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Figure 1: Our Reach for the Arcs algorithm consistently produces a more faithful mesh reconstruction from discrete SDF data at
low and moderate resolutions compared to alternatives, as demonstrated on this nonzero genus Nightingale shape.

ABSTRACT
We introduce an algorithm to reconstruct a mesh from discrete

samples of a shape’s Signed Distance Function (SDF). A simple

geometric reinterpretation of the SDF lets us formulate the problem

through a point cloud, from which a surface can be extracted with

existing techniques. We extract all possible information from the

SDF data, outperforming commonly used algorithms and imposing

no topological or geometric restrictions.

CCS CONCEPTS
• Computing methodologies→ Mesh models; Point-based
models; Mesh geometry models.
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1 INTRODUCTION
Signed Distance Functions (SDFs) represent a shape by measuring

the distance to its surface, using the function’s sign to differentiate

the shape’s inside (negative) from its outside (positive). The attrac-

tive properties of SDFs have made them popular in applications

from vision to graphics to applied mathematics [Gibson 1998; Osher

and Fedkiw 2005; Sethian et al. 1999] to, recently, machine learning

[Marschner et al. 2023; Park et al. 2019]. This popularity has made

converting a discrete set of samples of an SDF into the explicit

surface representations (e.g., triangle meshes) required by most

downstream tasks a fundamental and critical research question.

Surprisingly, available methods for this task are lacking in recon-

struction quality, robustness, or both. As shown recently by Sellán

et al. [2023], both traditional and modern local, grid-based algo-

rithms like Marching Cubes (MC) [Lorensen and Cline 1998] and

Neural Dual Contouring (NDC) [Chen et al. 2022] heavily underuti-

lize the global SDF information contained in the samples, leading to

suboptimal results at low and medium sampling resolutions. On the

other hand, while the recent Reach for the Spheres algorithm [Sellán

et al. 2023] succeeds at exploiting all the information contained in

the SDF, it manages to do so only for the simplest shapes of zero

genus for which it does not encounter a flow singularity and fail.

We introduce Reach for the Arcs, an algorithm to recover meshes

from SDFs that exploits all the information about the SDF samples

without any topological restriction. Unlike Sellán et al. [2023], who

pose the problem as that of finding a surface tangent to a set of

spheres, we instead show that said tangency can be imposed on a set

of smaller arcs or spherical regions (Figure 3). This lets us introduce
a completely different algorithm, which explores the space of all

https://doi.org/10.1145/3641519.3657419
https://doi.org/10.1145/3641519.3657419
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Figure 2: Given SDF data as input (left), we begin by sampling the empty volum free of SDF spheres (center left). We project the
sample points onto each feasibility arc to obtain an initial tangency point cloud (center). We then fine-tune this point cloud
(center right) and obtain our final output with a point-cloud-to-surface reconstruction algorithm (right).

possible tangency points in each arc, treats each choice of these

as a point cloud, and extracts a mesh via the traditional Poisson

Surface Reconstruction (PSR) [Kazhdan et al. 2006].

By combining SDFs and point clouds, we circumvent the main

limitations of Reach for the Spheres, avoiding the appearance of

flow singularities and allowing for reconstructions of any topology.

However, like Sellán et al. [2023], our algorithm is successful at

exploiting all the existing global SDF information, thus significantly

outperforming local grid-based methods like MC and even neural

approaches that are trained on large datasets like NDC (see Figure 1),

especially for low and mid resolution inputs.

In this work, we show the robustness of our method across a

large and diverse set of geometries and resolutions and use ex-

perimentation to justify our algorithmic and parametric choices.

Through qualitative and large-scale quantitative comparisons, we

conclude that our algorithm produces significantly more accurate

reconstructions from discrete, low and mid resolution SDF data

than existing methods, while either matching them or outperform-

ing them at higher resolutions. This makes our algorithm the ideal

choice for applications in which exact SDF data must be converted

into an explicit mesh representation. Even further, we end by show-

ing that our work can be easily extended to inexact signed distance

data like noisy, clamped or bounded SDFs. While our algorithm’s

runtime is slower than alternatives like MC and NDC, we also show

how it can be implemented in barely super-linear complexity.

