Introduction to Quantum Information Processing CS 467 I CS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 12 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$
- Distinguishing mixed states
- Basic properties of the trace
- Recap: general quantum operations
- Partial trace
- POVMs
- Simulations among operations
- Separable states
- Continuous-time evolution
- Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{ } 2 / 3$ Diatinautiching mivad atatec Basic properties of the trace Recap: general quantum operations Dartial trace POVMs

Simulations among operations
Sanamble atatec
Continuous-time evolution

Correction to Lecture 11: $\sqrt{2} / 3$ instead of $2 / 3$
 General quantum operations (III)

Example 3 (trine state "measurent"):

Let $\left|\varphi_{0}\right\rangle=|0\rangle, \quad\left|\varphi_{1}\right\rangle=-1 / 2|0\rangle+\sqrt{ } 3 / 2|1\rangle, \quad\left|\varphi_{2}\right\rangle=-1 / 2|0\rangle-\sqrt{3} / 2|1\rangle$
Define $A_{0}=\sqrt{ } 2 / 3\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|=\sqrt{\frac{2}{3}}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
$A_{1}=\sqrt{ } 2 / 3\left|\varphi_{1}\right\rangle\left\langle\varphi_{1}\right|=\frac{1}{4}\left[\begin{array}{rr}\sqrt{2 / 3} & +\sqrt{2} \\ +\sqrt{2} & \sqrt{6}\end{array}\right] \quad A_{2}=\sqrt{ } 2 / 3\left|\varphi_{2}\right\rangle\left\langle\varphi_{2}\right|=\frac{1}{4}\left[\begin{array}{rr}\sqrt{2 / 3} & -\sqrt{2} \\ -\sqrt{2} & \sqrt{6}\end{array}\right]$
Then $A_{0}^{\dagger} A_{0}+A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}=I$
The probability that state $\left|\varphi_{k}\right\rangle$ results in "outcome" A_{k} is $2 / 3$, and this can be adapted to actually yield the value of k with this success probability

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$

- Distinguishing mixed states

Basic properties of the trace
Recan cieneral cuiuntum onera ions
Partial trace
POVMs
Cimulation among operations
Separable states
Continuous-time evolution

Distinguishing mixed states (I)

What's the best distinguishing strategy between these two mixed states?
$\begin{cases}|0\rangle & \text { with prob. } 1 / 2 \\ |0\rangle+|1\rangle & \text { with prob. } 1 / 2\end{cases}$

$$
\rho_{1}=\left[\begin{array}{ll}
3 / 4 & 1 / 2 \\
1 / 2 & 1 / 4
\end{array}\right]
$$

ρ_{1} also arises from this orthogonal mixture:

$\left\{\begin{array}{l}|0\rangle \text { with prob. } 1 / 22 \\ |1\rangle \text { with prob. } 1 / 2\end{array}\right.$

$$
\rho_{2}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

... as does ρ_{2} from:
$\left\{\begin{array}{l}\left|\phi_{0}\right\rangle \text { with prob. } 1 / 2 \\ \left|\phi_{1}\right\rangle \text { with prob. } 1 / 2\end{array}\right.$

Distinguishing mixed states (II)

We've effectively found an orthonormal basis $\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle$ in which both density matrices are diagonal:
$\rho_{2}^{\prime}=\left[\begin{array}{cc}\cos ^{2}(\pi / 8) & 0 \\ 0 & \sin ^{2}(\pi / 8)\end{array}\right] \quad \rho_{1}^{\prime}=\frac{1}{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Rotating $\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle$ to $|0\rangle,|1\rangle$ the scenario can now be examined using classical probability theory:

Distinguish between two classical coins, whose probabilities of "heads" are $\cos ^{2}(\pi / 8)$ and $1 / 2$ respectively (details: exercise)

Question: what do we do if we aren't so lucky to get two density matrices that are simultaneously diagonalizable?

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$

Pistingurshing mixed states

Basic properties of the trace
Recan general ouantum onera ions
Partial trace
POVMs
Simulation among operations
Separable states
Continuous-time evolution

Basic properties of the trace

The trace of a square matrix is defined as $\operatorname{Tr} M=\sum_{k=1}^{d} M_{k, k}$ It is easy to check that
$\operatorname{Tr}(M+N)=\operatorname{Tr} M+\operatorname{Tr} N$ and $\operatorname{Tr}(M N)=\operatorname{Tr}(N M)$
The second property implies $\operatorname{Tr}(M)=\operatorname{Tr}\left(U^{-1} M U\right)=\sum_{k=1}^{d} \lambda_{k}$
Calculation maneuvers worth remembering are:
$\operatorname{Tr}(|a\rangle\langle b| M)=\langle b| M|a\rangle$ and $\operatorname{Tr}(|a\rangle\langle b \mid c\rangle\langle d|)=\langle b \mid c\rangle\langle d \mid a\rangle$
Also, keep in mind that, in general, $\operatorname{Tr}(M N) \neq \operatorname{Tr} M \operatorname{Tr} N$

