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MooreMoore’’s Laws Law

• Measuring a state (e.g. position) disturbs it
• Quantum systems sometimes seem to behave 

as if they are in several states at once
• Different evolutions can interfere with each other

Following trend … atomic scale in 15-20 years

Quantum mechanical effects occur at this scale:
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Quantum mechanical effectsQuantum mechanical effects
Additional nuisances to overcome?

or
New types of behavior to make use of?

[Shor, 1994]: polynomial-time algorithm for 
factoring integers on a quantum computer

This could be used to break most of the existing 
public-key cryptosystems on the internet, such 
as RSA
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Also with quantum information:Also with quantum information:
• Faster algorithms for combinatorial search [Grover ’96]

• Unbreakable codes with short keys [Bennett, Brassard ’84]

• Communication savings in distributed systems               
[C, Buhrman ’97]

• More efficient “proof systems” [Watrous ’99]

… and an extensive quantum 
information theory arises, which 
generalizes classical information 
theory classical 

information
theory

quantum 
information

theory

For example: a theory of quantum 
error-correcting codes
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This course covers the basics of This course covers the basics of 
quantum information processingquantum information processing

Topics include:
• Quantum algorithms and complexity theory
• Quantum information theory
• Quantum error-correcting codes*
• Physical implementations*
• Quantum cryptography
• Quantum nonlocality and communication complexity

* Jonathan Baugh
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General course informationGeneral course information
Background:

•• classical algorithms and complexityclassical algorithms and complexity
•• linear algebralinear algebra
•• probability theoryprobability theory

Evaluation:

•• 3 assignments (15% each)3 assignments (15% each)
•• midterm exam (20%)midterm exam (20%)
•• written project (35%)written project (35%)

Recommended text:

“Quantum Computation and Quantum Information”
by Nielsen and Chuang (available at the UW Bookstore)
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Basic framework 
of quantum 
information
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qp

Types of informationTypes of information
is quantum information digital or analog?is quantum information digital or analog?

digital:

0

1

0
0

1

1

analog:

0

1

r ∈ [0,1]

r

• Can explicitly extract r
• Issue of precision for   q
setting & reading state 

• Precision need not be 
perfect to be useful

• Probabilities p, q ≥ 0, p + q = 1
• Cannot explicitly extract p and
(only statistical inference)

• In any concrete setting, explicit
state is 0 or 1

• Issue of precision (imperfect ok)

probabilistic
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Quantum (digital) informationQuantum (digital) information

0

1

0
0

1

1
α β

• Amplitudes α, β ∈ C, |α|2 + |β|2 = 1
• Explicit state is

• Cannot explicitly extract α and β
(only statistical inference)

• Issue of precision (imperfect ok)
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DiracDirac bra/bra/ketket notationnotation
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Ket: |ψ〉 always denotes a column vector, e.g. 

Bracket: 〈φ|ψ〉 denotes 〈φ|⋅|ψ〉, the inner product of 

|φ〉 and |ψ〉

Bra: 〈ψ| always denotes a row vector that is the conjugate 
transpose of |ψ〉, e.g.  [ α*

1 α*
2 … α*
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Basic operations on Basic operations on qubitsqubits (I)(I)
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⎦
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Rotation:

Hadamard: Phase flip:

NOT (bit flip):

(0) Initialize qubit to |0〉 or to |1〉

(1) Apply a unitary operation U (U†U = I )

Examples:
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Basic operations on Basic operations on qubitsqubits (II)(II)
(3) Apply a “standard” measurement:

α|0〉 + β|1〉
a 2

2

 probwith1
 probwith0
β
α

(∗) There exist other quantum operations, but they 
can all be “simulated” by the aforementioned types

Example: measurement with respect to a different 
orthonormal basis {|ψ〉, |ψ′〉}

|α|2

|β|2

|0〉

|1〉

|ψ〉

|ψ′〉

… and the quantum state collapses
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Distinguishing between two statesDistinguishing between two states

Question 1: can we distinguish between the two cases?

Let           be in state  or 

Distinguishing procedure:
1. apply H
2. measure

This works because H |+〉 = |0〉 and H |−〉 = |1〉

Question 2: can we distinguish between |0〉 and |+〉?

Since they’re not orthogonal, they cannot be perfectly
distinguished …

( )10
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1
+=+ ( )10
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nn--qubitqubit systemssystems
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Cαx x ∈∀ ,
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x xαψ
Dirac notation: |000〉, |001〉, |010〉, …, |111〉 are basis vectors,

so 
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Operations on Operations on nn--qubitqubit statesstates

Unitary operations: ⎟
⎠
⎞⎜

⎝
⎛∑∑

x
x

x
x xαxα Ua

… and the quantum state collapses

∑
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Measurements:
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EntanglementEntanglement

( )( ) 11'10'01'00'1'0'10 βββααβααβαβα +++=++

Product state (tensor/Kronecker product):

1100
2

1
2

1 +Example of an entangled state:

… can exhibit interesting “nonlocal” correlations: 
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Structure among subsystemsStructure among subsystems

V

U
W

qubits:

#2

#1

#4

#3

time

unitary operations measurements
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Quantum computationsQuantum computations

|0〉

|1〉

|1〉

|0〉

|1〉

|0〉

1

0

1

0

1

1

Quantum circuits:

“Feasible” if circuit-size scales polynomially
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Example of a oneExample of a one--qubitqubit gate gate 
applied to a twoapplied to a two--qubitqubit systemsystem
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⎦
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(do nothing)

The resulting 4x4 matrix is
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⎥
⎥
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UI
|0〉|0〉 → |0〉U|0〉
|0〉|1〉 → |0〉U|1〉
|1〉|0〉 → |1〉U|0〉
|1〉|1〉 → |1〉U|1〉

Maps basis states as:
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ControlledControlled--UU gatesgates
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⎥
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|0〉|0〉 → |0〉|0〉
|0〉|1〉 → |0〉|1〉
|1〉|0〉 → |1〉U|0〉
|1〉|1〉 → |1〉U|1〉

Maps basis states as:

Resulting 4x4 matrix is  
controlled-U =

⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0100

uu
uu

U
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ControlledControlled--NOT (CNOT)NOT (CNOT)

X

|a〉

|b〉 |a⊕b〉

|a〉
≡

Note: “control” qubit may change on some input states

|0〉 + |1〉

|0〉 − |1〉|0〉 − |1〉

|0〉 − |1〉
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