2 RELATEDWORK
2.1 Signed Distance Fields
SDFs have long seen use as a shape representation tool across many

scientific fields, from computational physics [Osher and Fedkiw

2003; Sethian et al. 1999] to robotics [Liu et al. 2022] and manu-

facturing [Brunton and Rmaileh 2021]. Within computer graphics,

their topological flexibility have made them the geometric repre-

sentation of choice in many areas including image segmentation

[Vese and Chan 2002], shape modeling [Museth et al. 2002], colli-

sion detection [Fisher and Lin 2001; Fuhrmann et al. 2003], liquid

surface evolution [Foster and Fedkiw 2001] and rendering [Hart

1996]; including, more recently, inverse rendering [Bangaru et al.

2022; Jiang et al. 2020; Liu et al. 2020; Vicini et al. 2022].

Lately, the fact that SDFs represent geometric objects through

mathematical functions that have regular properties and can be

parametrized through neural networks [Park et al. 2019] has also

led to their use in 3D Deep Learning applications [Marschner et al.

2023; Sharp and Jacobson 2022; Takikawa et al. 2021].

2.2 Isosurface Extraction
Constructing an explicit (usually triangle mesh) surface from the

zero isosurface of an implicit surface representation is a classical

problem, variously referred to as isosurfacing, polygonization, or

simply implicit surface reconstruction. The survey by De Araújo

et al. [2015] classifies such methods into three categories: spatial

decomposition (e.g., marching cubes [Lorensen and Cline 1998]

and dual contouring [Ju et al. 2002]), surface tracking (also known

as advancing front) methods that build a mesh by crawling the

zero isosurface, and shrinkwrapping/inflation methods [Hanocka

et al. 2020; Stander and Hart 1997; Van Overveld and Wyvill 2004].

Spatial decomposition methods are the most common, presumably

for their simplicity, efficiency, and robustness. In general, traditional

isosurfacing methods do not explicitly place strong requirements

on the implicit function being processed, but (smoothed) indicator

functions or (exact or approximate) SDFs are common choices.

Isosurfacingmethods that directly exploit the properties of signed

distance fields have received less focus until relatively recently. A

pair of learning-based approaches [Chen et al. 2022; Chen and

Zhang 2021] improved marching cubes and dual contouring by

training on large datasets of true distance fields and using this in-

formation to enhance the placement of vertices. These approaches

use larger local windows of SDF data, and in doing so implicitly

exploit the behavior of distance fields. Most directly relevant to our

work is the method of Sellán et al. [2023], which used the tangent-

spheres interpretation of SDFs to generate much higher-quality

reconstructions. Its chief drawback is its reliance on evolving an ex-

plicit triangle mesh to gradually minimize an energy that measures

how well the SDF data is satisfied. Since the method’s remeshing

outside and
inside spheres

outside and
inside arcs

one oriented
point per arc

surface from
point cloud

Figure 3: Sellán et al. [2023] interpret SDF data as a set of
spheres (left) that the surface must be tangent to. Tangency
can instead be required on a smaller set of exposed arcs (cen-
ter). We collect the tangent points into a point cloud from
which we reconstruct our final surface (right).
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Figure 4: By extracting all information from the SDF data, we outperform Marching Cubes [Lorensen and Cline 1998] and
Neural DC [Chen et al. 2022] in reconstruction quality for data at low and medium resolutions, matching them at higher ones.
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Figure 5: In 2D, our algorithm extracts significantly more
geometric detail than Marching Squares on the same data.

implementation did not support topology changes, it fails whenever

the mesh self-intersects, which occurs if the underlying surface is

complex or has different topology from the initial triangle mesh

(see Figure 6). While such failures could potentially be ameliorated

using collision-aware topological remeshing (e.g., [Brochu and Brid-

son 2009; Wojtan et al. 2009]), such schemes add further overhead

and the step sizes used for the geometric flow must still be limited

to achieve a good result, leading to long optimization times.

Recent work on differentiable isosurfacing [Liao et al. 2018; Shen

et al. 2021, 2023] has straddled the line between implicit (scalar field)

representations, which are convenient for gradient-based optimiza-

tion and topological evolution, and explicit (mesh) representations,

which can often yield higher fidelity surfaces with sharp details.