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$

Bistingutshing mived states

Basic properties of the trace

- Recap: general quantum operations

Partial trace

DOMMs
Simulations among operations
Separable states

Recap: general quantum ops

General quantum operations (a.k.a. "completely positive trace preserving maps"):
Let $A_{1}, A_{2}, \ldots, A_{m}$ be matrices satisfying $\sum_{j=1}^{m} A_{j}^{\dagger} A_{j}=I$
Then the mapping $\rho \mapsto \sum_{j=1}^{m} A_{j} \rho A_{j}^{\dagger} \quad$ is a general quantum op

Example: applying U to ρ yields $U \rho U^{\dagger}$

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$

Bistinguishing mixed states
Dasic properties of the trace
menamigenemal eturntath omem tilons

- Partial trace
moutw
Simulations among operations
Separable states
Continuous-time evolution

Partial trace (I) \square

Two quantum registers (e.g. two qubits) in states σ and μ (respectively) are independent if then the combined system is in state $\rho=\sigma \otimes \mu$
In such circumstances, if the second register (say) is discarded then the state of the first register remains σ
In general, the state of a two-register system may not be of the form $\sigma \otimes \mu$ (it may contain entanglement or correlations)

We can define the partial trace, $\operatorname{Tr}_{2} \rho$, as the unique linear operator satisfying the identity $\operatorname{Tr}_{2}(\sigma \otimes \mu)=\sigma$
For example, it turns out that
$\operatorname{Tr}_{2}\left(\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}\langle 00|+\frac{1}{\sqrt{2}}\langle 11|\right)\right)=\frac{1}{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Partial trace (II)

We've already seen this defined in the case of 2-qubit systems: discarding the second of two qubits

Let $A_{0}=I \otimes\langle 0|=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ and $A_{1}=I \otimes\langle 1|=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
For the resulting quantum operation, state $\sigma \otimes \mu$ becomes σ
For d-dimensional registers, the operators are $A_{k}=I \otimes\left\langle\phi_{k}\right|$, where $\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{d-1}\right\rangle$ are an orthonormal basis

Partial trace (III)

For 2-qubit systems, the partial trace is explicitly

> and
$\operatorname{Tr}_{1}\left[\begin{array}{cccc}\rho_{00,00} & \rho_{00,01} & \rho_{00,10} & \rho_{00,11} \\ \rho_{01,00} & \rho_{01,01} & \rho_{01,10} & \rho_{01,11} \\ \rho_{10,00} & \rho_{10,01} & \rho_{10,10} & \rho_{10,11} \\ \rho_{11,00} & \rho_{11,01} & \rho_{11,10} & \rho_{11,11}\end{array}\right]=\left[\begin{array}{ll}\rho_{00,00}+\rho_{10,10} & \rho_{00,01}+\rho_{10,11} \\ \rho_{01,00}+\rho_{11,10} & \rho_{01,01}+\rho_{11,11}\end{array}\right]$

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$
Distinculichinct mived atatec
Basic properties of the trace
Recap: general quantum operations
Dartial trace
POVMs
Simulations among operations
Senarable states
Continuous-time evolution

POVMs (I)

Positive operator valued measurement (POVM):
Let $A_{1}, A_{2}, \ldots, A_{m}$ be matrices satisfying $\sum_{j=1}^{m} A_{j}^{\dagger} A_{j}=I$
Then the corresponding POVM is a stochastic operation on ρ that, with probability $\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)$ produces the outcome:

$$
\left\{\begin{array}{l}
j \text { (classical } \\
\frac{A_{j} \rho A_{j}^{\dagger}}{\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)}
\end{array}\right.
$$

(the collapsed quantum state)

Example 1: $A_{j}=\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$ (orthogonal projectors)
This reduces to our previously defined measurements ...

