Introduction to Quantum Information Processing

CS 467 / CS 667

Phys 467 / Phys 767

C&O 481 / C&O 681

Lecture 10 (2005)

Richard Cleve

DC 3524

cleve@cs.uwaterloo.ca

Course web site at:

http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents

- More state distinguishing problems
- Return to approximately universal gate sets
- Complexity classes
- Density matrix formalism

- More state distinguishing problems
- Return to approximately universal gate sets
- Complexity classes
- Density matrix formalism

More state distinguishing problems

Which of these states are distinguishable? Divide them into equivalence classes:

1.
$$|0\rangle + |1\rangle$$

$$2. - |0\rangle - |1\rangle$$

3.
$$|0\rangle$$
 with prob. $\frac{1}{2}$ $|1\rangle$ with prob. $\frac{1}{2}$

3.
$$\begin{cases} |0\rangle \text{ with prob. } \frac{1}{2} \\ |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$$
4. $\begin{cases} |0\rangle + |1\rangle \text{ with prob. } \frac{1}{2} \\ |0\rangle - |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$

5.
$$\begin{cases} |0\rangle & \text{with prob. } \frac{1}{2} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{2} \end{cases}$$

6.
$$\begin{cases} |0\rangle & \text{with prob. } \frac{1}{4} \\ |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle - |1\rangle & \text{with prob. } \frac{1}{4} \end{cases}$$

7. The first qubit of $|01\rangle - |10\rangle$

Answers later on ...

- More state distinguishing problems
- Return to approximately universal gate sets
- Complexity classes
- Density matrix formalism

Universal gate sets

The set of all one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Quantitatively, any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated within any precision by repeatedly applying

$$R = \begin{bmatrix} \cos(\sqrt{2}\pi) & -\sin(\sqrt{2}\pi) \\ \sin(\sqrt{2}\pi) & \cos(\sqrt{2}\pi) \end{bmatrix}$$

some number of times

In this sense, R is approximately universal for the set of all one-qubit rotations: any rotation S can be approximated within precision ε by applying R a suitable number of times

It turns out that $O((1/\epsilon)^c)$ times suffices (for a constant c)

Approximately universal gate sets

In three or more dimensions, the rate of convergence with respect to ϵ can be exponentially faster

Theorem 2: the gates CNOT, H, and $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$ are *approximately universal*, in that any unitary operation on k qubits can be simulated within precision ε by applying $O(4^k \log^c(1/\varepsilon))$ of them (c) is a constant)

[Solovay, 1996][Kitaev, 1997]

- More state distinguishing problems
- Return to approximately universal gate sets
- Complexity classes
- Density matrix formalism

Complexity classes

Recall:

- P (polynomial time): problems solved by $O(n^c)$ -size classical circuits (decision problems and uniform circuit families)
- BPP (bounded error probabilistic polynomial time): problems solved by $O(n^c)$ -size **probabilistic** circuits that err with probability $\leq \frac{1}{4}$
- BQP (bounded error quantum polynomial time): problems solved by $O(n^c)$ -size *quantum* circuits that err with probability $\leq \frac{1}{4}$
- PSPACE (polynomial space): problems solved by algorithms that use $O(n^c)$ memory.

Summary of previous containments

 $P \subseteq BPP \subseteq BQP \subseteq PSPACE \subseteq EXP$

We now consider further structure between **P** and **PSPACE**

Technically, we will restrict our attention to *languages* (i.e. $\{0,1\}$ -valued problems)

Many problems of interest can be cast in terms of languages

For example, we could define **FACTORING** = $\{(x,y) : \exists 2 \le z \le y, \text{ such that } z \text{ divides } x\}$

NP

Define NP (non-deterministic polynomial time) as the class of languages whose *positive* instances have "witnesses" that can be verified in polynomial time

Example: Let **3-CNF-SAT** be the language consisting of all **3-CNF** formulas that are satisfiable

3-CNF formula:

$$f(x_1,...,x_n) = (x_1 \vee \overline{x}_3 \vee x_4) \wedge (\overline{x}_2 \vee x_3 \vee \overline{x}_5) \wedge \cdots \wedge (\overline{x}_1 \vee x_5 \vee \overline{x}_n)$$

 $f(x_1,...,x_n)$ is **satisfiable** iff there exists $b_1,...,b_n \in \{0,1\}$
such that $f(b_1,...,b_n) = 1$

No sub-exponential-time algorithm is known for 3-CNF-SAT

But poly-time verifiable witnesses exist (namely, b_1 , ..., b_n)

Other "logic" problems in NP

• *k*-**DNF-SAT**:

$$f(x_1,...,x_n) = (x_1 \wedge \overline{x}_3 \wedge x_4) \vee (\overline{x}_2 \wedge x_3 \wedge \overline{x}_5) \vee \cdots \vee (\overline{x}_1 \wedge x_5 \wedge \overline{x}_n)$$

* But, unlike with *k*-CNF-SAT, this one is known to be in P

CIRCUIT-SAT:

"Graph theory" problems in NP

- *k*-COLOR: does *G* have a *k*-coloring?
- k-CLIQUE: does G have a clique of size k?
- HAM-PATH: does G have a Hamiltonian path?
- EUL-PATH: does G have an Eulerian path?

