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1. Distinguishing between 3-to-1 balanced and zero. For n ≥ 2, call a function f : {0, 1}n →
{0, 1} 3-to-1 balanced , if for 3 · 2n−2 values of x, f(x) = 1 and, for the remaining 2n−2 values of x,
f(x) = 0. (Thus the ratio of 1s to 0s for such an f is 3 to 1.) Call a function f : {0, 1}n → {0, 1}
zero if, for all x, f(x) = 0. Consider the 3-to-1 vs. zero problem, where the input is a black-box
computing a function f : {0, 1}n → {0, 1} that is promised to be either 3-to-1 balanced or zero
and the goal is to determine which of the two types f is.

(a) How many queries to f must a classical algorithm make to solve 3-to-1 vs. zero with certainty
on a worst-case input?

(b) Give a quantum algorithm that solves 3-to-1 vs. zero with a single query to f , with certainty
on a worst-case input. (As usual for quantum algorithms, a query to f means an application
of the unitary transformation Uf : |x, y〉 7→ |x, y ⊕ f(x)〉.)

2. Approximating unitary transformations. There are frequent situations where it is much
easier to approximate a unitary transformation than to compute it exactly. For a vector v =

(v0, . . . , vm−1), let ||v|| =
√∑m−1

x=0 |vx|2, which is the usual Euclidean length of v. For an arbitrary
m×m matrix M , define its norm ||M || as

||M || = max
|ψ〉

||M |ψ〉||,

where the maximum is taken over quantum states (i.e., vectors |ψ〉 such that |||ψ〉|| = 1). We can
now define the distance between two m×m unitary matrices U1 and U2 as ||U1 − U2||.
(a) Show that if ||U1 − U2|| ≤ ε then, for any quantum state |ψ〉, ||U1|ψ〉 − U2|ψ〉|| ≤ ε.

(b) Show that ||A − B|| ≤ ||A − C|| + ||C − B|| for any three m ×m matrices A,B, C. (Thus,
this distance measure satisfies the “triangle inequality”.)

(c) Show that ||A⊗ I|| = ||A|| for any m×m matrix A and the l × l identity matrix I.

(d) Show that ||U1AU2|| = ||A|| for any m ×m matrix A and any two m ×m unitary matrices
U1 and U2.

3. Approximate quantum Fourier transform modulo 2n. Recall that in class we saw how
to compute the QFT modulo 2n by a quantum circuit of size O(n2). Here, we consider how to
compute an approximation of this QFT within ε by a quantum circuit of size O(n log(n/ε)).

(a) Recall that the O(n2) size QFT quantum circuit uses gates of the form

Pk =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/2k


 ,



for values of k that range between 2 and n. Show that ||Pk − I|| ≤ 2π/2k, where I is the
4× 4 identity matrix. (Thus, Pk is very close to I when k is close to n.)

(b) The idea behind the approximate QFT circuit is to start with the O(n2) circuit and then
remove some of its Pk gates. Removing a Pk gate is equivalent to replacing it with an I
gate. Removing a Pk gate makes the circuit smaller but it also changes the unitary trans-
formation. From part (a) and the general properties of our measure of distance between
unitary transformations in the previous question, we can deduce that if k is large enough
then removing a Pk gate changes the unitary transformation by only a small amount. Show
how to use this approach to obtain a quantum circuit of size O(n log(n/ε)) that computes a
unitary transformation F̃m such that ||F̃m − Fm|| ≤ ε.
(Hint: Try removing all Pk gates where k ≥ t, for some carefully chosen threshold t. The
properties of our distance measure from the previous question should be useful for your
analysis here.)

4. More generalizations of Toffoli gates. Let U be any 2 × 2 unitary operation. Recall the
generalized n-qubit Toffoli gate that maps |x1, . . . , xn−1〉|y〉 to

{
|x1, . . . , xn−1〉|y〉 if x1 ∧ · · · ∧ xn−1 = 0
|x1, . . . , xn−1〉U |y〉 if x1 ∧ · · · ∧ xn−1 = 1,

for all x1, . . . , xn−1, y ∈ {0, 1}. The unitary matrix corresponding to this is of the form



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · u00 u01

0 0 · · · u10 u11




,

though the gate can be oriented in different ways (ie, the target qubit can be any one of the n
qubits). Consider the more general operations of the form




1 0 · · · 0 0 · · · 0 · · · 0
0 1 · · · 0 0 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

0 0 · · · u00 0 · · · u01 · · · 0
0 0 · · · 0 1 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

0 0 · · · u10 0 · · · u11 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

0 0 · · · 0 0 · · · 0 · · · 1




,

where the entries of U are placed in positions (x, x), (x, y), (y, x), and (y, y) of this matrix (for
arbitrary x, y ∈ {0, 1}n such that x 6= y). Show that any such operation can be simulated with
one generalized n-qubit Toffoli gate (in one of its n orientations) plus O(n) two-qubit CNOT gates
plus O(n) one-qubit NOT gates.
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5. Entanglement among three qubits. Suppose that Alice, Bob and Carol each possess a qubit
and that the joint state of their three qubits is

|ψ〉ABC = 1√
2
(|000〉+ |111〉).

(a) Suppose that Carol leaves the scene, taking her qubit with her, and without communicating
with either Alice or Bob. Consider the two-qubit state of Alice and Bob’s qubits. Is this
state equivalent to 1√

2
(|00〉+ |11〉)? Justify your answer.

(b) Suppose that Carol leaves the scene, again taking her qubit with her, but she is allowed to
send one classical bit to Alice. Carol wants to help Alice and Bob transform their state into
the state 1√

2
(|00〉+ |11〉) (and without Alice and Bob having to send any messages between

each other). The framework is as follows:

i. Carol applies some unitary operation U to her qubit, and then measures the qubit,
yielding the classical bit b.

ii. Carol sends b to Alice.
iii. Alice applies a unitary operation, depending on b, to her qubit. In other words, Alice

has two unitary operations V0 and V1, and she applies Vb to her qubit.

At the end of this procedure, the two-qubit state of state of Alice and Bob’s qubits should
be 1√

2
(|00〉+ |11〉).

Explain how to make this procedure work.

(c) Is it possible for Alice, Bob and Carol to each possess a qubit such that the joint state of the
three qubits has both of the following properties at the same time?

Property 1: The two-qubit state of Alice and Bob’s qubits is 1√
2
(|00〉+ |11〉).

Property 2: The two-qubit state of Bob and Carol’s qubits is 1√
2
(|00〉+ |11〉).

Either give an example of a three-qubit state with these properties or show that such a state
does not exist.

6. Let F be the quantum Fourier transform modulo 2n. That is, F |x〉 = 1
2n/2

∑2n−1
k=0 ωxy|y〉, for all

x ∈ {0, 1}n = {0, 1, . . . , 2n − 1}, where ω = e2πi/2n
. Also, define the “phase gate” U acting on n

qubits as U |x〉 = ωx|x〉, for all x ∈ {0, 1, . . . , 2n − 1}.
(a) Show how to implement U with O(n) one-qubit gates.

(b) What is the effect of F †UF on basis states? (Ie, what is F †UF |x〉, for x ∈ {0, 1, . . . , 2n−1}?)
Give your answer in as simple terms as possible.
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