#### Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681

#### Lecture 11 (2005)

Richard Cleve DC 3524 <u>cleve@cs.uwaterloo.ca</u>

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

# Contents

- Continuation of density matrix formalism
- Taxonomy of various normal matrices
- Bloch sphere for qubits
- General quantum operations

- Continuation of density matrix formalism
  Taxonomy of various normal matrices
  Bloch sphere for qubits
- General quantum operations

**Recap: density matrices (I)** The *density matrix* of the mixed state (( $|\psi_1\rangle, p_1$ ), ( $|\psi_2\rangle, p_2$ ), ...,( $|\psi_d\rangle, p_d$ )) is:  $\rho = \sum_{k=1}^{n} p_k |\psi_k\rangle \langle \psi_k |$ **Examples (from previous lecture):** 1. & 2.  $|0\rangle + |1\rangle$  and  $-|0\rangle - |1\rangle$  both have  $\rho = \frac{1}{2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$ 3.  $\begin{cases} |0\rangle \text{ with prob. } \frac{1}{2} \\ |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$ 4.  $\begin{cases} |0\rangle + |1\rangle \text{ with prob. } \frac{1}{2} \\ |0\rangle - |1\rangle \text{ with prob. } \frac{1}{2} \\ \dots \\ \end{pmatrix} \rho = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 6.  $\begin{cases} |0\rangle & \text{with prob. } \frac{1}{4} \\ |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle - |1\rangle & \text{with prob. } \frac{1}{4} \end{cases}$ 

4

# **Recap: density matrices (II)**

#### **Examples (continued):**

5. 
$$\begin{cases} |0\rangle & \text{with prob. } \frac{1}{2} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{2} \end{cases}$$
  
has:  $\rho = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 3/4 & 1/2 \\ 1/2 & 1/4 \end{bmatrix}$ 

7. The first qubit of  $|01\rangle - |10\rangle$  ...? (later)

# **Recap: density matrices (III)**

Quantum operations in terms of density matrices:

- Applying U to  $\rho$  yields  $U \rho U^{\dagger}$
- Measuring state  $\rho$  with respect to the basis  $|\phi_1\rangle$ ,  $|\phi_2\rangle$ ,...,  $|\phi_d\rangle$ , yields:  $k^{\text{th}}$  outcome with probability  $\langle \phi_k | \rho | \phi_k \rangle$ —and causes the state to collapse to  $|\phi_k\rangle\langle\phi_k|$

Since these are expressible in terms of density matrices alone (independent of any specific probabilistic mixtures), states with identical density matrices are *operationally indistinguishable* 

### **Characterizing density matrices**

Three properties of  $\rho$  :

•  $\operatorname{Tr}\rho = 1 (\operatorname{Tr}M = M_{11} + M_{22} + \dots + M_{dd})$ 

$$\rho = \sum_{k=1}^{a} p_{k} |\psi_{k}\rangle \langle \psi_{k} \rangle$$

1

- $\rho = \rho^{\dagger}$  (i.e.  $\rho$  is Hermitian)
- $\langle \phi | \rho | \phi \rangle \ge 0$ , for all states  $| \phi \rangle$

Moreover, for **any** matrix  $\rho$  satisfying the above properties, there exists a probabilistic mixture whose density matrix is  $\rho$ 

Exercise: show this

# Continuation of density matrix formalism Taxonomy of various normal matrices Bloch sphere for qubits General quantum operations

## **Normal matrices**

**Definition:** A matrix *M* is *normal* if  $M^{\dagger}M = MM^{\dagger}$ 

**Theorem:** *M* is normal iff there exists a unitary *U* such that  $M = U^{\dagger}DU$ , where *D* is diagonal (i.e. unitarily diagonalizable)

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix}$$

Examples of *ab*normal matrices:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 is not even  
diagonalizable 
$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$
 is diagonalizable,  
but not unitarily

#### **Unitary and Hermitian matrices**

Normal:

$$M = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix}$$

with respect to some orthonormal basis

**Unitary:**  $M^{\dagger}M = I$  which implies  $|\lambda_k|^2 = 1$ , for all k

**Hermitian:**  $M = M^{\dagger}$  which implies  $\lambda_k \in \mathbf{R}$ , for all k

Question: which matrices are both unitary and Hermitian?

**Answer:** reflections ( $\lambda_k \in \{+1, -1\}$ , for all k)

# **Positive semidefinite**

**Positive semidefinite:** Hermitian and  $\lambda_k \ge 0$ , for all k

**Theorem:** *M* is positive semidefinite iff *M* is Hermitian and, for all  $|\phi\rangle$ ,  $\langle \phi | M | \phi \rangle \ge 0$ 

(Positive *definite*:  $\lambda_k > 0$ , for all k)

#### **Projectors and density matrices**

**Projector:** Hermitian and  $M^2 = M$ , which implies that M is positive semidefinite and  $\lambda_k \in \{0,1\}$ , for all k

**Density matrix:** positive semidefinite and Tr M=1, so  $\sum_{k=1}^{a} \lambda_k = 1$ 

**Question:** which matrices are both projectors *and* density matrices?

**Answer:** rank-1 projectors ( $\lambda_k = 1$  if k = j; otherwise  $\lambda_k = 0$ )

# **Taxonomy of normal matrices**



- Continuation of density matrix formalism
- Taxonomy of various normal matrices
- Bloch sphere for qubits
- General quantum operations

