Introduction to Quantum Information Processing CS 467 I CS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 11 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- Continuation of density matrix formalism
- Taxonomy of various normal matrices
- Bloch sphere for qubits
- General quantum operations
- Continuation of density matrix formalism Tavonomy af various normal matrices Bloch sphere for qubits General quantum operations

Recap: density matrices (I)

The density matrix of the mixed state
$\left(\left(\left|\psi_{1}\right\rangle, p_{1}\right),\left(\left|\psi_{2}\right\rangle, p_{2}\right), \ldots,\left(\left|\psi_{d}\right\rangle, p_{d}\right)\right)$ is: $\quad \rho=\sum_{k=1}^{d} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$
Examples (from previous lecture):
3. $\left\{\begin{array}{l}|0\rangle \text { with prob. } 1 / 22 \\ |1\rangle \text { with prob. } 1 / 2\end{array}\right.$
4. $\{|0\rangle+|1\rangle$ with prob. $1 / 2$
$\{|0\rangle-|1\rangle$ with prob. $1 / 2$

$$
\rho=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

6. $\left\{\begin{array}{ll}|0\rangle & \text { with prob. } 1 / 4 \\ |1\rangle & \text { with prob. } 1 / 4 \\ |0\rangle+|1\rangle & \text { with prob. } 1 / 4 \\ |0\rangle-|1\rangle & \text { with prob. } 1 / 4\end{array}\right\}$

Recap: density matrices (II)

Examples (continued):
5. $\begin{cases}|0\rangle & \text { with prob. } 1 / 22 \\ |0\rangle+|1\rangle & \text { with prob. } 1 / 2\end{cases}$
has: $\quad \rho=\frac{1}{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]=\left[\begin{array}{ll}3 / 4 & 1 / 2 \\ 1 / 2 & 1 / 4\end{array}\right]$
7. The first qubit of $|01\rangle-|10\rangle \ldots ?$ (later)

Recap: density matrices (III)

Quantum operations in terms of density matrices:

- Applying U to ρ yields $U \rho U^{\dagger}$
- Measuring state ρ with respect to the basis $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{d}\right\rangle$, yields: $k^{\text {th }}$ outcome with probability $\left\langle\varphi_{k}\right| \rho\left|\varphi_{k}\right\rangle$ -and causes the state to collapse to $\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|$

Since these are expressible in terms of density matrices alone (independent of any specific probabilistic mixtures), states with identical density matrices are operationally indistinguishable

Characterizing density matrices

Three properties of ρ :

- $\operatorname{Tr} \rho=1\left(\operatorname{Tr} M=M_{11}+M_{22}+\ldots+M_{d d}\right)$

$$
\rho=\sum_{k=1}^{d} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

- $\rho=\rho^{\dagger}$ (i.e. ρ is Hermitian)
- $\langle\varphi| \rho|\varphi\rangle \geq 0$, for all states $|\varphi\rangle$

Moreover, for any matrix ρ satisfying the above properties, there exists a probabilistic mixture whose density matrix is ρ

Exercise: show this

- Continuation of density matrix formalism Taxonomy of various normal matrices Bloch sphere for qubits Gentenal ottantion owenatidis

Normal matrices

Definition: A matrix M is normal if $M^{\dagger} M=M M^{\dagger}$
Theorem: M is normal iff there exists a unitary U such that $M=U^{\dagger} D U$, where D is diagonal (i.e. unitarily diagonalizable)

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right]
$$

Examples of abnormal matrices:
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \begin{aligned} & \text { is not even } \\ & \text { diagonalizable }\end{aligned}$

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] \begin{aligned}
& \text { is diagonalizable, } \\
& \text { but not unitarily }
\end{aligned}
$$

Unitary and Hermitian matrices

Normal: $\quad\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0\end{array}\right]$ with respect to some orthonormal basis

Unitary: $M^{\dagger} M=I$ which implies $\left|\lambda_{k}\right|^{2}=1$, for all k
Hermitian: $M=M^{\dagger}$ which implies $\lambda_{k} \in \mathbf{R}$, for all k
Question: which matrices are both unitary and Hermitian?
Answer: reflections $\left(\lambda_{k} \in\{+1,-1\}\right.$, for all k)

Positive semidefinite

Positive semidefinite: Hermitian and $\lambda_{k} \geq 0$, for all k
Theorem: M is positive semidefinite iff M is Hermitian and, for all $|\varphi\rangle,\langle\varphi| M|\varphi\rangle \geq 0$
(Positive definite: $\lambda_{k}>0$, for all k)

Projectors and density matrices

Projector: Hermitian and $M^{2}=M$, which implies that M is positive semidefinite and $\lambda_{k} \in\{0,1\}$, for all k

Density matrix: positive semidefinite and $\operatorname{Tr} M=1$, so $\sum_{k=1}^{d} \lambda_{k}=1$

Question: which matrices are both projectors and density matrices?

