Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681

Lecture 1 (2005)

Richard Cleve

DC 3524 cleve@cs.uwaterloo.ca

Moore's Law

Following trend ... atomic scale in 15-20 years

Quantum mechanical effects occur at this scale:

- Measuring a state (e.g. position) disturbs it
- Quantum systems sometimes seem to behave as if they are in several states at once
- Different evolutions can interfere with each other

Quantum mechanical effects Additional nuisances to overcome? or New types of behavior to make use of?

[Shor, 1994]: polynomial-time algorithm for factoring integers on a *quantum computer*

This could be used to break most of the existing public-key cryptosystems on the internet, such as RSA

Quantum algorithms

Also with quantum information:

- Faster algorithms for combinatorial search [Grover '96]
- Unbreakable codes with short keys [Bennett, Brassard '84]
- Communication savings in distributed systems
 [C, Buhrman '97]
- More efficient "proof systems" [Watrous '99]

... and an extensive quantum information theory arises, which generalizes classical information theory

For example: a theory of quantum error-correcting codes

This course covers the basics of quantum information processing

Topics include:

- Quantum algorithms and complexity theory
- Quantum information theory
- Quantum error-correcting codes*
- Physical implementations*
- Quantum cryptography
- Quantum nonlocality and communication complexity

* Jonathan Baugh

General course information

Background:

- classical algorithms and complexity
- linear algebra
- probability theory

Evaluation:

- 3 assignments (15% each)
- midterm exam (20%)
- written project (35%)

Recommended text:

"Quantum Computation and Quantum Information" by Nielsen and Chuang (available at the UW Bookstore)

Basic framework of quantum information

- Probabilities $p, q \ge 0, p+q=1$
- Cannot explicitly extract p and q (only statistical inference)
- In any concrete setting, explicit state is 0 or 1
- Issue of precision (imperfect ok)

- Can explicitly extract r
- Issue of precision for setting & reading state
- Precision need not be perfect to be useful

Quantum (digital) information

- Amplitudes $\alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1$
- Explicit state is $\begin{bmatrix} \alpha \\ \rho \end{bmatrix}$
- Cannot explicitly extract α and β (only statistical inference)
- Issue of precision (imperfect ok)

Dirac bra/ket notation

Ket: $|\Psi\rangle$ always denotes a column vector, e.g. $\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \vdots \\ \alpha_1 \\ \alpha_2 \end{bmatrix}$

Convention:
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Bra: $\langle \Psi |$ always denotes a row vector that is the conjugate transpose of $|\Psi \rangle$, e.g. $[\alpha_1^* \alpha_2^* \dots \alpha_d^*]$

<u>Bracket</u>: $\langle \phi | \psi \rangle$ denotes $\langle \phi | \cdot | \psi \rangle$, the inner product of $| \phi \rangle$ and $| \psi \rangle$

Basic operations on qubits (I)

(0) Initialize qubit to $|0\rangle$ or to $|1\rangle$

(1) Apply a unitary operation $U(U^{\dagger}U=I)$

Examples:

Rotation:
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
NOT (bit flip): $\sigma_x = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Hadamard: $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ Phase flip: $\sigma_z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

(*) There exist **other** quantum operations, but they can all be "simulated" by the aforementioned types

Example: measurement with respect to a different orthonormal basis $\{|\psi\rangle, |\psi'\rangle\}$

Distinguishing between two states

Let be in state $|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ or $|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

Question 1: can we distinguish between the two cases?

Distinguishing procedure:

- 1. apply H
- 2. measure

This works because $H |+\rangle = |0\rangle$ and $H |-\rangle = |1\rangle$

Question 2: can we distinguish between $|0\rangle$ and $|+\rangle$?

Since they're not orthogonal, they *cannot* be *perfectly* distinguished ...

n-qubit systems

Probabilistic states:

$\forall x, p_x \ge$	≥ 0
$\sum_{x} p_{x} = 1$	

 p_{000} *p*₁₁₀

Dirac notation: $|000\rangle$, $|001\rangle$, $|010\rangle$, ..., $|111\rangle$ are basis vectors,

so
$$|\psi\rangle = \sum_{x} \alpha_{x} |x\rangle$$

... and the quantum state collapses

Entanglement

Product state (tensor/Kronecker product):

 $(\alpha|0\rangle + \beta|1\rangle)(\alpha'|0\rangle + \beta'|1\rangle) = \alpha\alpha'|00\rangle + \alpha\beta'|01\rangle + \beta\alpha'|10\rangle + \beta\beta'|11\rangle$

Example of an *entangled* state: $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$

... can exhibit interesting "nonlocal" correlations:

Structure among subsystems

qubits: time

Quantum computations

Quantum circuits:

"Feasible" if circuit-size scales polynomially

Example of a one-qubit gate applied to a two-qubit system

 $\begin{aligned} |0\rangle|0\rangle &\rightarrow |0\rangle U|0\rangle \\ |0\rangle|1\rangle &\rightarrow |0\rangle U|1\rangle \\ |1\rangle|0\rangle &\rightarrow |1\rangle U|0\rangle \\ |1\rangle|1\rangle &\rightarrow |1\rangle U|1\rangle \end{aligned}$

The resulting 4x4 matrix is

 $U = \begin{vmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{vmatrix}$

$$I \otimes U = \begin{bmatrix} u_{00} & u_{01} & 0 & 0 \\ u_{10} & u_{11} & 0 & 0 \\ 0 & 0 & u_{00} & u_{01} \\ 0 & 0 & u_{10} & u_{11} \end{bmatrix}$$

Controlled-*U* **gates**

Maps basis states as:

 $\begin{array}{l} |0\rangle|0\rangle \rightarrow |0\rangle|0\rangle \\ |0\rangle|1\rangle \rightarrow |0\rangle|1\rangle \\ |1\rangle|0\rangle \rightarrow |1\rangle U|0\rangle \\ |1\rangle|1\rangle \rightarrow |1\rangle U|1\rangle \end{array}$

$$U = \begin{bmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{bmatrix}$$

Resulting 4x4 matrix is controlled-U = $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & u_{00} & u_{01} \\ 0 & 0 & u_{10} & u_{11} \end{bmatrix}$

Note: "control" qubit may change on some input states