# **Bloch sphere for qubits (I)**

Consider the set of all 2x2 density matrices  $\rho$ 

They have a nice representation in terms of the *Pauli matrices*:

$$\sigma_{x} = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \sigma_{z} = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \sigma_{y} = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Note that these matrices—combined with *I*—form a *basis* for the vector space of all 2x2 matrices

We will express density matrices  $\rho$  in this basis

Note that the coefficient of I is  $\frac{1}{2}$ , since X, Y, Y are traceless

# **Bloch sphere for qubits (II)**

We will express 
$$\rho = \frac{I + c_x X + c_y Y + c_z Z}{2}$$

First consider the case of pure states  $|\psi\rangle\langle\psi|$ , where, without loss of generality,  $|\psi\rangle = \cos(\theta)|0\rangle + e^{2i\phi}\sin(\theta)|1\rangle$  ( $\theta, \phi \in \mathbf{R}$ )

$$\rho = \begin{bmatrix} \cos^2\theta & e^{-i2\varphi}\cos\theta\sin\theta \\ e^{i2\varphi}\cos\theta\sin\theta & \sin^2\theta \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1+\cos(2\theta) & e^{-i2\varphi}\sin(2\theta) \\ e^{i2\varphi}\sin(2\theta) & 1-\cos(2\theta) \end{bmatrix}$$

Therefore  $c_z = \cos(2\theta)$ ,  $c_x = \cos(2\phi)\sin(2\theta)$ ,  $c_y = \sin(2\phi)\sin(2\theta)$ 

These are **polar coordinates** of a unit vector  $(C_x, C_y, C_z) \in \mathbb{R}^3$ 

# **Bloch sphere for qubits (III)**



 $|+\rangle = |0\rangle + |1\rangle$  $|-\rangle = |0\rangle - |1\rangle$  $|+i\rangle = |0\rangle + i|1\rangle$  $|-i\rangle = |0\rangle - i|1\rangle$ 

Note that orthogonal corresponds to antipodal here

Pure states are on the surface, and mixed states are inside (being weighted averages of pure states)

- Continuation of density matrix formalism
- Taxonomy of various normal matrices
- Bloch sphere for qubits
- General quantum operations

#### **General quantum operations (I)**

General quantum operations (a.k.a. "completely positive trace preserving maps", "admissible operations"):

Let  $A_1, A_2, ..., A_m$  be matrices satisfying  $\sum_{j=1}^m A_j^t A_j = I$ 

Then the mapping  $\rho \mapsto \sum_{j=1}^{m} A_j \rho A_j^t$  is a general quantum op

**Example 1 (unitary op):** applying U to  $\rho$  yields  $U\rho U^{\dagger}$ 

#### General quantum operations (II)

**Example 2 (decoherence):** let  $A_0 = |\mathbf{0}\rangle\langle\mathbf{0}|$  and  $A_1 = |\mathbf{1}\rangle\langle\mathbf{1}|$ 

This quantum op maps  $\rho$  to  $|0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$ 

For 
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
,  $\begin{bmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{bmatrix} \mapsto \begin{bmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{bmatrix}$ 

Corresponds to measuring ho "without looking at the outcome"

After looking at the outcome,  $\rho$  becomes  $\begin{cases} |0\rangle\langle 0| & \text{with prob. } |\alpha|^2 \\ |1\rangle\langle 1| & \text{with prob. } |\beta|^2 \end{cases}$ 

#### General quantum operations (III)

Example 3 (trine state "measurent"):

Let  $|\phi_0\rangle = |0\rangle$ ,  $|\phi_1\rangle = -1/2|0\rangle + \sqrt{3}/2|1\rangle$ ,  $|\phi_2\rangle = -1/2|0\rangle - \sqrt{3}/2|1\rangle$ Define  $A_0 = 2/3|\phi_0\rangle\langle\phi_0| = \frac{2}{3}\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}$   $A_1 = 2/3|\phi_1\rangle\langle\phi_1| = \frac{1}{6}\begin{bmatrix}1 & +\sqrt{3}\\+\sqrt{3} & 3\end{bmatrix}$   $A_2 = 2/3|\phi_2\rangle\langle\phi_2| = \frac{1}{6}\begin{bmatrix}1 & -\sqrt{3}\\-\sqrt{3} & 3\end{bmatrix}$ Then  $A_0^{\ t}A_0 + A_1^{\ t}A_1 + A_2^{\ t}A_2 = I$ 

The probability that state  $|\varphi_k\rangle$  results in "outcome"  $A_k$  is 4/9, and this can be adapted to actually yield the value of k with this success probability

#### **General quantum operations (IV)**

Example 4 (discarding the second of two qubits):

Let  $A_0 = I \otimes \langle \mathbf{0} | = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$  and  $A_1 = I \otimes \langle \mathbf{1} | = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 

State  $\rho \otimes \sigma$  becomes  $\rho$ 

State 
$$\left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}\langle 00| + \frac{1}{\sqrt{2}}\langle 11|\right)$$
 becomes  $\frac{1}{2}\begin{bmatrix}1&0\\0&1\end{bmatrix}$ 

**Note 1:** it's the same density matrix as for  $((\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle))$ **Note 2:** the operation is the *partial trace* Tr<sub>2</sub> $\rho$ 

