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2.1 Error models

2.1.1 Generic 1 qubit error

A generic qubit has the state

|Ψ〉 = α|0〉 + β|1〉
but qubits might not be isolated (and now we know that
there can be information hidden in quantum correlation be-
tween systems) so the most general evolution which in-
clude an environment (with state |ε〉) takes the form

|0〉|ε〉 → |0〉|ε0
0〉 + |1〉|ε1

0〉
|1〉|ε〉 → |0〉|ε0

1〉 + |1〉|ε1
1〉

and thus
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(α|0〉+ β|1〉)|ε〉 →

(α|0〉 + β|1〉)
1

2
(|ε0

0〉 + |ε1
1〉) (⇒ 1l|Ψ〉)

+(α|0〉 − β|1〉)
1

2
(|ε0

0〉 − |ε1
1〉) (⇒ Z|Ψ〉)

+(α|1〉 + β|0〉)
1

2
(|ε1

0〉 + |ε0
1〉) (⇒ X|Ψ〉)

+(α|1〉 − β|0〉)
1

2
(|ε1

0〉 − |ε0
1〉) (⇒ iY|Ψ〉)

The effect of the noise is to apply the error operators 1l, X , Y , Z

to the state |Ψ〉 depending on what the state of the environ-
ment is.

4



Note that these four operator form an operator basis in
the acting on the 2 dimensional Hilbert space of one qubit.
For n qubits we have 4n possible operators, obtained by
the tensor product of each one-qubit operator, i.e.. for two
qubits we would have 1l ⊗ 1l, X ⊗ 1l, . . . , X ⊗ X, . . . Z ⊗ Z.
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2.1.2 Phase shift

Let’s look at some simple examples of noise operators in
physical systems such as decoherence:

|0〉|ε〉 → |0〉|ε0〉 = |0〉|ε〉
|1〉|ε〉 → |1〉|ε1〉 = eiθ|1〉|ε〉

Thus

(α|0〉 + β|1〉)|ε〉 → (α|0〉 + eiθβ|1〉)|ε〉
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and which can be rewritten as

(α|0〉 + eiθβ|1〉)|ε〉 =
1 + eiθ

2
(α|0〉 + β|1〉)|ε〉

+
1 − eiθ

2
(α|0〉 − β|1〉)|ε〉

=
1 + eiθ

2
1l(α|0〉 + β|1〉)|ε〉

+
1 − eiθ

2
Z(α|0〉 + β|1〉)|ε〉

Here we have a certain amplitude (1+eiθ

2 ) of nothing hap-
pening (1l) and (1+eiθ

2 ) of a Z error happening.
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2.1.3 Unwanted interaction with another system

Another example is a system which interacts with an en-
vironment (qubit 2) (with a coupling U = e−iθZ1Z2/2 previ-
ously encountered). If the second qubit starts in the state
(|02〉 + |12〉)/2, we will end up in a state

|0〉(|02〉 + |12〉)/
√

2 → |0〉 (e−iθ/2|02〉 + eiθ/2|12〉)/
√

2︸ ︷︷ ︸
|ε1〉

|1〉(|02〉 + |12〉)/
√

2 → |1〉 (eiθ/2|02〉 + e−iθ/2|12〉)/
√

2︸ ︷︷ ︸
|ε2〉
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the overlap between the two states of the environment is
then

〈ε1||ε2〉 =
1

2
(eiθ/2〈02| + e−iθ/2〈12|)(eiθ/2|02〉 + e−iθ/2|12〉)

= cos θ

so as the interaction increases, the overlap between the en-
vironment states decrease up to θ = π/2 when the overlap
is zero.
With the state

|Ψ〉 = (α|0〉 + β|1〉)
the density matrix for the first qubit becomes

ρ1 =
1

2
Tr[U|Ψ〉(|02〉 + |12〉)(〈02| + 〈12|)〈Ψ|U†]

=

(
αα∗ αβ∗ cos θ

α∗β cos θ ββ∗

)
9



10



The density matrix for the first qubit is:

ρ1 =
1

2
Tr2[U|Ψ〉(|02〉 + |12〉)(〈02| + 〈12|)〈Ψ|U†]

=

(
αα∗ αβ∗ cos θ

α∗β cos θ ββ∗

)
=

1

2
e−iθZ1/2

(
αα∗ αβ∗

α∗β ββ∗

)
eiθZ1/2

+
1

2
eiθZ1/2

(
αα∗ αβ∗

α∗β ββ∗

)
e−iθZ1/2

=
∑
i

AiρA
†
i

The Ai are called Krauss operators.
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2.1.4 The depolarization error model