POVMs (II)

When $A_{j}=\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$ are orthogonal projectors and $\rho=|\psi\rangle\langle\psi|$,

$$
\begin{aligned}
\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right) & =\operatorname{Tr}\left|\phi_{j}\right\rangle\left\langle\phi_{j} \mid \psi\right\rangle\left\langle\psi \mid \phi_{j}\right\rangle\left\langle\phi_{j}\right| \\
& =\left\langle\phi_{j} \mid \psi\right\rangle\left\langle\psi \mid \phi_{j}\right\rangle\left\langle\phi_{j} \mid \phi_{j}\right\rangle \\
& =\left|\left\langle\phi_{j} \mid \psi\right\rangle\right|^{2}
\end{aligned}
$$

Moreover, $\frac{A_{j} \rho A_{j}^{\dagger}}{\operatorname{Tr}\left(A_{j} \rho A_{j}^{\dagger}\right)}=\frac{\left|\varphi_{j}\right\rangle\left\langle\varphi_{j} \mid \psi\right\rangle\left\langle\psi \mid \varphi_{j}\right\rangle\left\langle\varphi_{j}\right|}{\left|\left\langle\varphi_{j} \mid \psi\right\rangle\right|^{2}}=\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|$

POVMs (III)

Example 3 (trine state "measurent"):

Let $\left|\varphi_{0}\right\rangle=|0\rangle, \quad\left|\varphi_{1}\right\rangle=-1 / 2|0\rangle+\sqrt{3} / 2|1\rangle, \quad\left|\varphi_{2}\right\rangle=-1 / 2|0\rangle-\sqrt{3} / 2|1\rangle$
Define $A_{0}=\sqrt{ } 2 / 3\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|=\sqrt{\frac{2}{3}}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
$A_{1}=\sqrt{ } 2 / 3\left|\varphi_{1}\right\rangle\left\langle\varphi_{1}\right|=\frac{1}{4}\left[\begin{array}{rr}\sqrt{2 / 3} & +\sqrt{2} \\ +\sqrt{2} & \sqrt{6}\end{array}\right] \quad A_{2}=\sqrt{ } 2 / 3\left|\varphi_{2}\right\rangle\left\langle\varphi_{2}\right|=\frac{1}{4}\left[\begin{array}{cc}\sqrt{2 / 3} & -\sqrt{2} \\ -\sqrt{2} & \sqrt{6}\end{array}\right]$
Then $A_{0}{ }^{\dagger} A_{0}+A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}=I$
If the input itself is an unknown trine state, $\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|$, then the probability that classical outcome is k is $2 / 3=0.6666 \ldots$

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$ Pistinguishing mixed states Dasic properties of the trace Decapigeneval gutantum peemitions Partial trace
 mownt

- Simulations among operations

Sonarable statnc
Continuous-time evolution

Simulations among operations (I)

Fact 1: any general quantum operation can be simulated by applying a unitary operation on a larger quantum system:

Example: decoherence

Simulations among operations (II)

Fact 2: any POVM can also be simulated by applying a unitary operation on a larger quantum system and then measuring:

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$
 Bistinguishing mixed states
 Dasic properties of the trace
 Decapigeneval gutantum peemitions
 Partial trace
 POUty
 Simulations among operations

- Separable states

Continuous-time evolution

Separable states

A bipartite (i.e. two register) state ρ is a:

- product state if $\rho=\sigma \otimes \xi$
- separable state if $\rho=\sum_{j=1}^{m} p_{j} \sigma_{j} \otimes \xi_{j} \quad\left(p_{1}, \ldots, p_{m} \geq 0\right)$
(i.e. a probabilistic mixture of product states)

Question: which of the following states are separable?

$$
\begin{aligned}
& \rho_{1}=\frac{1}{2}(|00\rangle+|11\rangle)(\langle 00|+\langle 11|) \\
& \rho_{2}=\frac{1}{2}(|00\rangle+|11\rangle)(\langle 00|+\langle 11|)+\frac{1}{2}(|00\rangle-|11\rangle)(\langle 00|-\langle 11|)
\end{aligned}
$$

Correction to Lecture 11: $2 / 3 \rightarrow \sqrt{2 / 3}$

Pistinguishing mixed states

Dasic propenties of the trace
menap genemal gutantum ppertions
Partial trace
POUtw
Simulations among operations
Genotatule states

- Continuous-time evolution

Continuous-time evolution

Although we've expressed quantum operations in discrete terms, in real physical systems, the evolution is continuous
Let H be any Hermitian matrix and $t \in \mathbf{R}$
Then $e^{i H t}$ is unitary - why?
$H=U^{\dagger} D U$, where $D=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{d}\end{array}\right]$
|1)

Therefore $e^{i H t}=U^{\dagger} e^{i D t} U=U^{\dagger}\left[\begin{array}{lll}e^{i \lambda_{1} t} & & \\ & \ddots & \\ & & e^{i \lambda_{d} t}\end{array}\right] U \quad$ (unitary)

