>O> with prob. cos%(n/8) {|¢O> with prob. ¥
[b,) with prob. sin?(w/8) [¢,) with prob. %2
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Distinguishing mixed states (ll)

We've effectively found an orthonormal basis |¢,), |¢,) In
which both density matrices are diagonal:

.| cos*(n/8) 0 y :1{1 0} b)) +)
= 0 sin®(m/8) © 200 1
Do)

Rotating |¢,), |¢,) to |0), |1) the scenario can now
be examined using classical probability theory:

Distinguish between two classical coins, whose probabilities
of “heads” are cos?(n/8) and Y2 respectively (details: exercise)

Question: what do we do if we aren’t so lucky to get two
density matrices that are simultaneously diagonalizable?




« Basic properties of the trace




Basic properties of the trace

The trace of a square matrix is defined as TrM = ZMM

It is easy to check that =

Tr(M +N)=TtM +TrN and Tr(M N)=Tr(NM)
The second property implies Tr(M) ( ‘IMU) Zdlkk

k=1

Calculation maneuvers worth remembering are:

Tr(|a)(b|ar )= (b|m]a) and Tr{|a)(ble)(a|)=(b|c)(d|a)

Also, keep in mind that, in general, Tr(MN) = ITrMTrN



« Recap: general quantum operations




Recap: general guantum ops

General quantum operations (a.k.a. “completely positive
trace preserving maps”):

LetA,, A,, ..., A be matrices satisfying Y Al A4, =1
j=1
: C T i
Then the mapping P— ZAJ-PAJ- IS a general quantum op

J=1

Example: applying U to p yields UpUT
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 Partial trace




Partial trace (I) @ @

Two quantum registers (e.g. two qubits) in states o and u
(respectively) are independent if then the combined system

ISinstate p = oc®u
In such circumstances, If the second register (say) is discarded
then the state of the first register remains o

In general, the state of a two-register system may not be of the
form o ®u (it may contain entanglement or correlations)

We can define the partial trace, Tr, p, as the unique linear
operator satisfying the identity Tr,(c ®u) = o

Index means
: 2nd system
For example, it turns out that N— —— y

1 o traced out
Tr((4100)+ 2 1)l (ol + a3 = 3y
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Partial trace (ll)

We've already seen this defined in the case of 2-qubit systems:
discarding the second of two qubits

1 0 0 O

LetAO:[®(O|={O S

} and A1:1®(1|:{0 L0 O}

O 0 01

For the resulting quantum operation, state o ® becomes o

For d-dimensional registers, the operators are A, = I®(¢,],
where |0,), |0,), ..., |0, ,) are an orthonormal basis
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Partial trace (lll)

For 2-qubit systems, the partial trace is explicitly

Poooo  Pooot  Pooio  Poort

Poroo  Poror  Porio Porit | | Poooo T Poror  Pooto T Por
Prooo  Proor Proto  Proi Prooo T Pior Projo T P
| Prioo Pror Piio P |

Tr2

and

Poooo  Pooor  Pooto  Poort

Poroo  Potot Porio Portr | | Poooo T Proto  Pooor T Proti
Pro00  Proor  Proto  Proat Poroo T Piio Porot T Pii
| Prioo Prot Prgo P

Tr

15






POVMs (1)

Positive operator valued measurement (POVM):

LetA,, A, ..., A, be matrices satisfying >4, 4, =1
j=1

Then the corresponding POVM is a stochastic operation on p
that, with probability Tr (A]. D A]*) produces the outcome:

[ j (classical information)

;
| Apd, (the collapsed quantum state)
LT (Ajp A; )

Example 1: 4;= |(|)j><(|)j| (orthogonal projectors)

This reduces to our previously defined measurements ...



POVMs (1)

When 4;=|9,)(9,| are orthogonal projectors and p = [y)(y/|,

Te(4,p A7) = TH,)(b, W16,
= (O WXW[0,X0/(0))
= [Kg;lw)l

Moreover. _ P4, e Yo v )y <”f><§”f‘_‘¢.><¢.‘
‘ J J
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POVMs (Ill) -

Example 3 (trine state “measurent”):

Let |p,) = [0), |@,) = —1/2]0) +V3/2|1), |p,) = —1/2|O> \3/2|1)
: 211 0
Define A,=2/3|p, ), :\E{o 0}

AI:V2/3|<PI><<PI|=H% +ﬂ A2:V2/3|(P2><(P2|:ﬂ% ﬁ

Then A, A, + A A, + A, A, =1

If the input itself is an unknown trine state, |p,){®,/], then the
probability that classical outcome is k is 2/3 = 0.6666...
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e Simulations among operations




Simulations among operations (l)

Fact 1: any general qguantum operation can be simulated
by applying a unitary operation on a larger guantum system:

input 0 { ] — [ O output

0) —
0) —
0) —

~ discard

Example: decoherence

PN {a 02}
1 0 1A
— ;

0)




Simulations among operations (Il

Fact 2: any POVM can also be simulated by applying a unitary
operation on a larger guantum system and then measuring:

—~U

\“/\ /\“/\/

~ O quantum output

. ] classical output
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e Separable states




Separable states

A bipartite (i.e. two register) state pis a:

e product state if p = c®¢&

=1 : . :
/ (l.e. a probabilistic mixture

of product states)

Question: which of the following states are separable?
p =4 (00)+ 1)) 00} (11)
p = £(00)+/11)((00] (1)) £ 00)11})((o0| ~{11)
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e Continuous-time evolution




Continuous-time evolution

Although we’ve expressed gquantum operations in discrete
terms, in real physical systems, the evolution is continuous

Lesesdecesan,,

Let H be any Hermitian matrix and # € R i)

Then €™ is unitary — why?

H: UTDU’ Whel‘e D — ................. >

Therefore €=U e® U= U* U (unitary)

7t
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