Introduction to Quantum Information Processing CS 467 I CS 667 Phys 467 I Phys 767 C\&O 481 / C\&O 681

Lecture 10 (2005)

Richard Cleve
DC 3524
cleve@cs.uwaterloo.ca
Course web site at:
http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- More state distinguishing problems
- Return to approximately universal gate sets Complexity classes

Density matrix formalism

- More state distinguishing problems Return to annroximatalv univercal cat sets Complexity classes Density matrix formalism

More state distinguishing problems

Which of these states are distinguishable? Divide them into equivalence classes:

> 1. $|0\rangle+|1\rangle$
> 2. $-|0\rangle-|1\rangle$
5. $\begin{cases}|0\rangle & \text { with prob. } 1 / 2 \\ |0\rangle+|1\rangle & \text { with prob. } 1 / 2\end{cases}$
3. $\{|0\rangle$ with prob. $1 / 2$
$\nearrow\{|1\rangle$ with prob. $1 / 2$
4. $\left\{\begin{array}{l}|0\rangle+|1\rangle \text { with prob. } 1 / 22 \\ |0\rangle-|1\rangle \text { with prob. } 1 / 2\end{array}\right.$
6. $||0\rangle \quad$ with prob. $1 / 4$
with prob. $1 / 4$
$|0\rangle+|1\rangle$ with prob. $1 / 4$
$|0\rangle-|1\rangle$ with prob. $1 / 4$
7. The first qubit of $|01\rangle-|10\rangle$

- More state distinguishing problems
- Return to approximately universal gate sets

Complexity classes
Dencity maturiv fommalit

Universal gate sets

The set of all one-qubit gates and the CNOT gate are universal in that they can simulate any other gate set

Quantitatively, any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates

Question: is there a finite set of gates that is universal?
Answer 1: strictly speaking, no, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense
As an illustrative example, any rotation can be approximated within any precision by repeatedly applying
$R=\left[\begin{array}{cc}\cos (\sqrt{2} \pi) & -\sin (\sqrt{2} \pi) \\ \sin (\sqrt{2} \pi) & \cos (\sqrt{2} \pi)\end{array}\right]$
some number of times

In this sense, R is approximately universal for the set of all one-qubit rotations: any rotation S can be approximated within precision ε by applying R a suitable number of times It turns out that $O\left((1 / \varepsilon)^{c}\right)$ times suffices (for a constant c)

Approximately universal gate sets

In three or more dimensions, the rate of convergence with respect to ε can be exponentially faster

Theorem 2: the gates CNOT, H, and $T=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$ are approximately universal, in that any unitary operation on k qubits can be simulated within precision ε by applying $O\left(4^{k} \log ^{c}(1 / \varepsilon)\right)$ of them (c is a constant)
[Solovay, 1996][Kitaev, 1997]

Complexity classes

Recall:

- P (polynomial time): problems solved by $O\left(n^{c}\right)$-size classical circuits (decision problems and uniform circuit families)
- BPP (bounded error probabilistic polynomial time): problems solved by $O\left(n^{c}\right)$-size probabilistic circuits that err with probability $\leq 1 / 4$
- BQP (bounded error quantum polynomial time): problems solved by $O\left(n^{C}\right)$-size quantum circuits that err with probability $\leq 1 / 4$
- PSPACE (polynomial space): problems solved by algorithms that use $O\left(n^{c}\right)$ memory.

Summary of previous containments

$\mathbf{P} \subseteq \mathbf{B P P} \subseteq \mathrm{BQP} \subseteq \mathbf{P S P A C E} \subseteq \mathrm{EXP}$
We now consider further structure between \mathbf{P} and PSPACE

Technically, we will restrict our attention to languages (i.e. $\{0,1\}$-valued problems)

Many problems of interest can be cast in terms of languages

For example, we could define FACTORING $=\{(x, y): \exists 2 \leq z \leq y$, such that z divides $x\}$

NP

Define NP (non-deterministic polynomial time) as the class of languages whose positive instances have "witnesses" that can be verified in polynomial time

Example: Let 3-CNF-SAT be the language consisting of all 3-CNF formulas that are satisfiable

3-CNF formula:

$f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{5}\right) \wedge \cdots \wedge\left(\bar{x}_{1} \vee x_{5} \vee \bar{x}_{n}\right)$
$f\left(x_{1}, \ldots, x_{n}\right)$ is satisfiable iff there exists $b_{1}, \ldots, b_{n} \in\{0,1\}$ such that $f\left(b_{1}, \ldots, b_{n}\right)=1$

No sub-exponential-time algorithm is known for 3-CNF-SAT
But poly-time verifiable witnesses exist (namely, b_{1}, \ldots, b_{n})

Other "logic" problems in NP

- k-DNF-SAT:
$f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \wedge \bar{x}_{3} \wedge x_{4}\right) \vee\left(\bar{x}_{2} \wedge x_{3} \wedge \bar{x}_{5}\right) \vee \cdots \vee\left(\bar{x}_{1} \wedge x_{5} \wedge \bar{x}_{n}\right)$
* But, unlike with k-CNF-SAT, this one is known to be in \mathbf{P}
- CIRCUIT-SAT:

"Graph theory" problems in NP

- k-COLOR: does G have a k-coloring?
- k-CLIQUE: does G have a clique of size k ?
- HAM-PATH: does G have a Hamiltonian path?
- EUL-PATH: does G have an Eulerian path?