Let’s look at the depolarizing error model which consists in
applying any one of the Pauli matrices (chosen at random)
to the state. So the quantum operation is given by the family
of operators:

{Ai} = {(1 −
3p

4
)1l,

p

4
X,

p

4
Y,

p

4
Z}

or

ρ → (1 − p)ρ +
p

4
(1lρ1l + XρX + Y ρY + ZρZ)

for

ρ =

(
α β

β∗ 1 − α

)
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ρ → (1 − p)ρ + p
4

[ (
α β

β∗ 1 − α

)
+

(
1 − α β∗

β α

)
+

(
1 − α −β∗

−β α

)
+

(
α −β

−β∗ 1 − α

) ]
= (1 − p)ρ + p1l

|0 〉〈 0 |

(1 p ) |0 〉〈 0 | + p 1l+
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2.1.5 Krauss operators

Let’s suppose that a system and its environment start in a
separable state and for simplicity that they are both in pure
states (|Ψ〉 = |Ψs〉 ⊗ |Ψe〉).

ρs = TreU |Ψe〉 ⊗ |Ψs〉〈Ψs| ⊗ 〈Ψe|U†

=
∑
i

〈Ψi
e|U |Ψe〉︸ ︷︷ ︸ ⊗|Ψs〉〈Ψs| ⊗ 〈Ψe|U†|Ψi

e〉︸ ︷︷ ︸
Ai A

†
i

The set of operators {Ai} are called Krauss operators. They
are not unique, as we can use another basis for the trace
over the environment, but up to this freedom they are uniquely
defined. The unitarity of the whole system-environment im-
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plies that ∑
i

A
†
i Ai = 1l (1)

The {Ai} described the non-unitary evolution (when we
look only at the first system and the initial state factorizes)
and describe the noise influencing the device which we
want to use for quantum information processing.
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2.2 Quantum encoding

2.2.1 Code

A code C is a subspace of a Hilbert space. For k qubits it
would have dimension 2k.
We can reach this subspace using an encoding, i.e. a

unitary transformation which maps a state with the quan-
tum information and extra qubits (called ancillae) into a new
state which is protected against some form of noise.
We also define {Rr} as a recovery operator. This will be

the operator which bring the state back to its original after
a set of errors {Aa} occurred.
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2.2.2 Error

In order to define an error correcting code we need to define
a notion of error

E = |(RrAa − 〈Ψ|RrAa|Ψ〉)|Ψ〉|2

RrAa| 〉Ψ

| 〉Ψ
Ε
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2.2.3 Quantum error correcting code

An error correcting code is a triple (C, A, R)such that E(C, A, R) =

0. This implies that
RrAa = λra1l

on the code C.
An equivalent definition for a quantum error correcting code

in term of properties of a basis state (|iL〉) of the code C

〈iL|A†
aAb|jL〉 = δijcab

• If i 6= j → basis states are mapped to orthogonal states
• If i = j → that coherence is preserved (relative length

of the basis vectors).
18



Note if {Aa} is a correctable set of errors, any other set
obtained from a linear combination of the these errors also
form a correctable set.
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2.2.4 Example of Quantum Encoding:Collective er-
rors

As an example,let’s look at a quantum version of the classi-
cal case we have given before (where the errors are collec-
tive bit flips {Ai} = {

√
(1 − p)1l,

√
p XX}) would be given

by

(α|0〉 + β|1〉)︸ ︷︷ ︸ |0〉︸︷︷︸ →
Q.Info ancilla

(1 − p)(α|00〉 + β|10〉)(α∗〈00| + β∗〈00|)
+p(α|11〉 + β|01〉)(α∗〈11| + β∗〈01|)

In this example the encoding is trivial (the unit operator).
The recovery operator consist in measuring the parity, which
is achieved by a control not with the control on the second
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bit i.e. in Dirac notation 1l|0〉〈0| + X|1〉〈1| or in matrix nota-
tion

R =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 (2)
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2.2.5 The 3-qubit phase error QEC code

Let’s look at slightly more complex quantum error correc-
tion code, we mention before the model of decoherence.
Lets assume that the error are independent from one bit to
another. For one qubit the error model is {

√
1 − p1l,

√
pZ}.

