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More state distinguishing problemsMore state distinguishing problems
Which of these states are distinguishable? Divide them into 
equivalence classes:

1.   |0〉 + |1〉

2. −|0〉 − |1〉

3.   |0〉 with prob. ½
|1〉 with prob. ½

4.   |0〉 + |1〉 with prob. ½
|0〉 − |1〉 with prob. ½

5.   |0〉 with prob. ½
|0〉 + |1〉 with prob. ½

6.   |0〉 with prob. ¼
|1〉 with prob. ¼
|0〉 + |1〉 with prob. ¼
|0〉 − |1〉 with prob. ¼

7. The first qubit of |01〉 − |10〉

This is a probabilistic mixed state
Answers later on ...
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Universal gate setsUniversal gate sets
The set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)

Quantitatively, any unitary operation U acting on k qubits
can be decomposed into O(4k) CNOT and one-qubit gates
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ApproximatelyApproximately universal gate setsuniversal gate sets
Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated 
within any precision by repeatedly applying 
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In this sense, R is approximately universal for the set of 
all one-qubit rotations: any rotation S can be approximated 
within precision ε by applying R a suitable number of times

It turns out that O((1/ε)c) times suffices (for a constant c)
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ApproximatelyApproximately universal gate setsuniversal gate sets

Theorem 2: the gates  CNOT,  H,  and ⎥
⎦
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= 4π0
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T
are approximately universal, in that any 
unitary operation on k qubits can be 

simulated within precision ε by applying 

O(4klogc(1/ε)) of them (c is a constant)

[Solovay, 1996][Kitaev, 1997]

In three or more dimensions, the rate of convergence with 
respect to ε can be exponentially faster
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Complexity classesComplexity classes

• P (polynomial time): problems solved by O(nc)-size 
classical circuits (decision problems and uniform circuit 
families)

• BPP (bounded error probabilistic polynomial time):
problems solved by O(nc)-size probabilistic circuits that 
err with probability ≤ ¼

• BQP (bounded error quantum polynomial time):
problems solved by O(nc)-size quantum circuits that err 
with probability ≤ ¼

• PSPACE (polynomial space): problems solved by 
algorithms that use O(nc) memory.

Recall:
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Summary of previous containmentsSummary of previous containments
P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP

P
BPP

BQP

PSPACE

EXP
We now consider further 
structure between P and 
PSPACE

Technically, we will restrict 
our attention to languages
(i.e. {0,1}-valued problems)

Many problems of interest can 
be cast in terms of languages 
For example, we could define
FACTORING = {(x,y) : ∃2≤ z ≤y, such that z divides x}
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NPNP
Define NP (non-deterministic polynomial time) as 
the class of languages whose positive instances have 
“witnesses” that can be verified in polynomial time

( ) ( ) ( ) ( )nn xxxxxxxxxx,...,xf ∨∨∧∧∨∨∧∨∨= 515324311 L

( )nx,...,xf 1

Example: Let 3-CNF-SAT be the language consisting of all 
3-CNF formulas that are satisfiable

{ }101 ,b,...,b n ∈
( ) 11 =nb,...,bf

is satisfiable iff there exists                             
such that 

But poly-time verifiable witnesses exist (namely, b1, ..., bn)

3-CNF formula:

No sub-exponential-time algorithm is known for 3-CNF-SAT
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Other Other ““logiclogic”” problems in NPproblems in NP
• k-DNF-SAT:

• CIRCUIT-SAT:

( ) ( ) ( ) ( )nn xxxxxxxxxx,...,xf ∧∧∨∨∧∧∨∧∧= 515324311 L
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∗ But, unlike with k-CNF-SAT, this one is known to be in P

∗ All known 
algorithms 
exponential-
time
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““Graph theoryGraph theory”” problems in NPproblems in NP

• k-COLOR: does G have a k-coloring?
• k-CLIQUE: does G have a clique of size k?
• HAM-PATH: does G have a Hamiltonian path?
• EUL-PATH: does G have an Eulerian path? 
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““ArithmeticArithmetic”” problems in NPproblems in NP
• FACTORING = {(x, y) : ∃2≤ z ≤y, such that z divides x}

• SUBSET-SUM: given integers x1, x2 , ..., xn, y, do there exist 
i1, i2 , ..., ik ∈{1, 2,... , n} such that xi1+ xi2 + ... + xik = y?