"Arithmetic" problems in NP

- FACTORING $=\{(x, y): \exists 2 \leq z \leq y$, such that z divides $x\}$
- SUBSET-SUM: given integers $x_{1}, x_{2}, \ldots, x_{n}, y$, do there exist $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ such that $x_{i 1}+x_{i 2}+\ldots+x_{i k}=y$?
- INTEGER-LINEAR-PROGRAMMING: linear programming where one seeks an integer-valued solution (its existence)

P vs. NP

All of the aforementioned problems have the property that they reduce to 3-CNF-SAT, in the sense that a polynomialtime algorithm for 3-CNF-SAT can be converted into a polytime algorithm for the problem

Example: algorithm for 3-COLOR
 algorithm for 3-CNF-SAT

If a polynomial-time algorithm is discovered for 3-CNF-SAT then a polynomial-time algorithm for 3-COLOR easily follows In fact, this holds for any problem $\mathbf{X} \in \mathbf{N P}$, hence 3-CNF-SAT is NP-hard ...

P vs. NP

All of the aforementioned problems have the property that they reduce to 3-CNF-SAT, in the sense that a polynomialtime algorithm for 3-CNF-SAT can be converted into a polytime algorithm for the problem

If a polynomial-time algorithm is discovered for 3-CNF-SAT then a polynomial-time algorithm for 3-COLOR easily follows In fact, this holds for any problem $\mathbf{X} \in \mathbf{N P}$, hence 3-CNF-SAT is NP-hard ... Also NP-hard: CIRCUIT-SAT, k-COLOR, ...

FACTORING vs. NP

Is FACTORING NP-hard too?
If so, then every problem in NP is solvable by a poly-time quantum algorithm!

But FACTORING has not been shown to be NP-hard

Moreover, there is "evidence" that it is not NP-hard: FACTORING \in NP $\cap c o-N P$

If FACTORING is NP-hard then NP = co-NP

FACTORING vs. co-NP

FACTORING $=\{(x, y): \exists 2 \leq z \leq y$, s.t. z divides $x\}$
co-NP: languages whose negative instances have "witnesses" that can be verified in poly-time

Question: what is a good witness for the negative instances?

Answer: the prime factorization $p_{1}, p_{2}, \ldots, p_{m}$ of x will work

Can verify primality and compare $p_{1}, p_{2}, \ldots, p_{m}$ with y, all in poly-time

Density matrices (I)

Until now, we've represented quantum states as vectors
(e.g. $|\psi\rangle$, and all such states are called pure states)

An alternative way of representing quantum states is in terms of density matrices (a.k.a. density operators)

The density matrix of a pure state $|\psi\rangle$ is the matrix $\rho=|\psi\rangle\langle\psi|$
Example: the density matrix of $\alpha|0\rangle+\beta|1\rangle$ is

$$
\rho=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\left[\begin{array}{ll}
\alpha^{*} & \beta^{*}
\end{array}\right]=\left[\begin{array}{cc}
|\alpha|^{2} & \alpha \beta^{*} \\
\alpha^{*} \beta & |\beta|^{2}
\end{array}\right]
$$

Density matrices (II)

How do quantum operations work using density matrices?
Effect of a unitary operation on a density matrix: applying U to ρ yields $U \rho U^{\dagger}$
(this is because the modified state is $U|\psi\rangle\langle\psi| U^{\dagger}$)
Effect of a measurement on a density matrix: measuring state ρ with respect to the basis $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{d}\right\rangle$, yields the $k^{\text {th }}$ outcome with probability $\left\langle\varphi_{k}\right| \rho\left|\varphi_{k}\right\rangle$ (this is because $\left\langle\varphi_{k}\right| \rho\left|\varphi_{k}\right\rangle=\left\langle\varphi_{k} \mid \psi\right\rangle\left\langle\psi \mid \varphi_{k}\right\rangle=\left|\left\langle\varphi_{k} \mid \psi\right\rangle\right|^{2}$) —and the state collapses to $\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|$

Density matrices (III)

A probability distribution on pure states is called a mixed state:
$\left(\left(\left|\psi_{1}\right\rangle, p_{1}\right),\left(\left|\psi_{2}\right\rangle, p_{2}\right), \ldots,\left(\left|\psi_{d}\right\rangle, p_{d}\right)\right)$
The density matrix associated with such a mixed state is:

$$
\rho=\sum_{k=1}^{d} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

Example: the density matrix for $((|0\rangle, 1 / 2),(|1\rangle, 1 / 2))$ is:

$$
\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Question: what is the density matrix of
$((|0\rangle+|1\rangle, 1 / 2),(|0\rangle-|1\rangle, 1 / 2)) ?$

Density matrices (IV)

How do quantum operations work for these mixed states?
Effect of a unitary operation on a density matrix: applying U to ρ still yields $U \rho U^{\dagger}$

This is because the modified state is:
$\sum_{k=1}^{d} p_{k} U\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| U^{t}=U\left(\sum_{k=1}^{d} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|\right) U^{t}=U \rho U^{t}$
Effect of a measurement on a density matrix: measuring state ρ with respect to the basis $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle, \ldots,\left|\varphi_{d}\right\rangle$, still yields the $k^{\text {th }}$ outcome with probability $\left\langle\varphi_{k}\right| \rho\left|\varphi_{k}\right\rangle$