Answer: rank-1 projectors ($\lambda_{k}=1$ if $k=j$; otherwise $\lambda_{k}=0$)

Taxonomy of normal matrices

- Continuation of density matrix formalism Tavenomut of veriout nomanal matriene

Bloch sphere for qubits
Genemal qutantum operatid is

Bloch sphere for qubits (I)

Consider the set of all 2×2 density matrices ρ
They have a nice representation in terms of the Pauli matrices:

$$
\sigma_{x}=X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{z}=Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad \sigma_{y}=Y=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

Note that these matrices-combined with I-form a basis for the vector space of all 2×2 matrices

We will express density matrices ρ in this basis
Note that the coefficient of I is $1 / 2$, since X, Y, Y are traceless

Bloch sphere for qubits (II)

We will express $\rho=\frac{I+c_{x} X+c_{y} Y+c_{z} Z}{2}$
First consider the case of pure states $|\psi\rangle\langle\psi|$, where, without loss of generality, $|\psi\rangle=\cos (\theta)|0\rangle+e^{2 i \phi} \sin (\theta)|1\rangle \quad(\theta, \phi \in \mathbf{R})$
$\rho=\left[\begin{array}{cc}\cos ^{2} \theta & e^{-i 2 \varphi} \cos \theta \sin \theta \\ e^{i 2 \varphi} \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}1+\cos (2 \theta) & e^{-i 2 \varphi} \sin (2 \theta) \\ e^{i 2 \varphi} \sin (2 \theta) & 1-\cos (2 \theta)\end{array}\right]$
Therefore $c_{z}=\cos (2 \theta), c_{x}=\cos (2 \phi) \sin (2 \theta), c_{y}=\sin (2 \phi) \sin (2 \theta)$
These are polar coordinates of a unit vector $\left(c_{x}, c_{y}, c_{z}\right) \in \mathbf{R}^{3}$

Bloch sphere for qubits (III)

Note that orthogonal corresponds to antipodal here
Pure states are on the surface, and mixed states are inside (being weighted averages of pure states)

- Continuation of density matrix formalism Bloch sphere for qubits
 - General quantum operations

General quantum operations (I)

General quantum operations (a.k.a. "completely positive trace preserving maps", "admissible operations"):
Let $A_{1}, A_{2}, \ldots, A_{m}$ be matrices satisfying $\sum_{j=1}^{m} A_{j}^{\mathrm{t}} A_{j}=I$
Then the mapping $\rho \mapsto \sum_{j=1}^{m} A_{j} \rho A_{j}^{t}$ is a general quantum op

Example 1 (unitary op): applying U to ρ yields $U \rho U^{\dagger}$

General quantum operations (II)

Example 2 (decoherence): let $A_{0}=|0\rangle\langle 0|$ and $A_{1}=|1\rangle\langle 1|$
This quantum op maps ρ to $|0\rangle\langle 0| \rho|0\rangle\langle 0|+|1\rangle\langle 1| \rho|1\rangle\langle 1|$
For $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad\left[\begin{array}{cc}|\alpha|^{2} & \alpha \beta^{*} \\ \alpha^{*} \beta & |\beta|^{2}\end{array}\right] \mapsto\left[\begin{array}{cc}|\alpha|^{2} & 0 \\ 0 & |\beta|^{2}\end{array}\right]$
Corresponds to measuring ρ "without looking at the outcome"

After looking at the outcome, ρ becomes $\left\{|0\rangle\langle 0|\right.$ with prob. $|\alpha|^{2}$
$\left\{|1\rangle\langle 1|\right.$ with prob. $|\beta|^{2}$

General quantum operations (III)

Example 3 (trine state "measurent"):

Let $\left|\varphi_{0}\right\rangle=|0\rangle, \quad\left|\varphi_{1}\right\rangle=-1 / 2|0\rangle+\sqrt{ } 3 / 2|1\rangle, \quad\left|\varphi_{2}\right\rangle=-1 / 2|0\rangle-\sqrt{ } 3 / 2|1\rangle$
Define $A_{0}=2 / 3\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|=\frac{2}{3}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
$A_{1}=2 / 3\left|\varphi_{1}\right\rangle\left\langle\varphi_{1}\right|=\frac{1}{6}\left[\begin{array}{cc}1 & +\sqrt{3} \\ +\sqrt{3} & 3\end{array}\right] \quad A_{2}=2 / 3\left|\varphi_{2}\right\rangle\left\langle\varphi_{2}\right|=\frac{1}{6}\left[\begin{array}{cc}1 & -\sqrt{3} \\ -\sqrt{3} & 3\end{array}\right]$
Then $A_{0}{ }^{t} A_{0}+A_{1}{ }^{t} A_{1}+A_{2}{ }^{t} A_{2}=I$
The probability that state $\left|\varphi_{k}\right\rangle$ results in "outcome" A_{k} is $4 / 9$, and this can be adapted to actually yield the value of k with this success probability

General quantum operations (IV)

Example 4 (discarding the second of two qubits):
Let $A_{0}=I \otimes\langle 0|=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ and $A_{1}=I \otimes\langle 1|=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
State $\rho \otimes \sigma$ becomes ρ
State $\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}\langle 00|+\frac{1}{\sqrt{2}}\langle 11|\right)$ becomes $\frac{1}{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Note 1: it's the same density matrix as for $((1 / 2,|0\rangle),(1 / 2,|1\rangle))$
Note 2: the operation is the partial trace $\mathrm{Tr}_{2} \rho$