"Arithmetic" problems in NP

- **FACTORING** = $\{(x, y) : \exists 2 \le z \le y, \text{ such that } z \text{ divides } x\}$
- **SUBSET-SUM**: given integers $x_1, x_2, ..., x_n, y$, do there exist $i_1, i_2, ..., i_k \in \{1, 2, ..., n\}$ such that $x_{i_1} + x_{i_2} + ... + x_{i_k} = y$?
- INTEGER-LINEAR-PROGRAMMING: linear programming where one seeks an integer-valued solution (its existence)

P vs. NP

All of the aforementioned problems have the property that they **reduce** to **3-CNF-SAT**, in the sense that a polynomial-time algorithm for **3-CNF-SAT** can be converted into a polytime algorithm for the problem

Example:

If a polynomial-time algorithm is discovered for **3-CNF-SAT** then a polynomial-time algorithm for **3-COLOR** easily follows In fact, this holds for *any* problem $X \in NP$, hence **3-CNF-SAT** is *NP-hard* ...

P vs. NP

All of the aforementioned problems have the property that they **reduce** to **3-CNF-SAT**, in the sense that a polynomial-time algorithm for **3-CNF-SAT** can be converted into a polytime algorithm for the problem

Example:

If a polynomial-time algorithm is discovered for **3-CNF-SAT** then a polynomial-time algorithm for **3-COLOR** easily follows

In fact, this holds for **any** problem $X \in NP$, hence **3-CNF-SAT** is **NP-hard** ... Also **NP-hard**: **CIRCUIT-SAT**, k-**COLOR**, ... ₁₇

FACTORING vs. NP

Is **FACTORING NP**-hard too? **PSPACE** If so, then **every** problem in **NP** is solvable by a poly-time quantum algorithm! NP CO-NR **3-CNF-SAT** But **FACTORING** has not been shown to be **NP**-hard **FACTORING** Moreover, there is "evidence" that it is not **NP**-hard: FACTORING ∈ NP∩co-NP

If **FACTORING** is **NP**-hard then **NP** = **co-NP**

FACTORING vs. co-NP

FACTORING = $\{(x, y) : \exists 2 \le z \le y, \text{ s.t. } z \text{ divides } x\}$

co-NP: languages whose *negative* instances have "witnesses" that can be verified in poly-time

Question: what is a good witness for the negative instances?

Answer: the prime factorization $p_1, p_2, ..., p_m$ of x will work

Can verify primality and compare $p_1, p_2, ..., p_m$ with y, all in poly-time

- More state distinguishing problems
- Return to approximately universal gate sets
- Complexity classes
- Density matrix formalism

Density matrices (I)

Until now, we've represented quantum states as *vectors* (e.g. $|\psi\rangle$, and all such states are called *pure states*)

An alternative way of representing quantum states is in terms of *density matrices* (a.k.a. *density operators*)

The density matrix of a pure state $|\psi\rangle$ is the matrix $\rho = |\psi\rangle\langle\psi|$

Example: the density matrix of $\alpha |0\rangle + \beta |1\rangle$ is

$$\rho = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix} = \begin{bmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{bmatrix}$$

Density matrices (II)

How do quantum operations work using density matrices?

Effect of a unitary operation on a density matrix:

applying U to ho yields $U
ho U^\dagger$

(this is because the modified state is $U|\psi\rangle\langle\psi|U^{\dagger}$)

Effect of a measurement on a density matrix:

measuring state ρ with respect to the basis $|\phi_1\rangle$, $|\phi_2\rangle$,..., $|\phi_d\rangle$, yields the k^{th} outcome with probability $\langle \phi_k | \rho | \phi_k \rangle$

(this is because
$$\langle \varphi_k | \rho | \varphi_k \rangle = \langle \varphi_k | \psi \rangle \langle \psi | \varphi_k \rangle = |\langle \varphi_k | \psi \rangle|^2$$
)

—and the state collapses to $|\varphi_k\rangle\langle\varphi_k|$

Density matrices (III)

A probability distribution on pure states is called a *mixed state*:

$$((|\psi_1\rangle, p_1), (|\psi_2\rangle, p_2), \dots, (|\psi_d\rangle, p_d))$$

The *density matrix* associated with such a mixed state is:

$$\rho = \sum_{k=1}^{d} p_k |\psi_k\rangle\langle\psi_k|$$

Example: the density matrix for $((|0\rangle, \frac{1}{2}), (|1\rangle, \frac{1}{2}))$ is:

$$\frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Question: what is the density matrix of

$$((|0\rangle + |1\rangle, \frac{1}{2}), (|0\rangle - |1\rangle, \frac{1}{2})$$
?

Density matrices (IV)

How do quantum operations work for these *mixed* states?

Effect of a unitary operation on a density matrix:

applying U to ho **still** yields $U
ho U^\dagger$

This is because the modified state is:

$$\sum_{k=1}^{d} p_k U |\psi_k\rangle \langle \psi_k | U^t = U \left(\sum_{k=1}^{d} p_k |\psi_k\rangle \langle \psi_k |\right) U^t = U \rho U^t$$

Effect of a measurement on a density matrix:

measuring state ρ with respect to the basis $|\phi_1\rangle$, $|\phi_2\rangle$,..., $|\phi_d\rangle$, still yields the k^{th} outcome with probability $\langle \phi_k | \rho | \phi_k \rangle$

