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Overview



Moore’s Law
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Following trend ... atomic scale in 15-20 years

Quantum mechanical effects occur at this scale:

« Measuring a state (e.g. position) disturbs it

« Quantum systems sometimes seem to behave
as if they are in several states at once

« Different evolutions can interfere with each other



Quantum mechanical effects

Additional nuisances to overcome?
or

New types of behavior to make use of?

[Shor, 1994]: polynomial-time algorithm for
factoring integers on a quantum computer

This could be used to break most of the existing
public-key cryptosystems on the internet, such
as RSA



Quantum algorithms
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Also with quantum information:

« Faster algorithms for combinatorial search [Grover '96]
« Unbreakable codes with short keys [Bennett, Brassard '84]

« Communication savings in distributed systems
[C, Buhrman '97]

* More efficient “proof systems” [Watrous *99]

: uantum
- and ap extensive guantum incil’ormation
information theory arises, which theory
generalizes classical information
theory classical
information
For example: a theory of quantum theory

error-correcting codes



This course covers the basics of
quantum information processing

Topics include:

* Quantum algorithms and complexity theory

* Quantum information theory

« Quantum error-correcting codes®

* Physical implementations”

* Quantum cryptography

* Quantum nonlocality and communication complexity

* Jonathan Baugh



General course information

Background:

» classical algorithms and complexity
* linear algebra
* probability theory

Evaluation:

« 3 assignments (15% each)
* midterm exam (20%)
* written project (35%)

Recommended text:

“Quantum Computation and Quantum Information”
by Nielsen and Chuang (available at the UW Bookstore)



Basic framework

of quantum
iInformation




Types of information
iIs quantum information digital or analog?

probabilistic
digital: 1 1 analog: 1
P
r
0 0 0—*
0 1 r e |0,1]
P q
* Probabillities p, ¢ >0, p+¢g =1 « Can explicitly extract r
« Cannot explicitly extract p and ¢« Issue of precision for
(only statistical inference) setting & reading state
* In any concrete setting, explicit * Precision need not be
state is O or 1 perfect to be useful

* Issue of precision (imperfect ok) 10



Quantum (digital) information

1 1

0 0
0 1
a p

« Amplitudes o, B € C, |o]? + B2 =1

 Explicit state is {a
B

« Cannot explicitly extract o and 3
(only statistical inference)

* Issue of precision (imperfect ok)
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Dirac bral/ket notation

Ket: [\/) always denotes a column vector, e.g. |4,

Convention: |0) :m 4 :m ad

Bra: <\|I| always denotes a row vector that is the conjugate
transpose of [\/), e.g. [, o ... o]

Bracket: ((0[\/) denotes ((|:|\W/), the inner product of
@) and [y)
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Basic operations on qubits ()
(0) Initialize qubit to |0) or to |1)

(1) Apply a unitary operation U (U'U=1)

Examples:

cosO —sin0 0 1
Rotation: | NOT (bit flip): o, =X =

sin®  cos0 1 0

111 _ 1 0}
Hadamard: 7 =— Phase flip: o0.=2=
J2 L —1} P {o -1
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R {o with prob \a\z
1 with prob ||

... and the quantum state collapses

(*) There exist other quantum operations, but they
can all be “simulated” by the aforementioned types

Example: measurement with respect to a different
orthonormal basis {|y), |v’)} 14



Distinguishing between two states

1

Let [ be in state \+>:%(\o>+\1>) or \_>:$(\0>_\1>)
Question 1: can we distinguish between the two cases?

Distinguishing procedure:
1. apply H
2. measure

This works because H|[+)=1(0) and H|-)=|1)

Question 2: can we distinguish between |0) and [+)?

Since they’re not orthogonal, they cannot be perfectly
distinguished ...
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Nn-qubit systems

Probabilistic states:

Vx, p. 20

>p, =1

Dirac notation: |[000), [001), |010), ..., |111) are basis vectors,

0 |y)= S|

| P111

pooo_
Poo1
Po1o
Po11
P1oo
P1o1
P110

Quantum states:

Vx, a eC

2




Operations on n-qubit states

Unitary operations: Zax‘x> > U(Z ax‘x>j

X

(U'U=1)

Measurements:

1000 with prob |agg,|”

70O
0 . 2
001 with prob |o,|

_ 111 with prob \am\z

.. and the quantum state collapses
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Entanglement

Product state (tensor/Kronecker product):

(o0 + A1) (@] 0) + A1) = aer'|00) + 0’| 01) + Bar'|[10) + B[ 11)
Example of an entangled state:  |00)+-4|11)

... can exhibit interesting “nonlocal” correlations:

18



Structure among subsystems
qubits: time m—)

U

/4

\\ J
Y

unitary operations measurements

S
{| O
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Quantum computations

Quantum circuits:

0)

1)

1)

-

0)

1)

-

\/\"/\/\”/\/\/

0)

“Feasible” if circuit-size scales polynomially
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Example of a one-qubit gate
applied to a two-qubit system

' (do nothing) [ {”oo ”01}
Uy Uy
& —u—

The resulting 4x4 matrix is
Maps basis states as: - -

Uy, Uy, O 0
0)0) — |0)U0)
01y — [0)U|1) I®U =
1)/0) — |1YU|0)
1) = (DU 0 0wy uy

u, u, 0 0

0 0 wu, u,




Controlled-U gates

' T [ = {“oo ”01}
Uy Up
& —u—

Resulting 4x4 matrix is
controlled-U =

Maps basis states as: 0O 0 O
0)/0) — |0)/0) 0 O
0)[1) — [0)|1)

1)/0) = |1)U|0)
DI = [1HU|)

1

0 1

0 0 uy uy
0 0

U, Uy



Controlled-NOT (CNOT)
T @) ——e—— |a)

— X 1) D adb)

Note: “control” qubit may change on some input states
0) +11) ® 0)—11)

0) = 11) D 0) = 11)
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