For 3 qubits we get the quantum operation defined by the
Krauss operators

{Aa} = {(1 − p)3/21l,

(1 − p)
√

pZ1, (1 − p)
√

pZ2, (1 − p)
√

pZ3,

p
√

1 − pZ1Z2, p
√

1 − pZ2Z3, p
√

1 − pZ1Z3,

p3/2Z1Z2Z3}.
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Unfortunately we cannot find a code which protects for all
these errors but if p << 1, the dominant error term is the
one error term Zi term and we can neglect the other ones
(as p2 << p).
To protect for at most one Z error, we can get use the

encoding from the following quantum circuit

|0>

|0>

H

H

H

Encoding
|0> + |1>α β

00 → 00
01 → 01
10 → 11
11 → 10

={
Control-Not

| =
1√
2
(|0〉  +  - |1〉)

Hadamard

  +  -〉

which transform the state into

(α|0〉 + β|1〉)|0〉|0〉 → (α|0〉|0〉 + β|1〉|1〉)|0〉
→ (α|0〉|0〉|0〉 + β|1〉|1〉|1〉)
→ (α|+〉|+〉|+〉 + β|−〉|−〉|−〉).
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{Aa} ≈ {(1 − 3p/2)1l,

√
pZ1,

√
pZ2,

√
pZ3, + higher order in p

and remember that
ρf =

∑
a

Aa|Ψ〉〈Ψ|A†
a

And thus the state becomes for each operator
(α |+〉|+〉|+〉 + β|−〉|−〉|−〉) →

(α|+〉|+〉|+〉 + β|−〉|−〉|−〉)with prob. (1-3p/2)
(α|−〉|+〉|+〉 + β|+〉|−〉|−〉)with prob. p
(α|+〉|−〉|+〉 + β|−〉|+〉|−〉)with prob. p
(α|+〉|+〉|−〉 + β|−〉|−〉|+〉)with prob. p

Note: the initial state and its corrupted version are orthog-
onal and have kept relative coherence
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After this circuit we get the states

(α|0〉 + β|1〉)|0〉|0〉)with prob. (1-3p/2)
(α|1〉 + β|0〉)|1〉|1〉)with prob. p
(α|0〉 + β|1〉)|1〉|0〉with prob. p
(α|0〉 + β|1〉)|0〉|1〉with prob. p

The last two qubits identify which error has occurred. It is
called the syndrome.

|0>

|0>

H

H

H

H

H

H

DecoherenceEncoding Decoding
|0> + |1>α β

25



To get the original state on the first qubit we just need to
flip the first bit if and only if the two ancilla bits are in the
state |1〉 (that is called a Toffoli gate) and get

(α|0〉 + β|1〉)|0〉|0〉)with prob. (1-3p/2)
(α|0〉 + β|1〉)|1〉|1〉)with prob. p
(α|0〉 + β|1〉)|1〉|0〉with prob. p
(α|0〉 + β|1〉)|0〉|1〉with prob. p

Thus the whole circuit is given by:

|0>

|0>

Y90

Y90

Y90

Y-90

Y-90

Y-90

DecoherenceEncoding Decoding Error
Correction

Toffoli gate

|0> + |1>α β |0> + |1>α β
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2.2.6 Error analysis:

What is achieved by this code and its error correction pro-
cedure is that the no or one error part of the quantum op-
eration (1l or Z1, Z2, Z3), are not going to lead to corrupted
quantum information.
In the quantum operation consisting of independent 1-

qubit errors, they corresponded to the linear term in p. How-
ever in this error model there were amplitudes p2(1 − p)

to get the errors Z1Z2, Z2Z3, Z1Z3 and p3 to get the error
Z1Z2Z3. These errors are detectable because they lead
to state outside the codes but they are not correctable be-
cause they lead to states which are not orthogonal to the
ones with errors Z1, Z2, Z3.
We are thus left with a probability 3p2(1 − p) − p3 of still

having a corrupted state. This should be compared to the
27



probability p of having a single corrupted qubit and not do-
ing any quantum error correction. The quantum error cor-
rection procedure is useful if

3p2(1 − p) − p3 < p ⇒ p < 0.5 (3)
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2.2.7 Shor’s code

We have shown that we can correct phase Z errors us-
ing the code mentioned above, but generic (independent)
errors are linear combination of X, Y, Z, so how can we
generalize the above code?
In turns out that if we correct for X and Z errors indepen-

dently we will also correct for Y . Realizing this, Peter Shor
gave an explicit code for correcting a generic one qubit er-
ror using 8 extra qubits (ancilla):
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(α|0〉 + β|1〉)|0〉|0〉|0〉|0〉|0〉|0〉|0〉|0〉 ⇒

α(|0〉|0〉|0〉 + |1〉|1〉|1〉)
(|0〉|0〉|0〉 + |1〉|1〉|1〉)

