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General quantum operations (III)General quantum operations (III)
Example 3 (trine state “measurent”):

Let |ϕ0〉 = |0〉,  |ϕ1〉 = −1/2|0〉 + √3/2|1〉,  |ϕ2〉 = −1/2|0〉 − √3/2|1〉

Then IAAAAAA =++ 221100
ttt

The probability that state |ϕk〉 results in “outcome” Ak is 2/3, 
and this can be adapted to actually yield the value of k with 
this success probability
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Correction to Lecture 11: √2/3 instead of 2/3
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Distinguishing mixed states (I)Distinguishing mixed states (I)
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|0〉 with prob. ½
|0〉 + |1〉 with prob. ½

|0〉 with prob. ½
|1〉 with prob. ½
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|φ0〉 with prob. cos2(π/8)
|φ1〉 with prob. sin2(π/8)

|0〉

|+〉

|φ0〉

|φ1〉

|φ0〉 with prob. ½
|φ1〉 with prob. ½

What’s the best distinguishing strategy between these two 
mixed states? 

ρ1 also arises from this 
orthogonal mixture: … as does ρ2 from:
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Distinguishing mixed states (II)Distinguishing mixed states (II)
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We’ve effectively found an orthonormal basis |φ0〉, |φ1〉 in 
which both density matrices are diagonal:

Rotating |φ0〉, |φ1〉 to |0〉, |1〉 the scenario can now 
be examined using classical probability theory:

Question: what do we do if we aren’t so lucky to get two 
density matrices that are simultaneously diagonalizable?

Distinguish between two classical coins, whose probabilities 
of “heads” are cos2(π/8) and ½ respectively (details: exercise)

|1〉
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Basic properties of the traceBasic properties of the trace
∑
=

=
d

k
k,kMM

1
Tr

( ) NMNM TrTrTr +=+

( ) NMNM TrTrTr ≠

( ) ( )MNNM TrTr =

( ) adcbdcba =Tr

( ) ( ) ∑
=

− ==
d

k
kMUUM

1

1 λTrTr

The trace of a square matrix is defined as

It is easy to check that 

The second property implies 

and

Calculation maneuvers worth remembering are:

( ) aMMa bb =Tr and

Also, keep in mind that, in general, 
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Recap: general quantum opsRecap: general quantum ops

Example: applying  U to  ρ yields UρU†

General quantum operations (a.k.a. “completely positive 
trace preserving maps” ): 

Let A1, A2 , …, Am be matrices satisfying IAA j

m

j
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=1

t

Then the mapping ∑
=

m

j
jj AA

1
ρρ ta is a general quantum op
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Partial trace (I)Partial trace (I)

In such circumstances, if the second register (say) is discarded
then the state of the first register remains σ
In general, the state of a two-register system may not be of the 
form σ ⊗μ (it may contain entanglement or correlations)

Two quantum registers (e.g. two qubits) in states σ and μ
(respectively) are independent if then the combined system 
is in state ρ = σ ⊗μ

We can define the partial trace, Tr2 ρ , as the unique linear 
operator satisfying the identity Tr2(σ ⊗μ) = σ
For example, it turns out that
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Partial trace (II)Partial trace (II)
We’ve already seen this defined in the case of 2-qubit systems: 
discarding the second of two qubits

Let A0 = I⊗〈0| and A1 = I⊗〈1|⎥
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For the resulting quantum operation, state σ ⊗μ becomes σ

For d-dimensional registers, the operators are Ak = I⊗〈φk| , 
where |φ0〉, |φ1〉, …, |φd−1〉 are an orthonormal basis
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Partial trace (III)Partial trace (III)
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For 2-qubit systems, the partial trace is explicitly
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POVMsPOVMs (I)(I)
Positive operator valued measurement (POVM):

Let A1, A2 , …, Am be matrices satisfying IAA j

m

j
j =∑

=1

t

Then the corresponding POVM is a stochastic operation on ρ
that, with probability                       produces the outcome:

j (classical information)

( )tjj AρATr

( )t
t

jj

jj

AρA
AρA

Tr
(the collapsed quantum state)

Example 1: Aj = |φj〉〈φj| (orthogonal projectors)

This reduces to our previously defined measurements …
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POVMsPOVMs (II)(II)

Moreover, 

( )tjj AρATr

( ) jj

j

jjjj

jj

jj φφ
ψφ

φφψψφφ
AρA

AρA
== 2Tr t

t

When Aj = |φj〉〈φj| are orthogonal projectors and ρ = |ψ〉〈ψ|,

= Tr|φj〉〈φj|ψ〉〈ψ|φj〉〈φj|
= 〈φj|ψ〉〈ψ|φj〉〈φj|φj〉
= |〈φj|ψ〉|2
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POVMsPOVMs (III)(III)
Example 3 (trine state “measurent”):

Let |ϕ0〉 = |0〉,  |ϕ1〉 = −1/2|0〉 + √3/2|1〉,  |ϕ2〉 = −1/2|0〉 − √3/2|1〉

Then IAAAAAA =++ 221100
ttt

If the input itself is an unknown trine state, |ϕk〉〈ϕk|, then the 
probability that classical outcome is k is 2/3 = 0.6666…
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Simulations among operations (I)Simulations among operations (I)
Fact 1: any general quantum operation can be simulated 
by applying a unitary operation on a larger quantum system:

U|0〉
|0〉
|0〉

ρ σ

Example: decoherence
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output
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input
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Simulations among operations (II)Simulations among operations (II)
Fact 2: any POVM can also be simulated by applying a unitary 
operation on a larger quantum system and then measuring:

U|0〉
|0〉
|0〉

ρ σ quantum outputinput

classical outputj



23

• Correction to Lecture 11:  2/3 √2/3
• Distinguishing mixed states
• Basic properties of the trace
• Recap: general quantum operations
• Partial trace
• POVMs
• Simulations among operations

• Separable states
• Continuous-time evolution



24

Separable statesSeparable states
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• product state if  ρ = σ⊗ξ

• separable state if

A bipartite (i.e. two register) state ρ is a:

Question: which of the following states are separable?
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(i.e. a probabilistic mixture 
of product states)

( p1 ,…, pm ≥ 0)
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1 ++=ρ
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ContinuousContinuous--time evolutiontime evolution
Although we’ve expressed quantum operations in discrete 
terms, in real physical systems, the evolution is continuous
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Then eiHt is unitary – why?

H = U†DU, where 
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Let H be any Hermitian matrix and t ∈ R

Therefore eiHt = U† eiDt U = (unitary)
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