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Recap: density matrices (I)Recap: density matrices (I)
The density matrix of the mixed state
((|ψ1〉, p1), (|ψ2〉, p2), …,(|ψd〉, pd)) is: ∑
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=
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kkk ψψpρ
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1. & 2. |0〉 + |1〉 and −|0〉 − |1〉 both have

3.   |0〉 with prob. ½
|1〉 with prob. ½

4.   |0〉 + |1〉 with prob. ½
|0〉 − |1〉 with prob. ½

6.   |0〉 with prob. ¼
|1〉 with prob. ¼
|0〉 + |1〉 with prob. ¼
|0〉 − |1〉 with prob. ¼

Examples (from previous lecture):
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Recap: density matrices (II)Recap: density matrices (II)

5.   |0〉 with prob. ½
|0〉 + |1〉 with prob. ½

7. The first qubit of |01〉 − |10〉

Examples (continued):
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Recap: density matrices (III)Recap: density matrices (III)

• Applying  U to  ρ yields UρU†

• Measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,
yields: k th outcome with probability 〈ϕk|ρ|ϕk〉
—and causes the state to collapse to |ϕk〉〈ϕk|

Quantum operations in terms of density matrices:

Since these are expressible in terms of density matrices alone 
(independent of any specific probabilistic mixtures), states with 
identical density matrices are operationally indistinguishable
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Characterizing density matricesCharacterizing density matrices
Three properties of ρ :
• Trρ = 1 (TrM = M11 + M22 + ... + Mdd )
• ρ =ρ† (i.e. ρ is Hermitian)
• 〈ϕ|ρ|ϕ〉 ≥ 0, for all states |ϕ〉
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Moreover, for any matrix ρ satisfying the above properties, 
there exists a probabilistic mixture whose density matrix is ρ

Exercise: show this
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Normal matricesNormal matrices
Definition: A matrix M is normal if M†M = MM†

Theorem: M is normal iff there exists a unitary U such that 
M = U†DU, where D is diagonal (i.e. unitarily diagonalizable)

Examples of abnormal matrices: 
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Unitary and Unitary and HermitianHermitian matricesmatrices
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1 with respect to some 
orthonormal basis

Normal:

Unitary: M†M = I which implies |λk |2 = 1, for all k

Hermitian: M = M† which implies λk ∈ R, for all k

Question: which matrices are both unitary and Hermitian?

Answer: reflections (λk ∈ {+1,−1}, for all k)
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Positive Positive semidefinitesemidefinite
Positive semidefinite: Hermitian and λk ≥ 0, for all k

Theorem: M is positive semidefinite iff M is Hermitian and, 
for all |ϕ〉, 〈ϕ|M |ϕ〉 ≥ 0

(Positive definite: λk > 0, for all k)
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Projectors and density matricesProjectors and density matrices
Projector: Hermitian and M2 = M, which implies that M is 
positive semidefinite and λk ∈ {0,1}, for all k

Density matrix: positive semidefinite and Tr M =1, so 1
1

=∑
=

d

k
kλ

Question: which matrices are both projectors and density 
matrices?

Answer: rank-1 projectors (λk = 1 if k = j; otherwise λk = 0)
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Taxonomy of normal matricesTaxonomy of normal matrices
normal

unitary Hermitian

reflection
positive 

semidefinite

projector density
matrix

rank one
projector
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Bloch sphere for Bloch sphere for qubitsqubits (I)(I)
Consider the set of all 2x2 density matrices ρ

Note that the coefficient of  I is ½, since X, Y, Y are traceless

They have a nice representation in terms of the Pauli matrices:
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Note that these matrices—combined with I—form a basis for 
the vector space of all 2x2 matrices

We will express density matrices  ρ in this basis
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Bloch sphere for Bloch sphere for qubitsqubits (II)(II)

2
ZcYcXcI

ρ zyx +++
=We will express

First consider the case of pure states |ψ〉〈ψ|, where, without 
loss of generality,  |ψ〉 = cos(θ)|0〉 + e2iφsin(θ)|1〉 (θ, φ ∈ R)
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Therefore cz = cos(2θ), cx = cos(2φ)sin(2θ), cy = sin(2φ)sin(2θ)

These are polar coordinates of a unit vector (cx , cy , cz) ∈ R3
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Bloch sphere for Bloch sphere for qubitsqubits (III)(III)

|+〉

|0〉

|1〉

|–〉

|+i〉

–|i〉
|+i〉 = |0〉 + i|1〉
|–i〉 = |0〉 – i|1〉

|–〉 = |0〉 – |1〉
|+〉 = |0〉 +|1〉

Pure states are on the surface, and mixed states are inside 
(being weighted averages of pure states)

Note that orthogonal corresponds to antipodal here
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General quantum operations (I)General quantum operations (I)

Example 1 (unitary op): applying  U to  ρ yields UρU†

General quantum operations (a.k.a. “completely positive 
trace preserving maps”, “admissible operations” ): 

Let A1, A2 , …, Am be matrices satisfying IAA j
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General quantum operations (II)General quantum operations (II)
Example 2 (decoherence): let A0 = |0〉〈0| and A1 = |1〉〈1|

This quantum op maps ρ to |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|

Corresponds to measuring ρ “without looking at the outcome”
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aFor |ψ〉 = α|0〉 + β|1〉,

After looking at the outcome, ρ becomes   |0〉〈0| with prob. |α|2
|1〉〈1| with prob. |β|2
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General quantum operations (III)General quantum operations (III)
Example 3 (trine state “measurent”):
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A1 = 2/3|ϕ1〉〈ϕ1| A2 = 2/3|ϕ2〉〈ϕ2|

Let |ϕ0〉 = |0〉,  |ϕ1〉 = −1/2|0〉 + √3/2|1〉,  |ϕ2〉 = −1/2|0〉 − √3/2|1〉
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Then IAAAAAA ttt =++ 221100

The probability that state |ϕk〉 results in “outcome” Ak is 4/9, 
and this can be adapted to actually yield the value of k with 
this success probability
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General quantum operations (IV)General quantum operations (IV)
Example 4 (discarding the second of two qubits):

Let A0 = I⊗〈0| and A1 = I⊗〈1|⎥
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Note 1: it’s the same density matrix as for ((½, |0〉), (½, |1〉))
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Note 2: the operation is the partial trace Tr2 ρ
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