(|0〉|0〉|0〉 + |1〉|1〉|1〉)
+

β(|0〉|0〉|0〉 − |1〉|1〉|1〉)
(|0〉|0〉|0〉 − |1〉|1〉|1〉)

(|0〉|0〉|0〉 − |1〉|1〉|1〉)

A = {1l, X1, Y1, Z1, . . . , Y9, Z9}
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We have seen how we can take quantum information and
encoded it in a new state so that is more robust against cor-
ruption. This is a big step towards having robust quantum
information processing. But there some of the questions
remaining:
•How do we find codes?
•How do we protect information during information pro-

cessing?
•How do we encode so that a given algorithm with “N”

gates is performed robustly?
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We have seen how we can take quantum information and
encoded it in a new state so that is more robust against cor-
ruption. This is a big step towards having robust quantum
information processing. But there some of the questions
remaining:
•How do we find codes?
•How do we protect information during information pro-

cessing?
•How do we encode so that a given algorithm with “N”

gates is performed robustly?

2



3.1 Encoded operations and error propaga-
tion

Everything we have done now has assumed that we wanted
to keep a state intact, but in quantum computation we need
to manipulate states, i.e we need to make transformation

α|0L〉 + β|1L〉 → α′|0L〉 + β′|1L〉
α| + ++〉 + β| − −−〉 → α′| + ++〉 + β′| − −−〉

We could decode, then do an operation on the qubit and
reencode, but this would leave the qubit unprotected from
noise. So we need to do gates in such a way that they
remain protected.
A crucial element for understanding how to implement gates

in a fault tolerant way on encoded states is to see how er-
rors propagates through a circuit. In particular there are

3



gates organized in such a way that one error will propagate
to more than one error. These are bad as, if we use 1 error
correcting codes, these gates will destroy the advantage of
error correction.

4



A useful set of operations are the normalizer operations.
They are operation which preserve the Pauli operators.
Example are given by The Pauli matrices themselves:

X → ZXZ = −X

but these one either give you the same operator or minus
this operator. More interesting is the Hadamard gate

H = H† =

(
1 1

1 −1

)
(1)

X → HXH = Z andZ → HZH = X

Even more interesting are the controlled-gate is also in the
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normalizer
X1l → CNOTX1l CNOT = XX

Z1l → CNOTZ1l CNOT = Z1l

1lX → CNOT1lX CNOT = 1lX

1lZ → CNOT1lZ CNOT = ZZ

The normalizer can be generated by by the gates

Hadamard:H =
1

√
2

(
1 1

1 −1

)
Phase gate:P =

(
1 0

0 i

)
and

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
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3.1.1 Transversal gates
Bad error:

Z
{
{

Z

Z

Good Error:

Z

{
{ Z

Z

This latter gate is called transversal, i.e. one qubit of an
encoded quite affect acts on at most one qubit of another
encoded qubit. Stabilizer operations can be implemented
through transversal gates.
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3.1.2 Other gates

It turns out that the normalizer gates are not a universal
set of gates when they act on the Pauli matrices. So we
need to be able to make other gates, it turns out that the
preparation of the states |0〉, |1〉and |π/8〉

|π/8〉 = cos[π/8]|0〉 + sin[π/8]|1〉
is sufficient to make a universal set of gates. To be com-
plete we should show that we can reliably check that we go
the state |π/8〉 but this will be left as an exercise.
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3.2 Error correcting codes and fault tolerant
operations

The elements of the previous page show that we can we
can protect and manipulate information in fault tolerant way:
i.e. that if the bare error rate is ε, the error rate after the in-
formation has been encoded becomes cε2 (where we have
assumed that a one error correcting code has been used.
Thus we can increase the number of operation we do reli-

ably from 1/ε to 1/cε2.
The next question is how to increase this number of oper-

ations so we can do an algorithm with a larger number of
gates?

9



The idea is to increase the number of error which can be
corrected. This can be done in different ways: either by
looking at better codes or another possibility os to use con-
catenation. This idea of the latter methods is to reencode
encoded qubits in a hierarchical way. The advantage of this
method is that it is possible to arrange the gates so that the
error model is the same at all level of the hierarchy.

h=1 h=2

ε ε ε2 4
C C

3

Error
probability
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3.3 Accuracy threshold theorem:

A quantum computation can be as long
as required with any desired accuracy as
long as the noise level is below a thresh-
old value:

Perror < Pthreshold
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The threshold can be calculated to be around 10−2 with
the following assumptions:
•Operations can be done in parallel
•Errors are independent from one qubit to qubit
•Any two qubits can interact in one operation
•There are no lost of qubits
•Classical computing comes for free
•There is a supply of fresh qubits on demand at no cost
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