• INTEGER-LINEAR-PROGRAMMING: linear programming 
where one seeks an integer-valued solution (its existence)
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P vs. NPP vs. NP

If a polynomial-time algorithm is discovered for 3-CNF-SAT
then a polynomial-time algorithm for 3-COLOR easily follows

All of the aforementioned problems have the property that 
they reduce to 3-CNF-SAT, in the sense that a polynomial-
time algorithm for 3-CNF-SAT can be converted into a poly-
time algorithm for the problem

algorithm for 
3-CNF-SAT

algorithm for 3-COLORExample:

In fact, this holds for any problem X ∈ NP, hence 3-CNF-SAT 
is NP-hard ... 
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P vs. NPP vs. NP

If a polynomial-time algorithm is discovered for 3-CNF-SAT
then a polynomial-time algorithm for 3-COLOR easily follows

All of the aforementioned problems have the property that 
they reduce to 3-CNF-SAT, in the sense that a polynomial-
time algorithm for 3-CNF-SAT can be converted into a poly-
time algorithm for the problem

algorithm for 
3-CNF-SAT

algorithm for XExample:

In fact, this holds for any problem X ∈ NP, hence 3-CNF-SAT 
is NP-hard ... Also NP-hard: CIRCUIT-SAT, k-COLOR, ... 
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FACTORING vs. NPFACTORING vs. NP

3-CNF-SAT

FACTORING

P

NP

PSPACE

co-NP

Is FACTORING NP-hard too?

But FACTORING has 
not been shown to be 
NP-hard

Moreover, there is “evidence”
that it is not NP-hard:
FACTORING ∈ NP∩co-NP

If so, then every problem in 
NP is solvable by a poly-time 
quantum algorithm!

If FACTORING is NP-hard then NP = co-NP
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FACTORING vs.FACTORING vs. co-NPNP

P

NP

PSPACE

co-NP

FACTORING

FACTORING = {(x, y) : ∃2≤ z ≤y, s.t. z divides x}

Question: what is a 
good witness for the 
negative instances?

co-NP: languages whose negative
instances have “witnesses” that can 
be verified in poly-time

Answer: the prime factorization 
p1, p2 , ..., pm of x will work

Can verify primality and compare 
p1, p2 , ..., pm with y, all in poly-time 
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Density matrices (I)Density matrices (I)
Until now, we’ve represented quantum states as vectors
(e.g. |ψ〉, and all such states are called pure states)

An alternative way of representing quantum states is in terms 
of density matrices (a.k.a. density operators)

The density matrix of a pure state |ψ〉 is the matrix ρ = |ψ〉〈ψ|

Example: the density matrix of α|0〉 + β|1〉 is 
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Density matrices (II)Density matrices (II)

Effect of a unitary operation on a density matrix: 
applying  U to  ρ yields UρU†

Effect of a measurement on a density matrix: 
measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,
yields the k th outcome with probability 〈ϕk|ρ|ϕk〉

How do quantum operations work using density matrices?

(this is because the modified state is U|ψ〉〈ψ|U† )

(this is because 〈ϕk|ρ|ϕk〉 = 〈ϕk|ψ〉〈ψ|ϕk〉 = |〈ϕk|ψ〉|2 )
—and the state collapses to |ϕk〉〈ϕk|
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Density matrices (III)Density matrices (III)
A probability distribution on pure states is called a mixed state:
( (|ψ1〉, p1), (|ψ2〉, p2), …, (|ψd〉, pd))
The density matrix associated with such a mixed state is:

∑
=

=
d

k
kkkp

1
ψψρ

Example: the density matrix for ((|0〉, ½ ), (|1〉, ½ )) is: 
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Question: what is the density matrix of
((|0〉 + |1〉, ½ ), (|0〉 − |1〉, ½ )) ?
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Density matrices (IV)Density matrices (IV)

Effect of a unitary operation on a density matrix: 
applying  U to  ρ still yields UρU†

How do quantum operations work for these mixed states?

This is because the modified state is:
tt
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Effect of a measurement on a density matrix: 
measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,
still yields the k th outcome with probability 〈ϕk|ρ|ϕk〉

Why?
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