2.3 Point Cloud Surface Reconstruction
Often captured from real-world data, point clouds are discrete,

incomplete representations of an underlying geometry. Thus, al-

gorithms that reconstruct complete surfaces from point clouds can

be divided according to which prior they use to resolve this fun-

damentally underdetermined problem (see, e.g., the surveys by

Berger et al. [2017] and Huang et al. [2022]). The appropriate prior

is application-dependent, and can range from smoothness [Alexa

et al. 2003; Amenta et al. 2001; Carr et al. 2001; Guennebaud and

Gross 2007; Levin 2004; Ohtake et al. 2005] to topology [Dey and

Goswami 2003], to self-similarity [Pauly et al. 2008; Williams et al.

2019] and similarity to simple primitives [Schnabel et al. 2009], to

those present in a large training dataset [Groueix et al. 2018; Remil

et al. 2017] or manually specified ones [Sharf et al. 2007].

The problem of point cloud reconstruction is not too dissimilar

from the task considered in this paper, in which the incomplete sur-

face information comes instead from a discrete set of SDF samples.

By explicitly elucidating this duality, we reformulate SDF recon-

struction as a modified point cloud reconstruction problem. As such,

our work could theoretically employ any of the above listed meth-

ods and priors; however, in practice, we opt for the smoothness

prior imposed by Poisson Surface Reconstruction (PSR) [Kazhdan

et al. 2006] and its follow-ups [Hou et al. 2022; Kazhdan and Hoppe

2013; Sellán and Jacobson 2022, 2023].

[Sellán et al. 2023]

Ours
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Figure 6: Unlike our method, Reach for the Spheres [Sellán
et al. 2023] is unstable to changes in topology, and will often
fail if given nonzero genus inputs.

3 METHOD
The input to our algorithm is a discrete set of SDF values 𝑠1, . . . , 𝑠𝑛

corresponding to positions 𝑝1, . . . , 𝑝𝑛 ∈ R𝑑 . Our output will be a
surface Ω★

reconstructed from the data, discretized as a mesh.

We begin by building on recent work by Sellán et al. [2023], who

propose reinterpreting each SDF sample (𝑠𝑖 , 𝑝𝑖 ) as defining a sphere
S𝑖 of radius |𝑠𝑖 | centered at 𝑝𝑖 (see Figure 7, left). Then, they state

the reconstruction problem as finding a feasible surface, defined
as one which is tangent to every sphere without intersecting any.

Unfortunately, exploring the space of these feasible surfaces is a

challenging task: even when avoiding singularities, the geometric

flow proposed by Sellán et al. [2023] manages only to sample one of

these surfaces, and only in the case in which the surface topology

is known beforehand. Instead, we now introduce a more control-

lable way of navigating the space of feasible surfaces without any

topological restriction, based on two simple observations.

First, we note that, in general, the spheres S1, . . . ,S𝑛 intersect

one another (see Figure 7, left). Since a feasible surface must be

tangent to each S𝑖 without intersecting any of the other S𝑗≠𝑖 , the
tangency point must occur in the region of the sphere S𝑖 that is
free of intersection from all other spheres. In other words, a feasible

surface must be tangent to every feasibility arc

A𝑖 = S𝑖 \
⋃
𝑗≠𝑖

S𝑗 , (1)

Depending on how the spheres intersect, a single sphere’s feasi-

bility arc may in fact consist of multiple disjoint components. We

further abuse terminology in 3D for brevity; there, the intersection-

free portion of a sphere’s surface ("feasibility arc") is a curvilinear

polygon, with edges that are typically not geodesics.
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Figure 7: Left: SDF sample points interpreted as spheres. Cen-
ter: Valid surface tangent points can only lie on a sphere’s
feasibility arc, not covered by other spheres. Right: Possible
valid surfaces (yellow) are determined by the selection of a
tangent point (darker yellow) per feasibility arc.

Second, we note that we can partition the space of feasible sur-

faces based on the points at which the surface is tangent to each

arc; i.e., through a tangency set a = {𝑎1, . . . , 𝑎𝑛} with 𝑎𝑖 ∈ A𝑖 . Even

further, we know that 𝑎𝑖 will be the closest surface point to the

center of the sphere 𝑝𝑖 , thus each 𝑎𝑖 will have an associated (unit)

normal vector

𝑛𝑖 = sign(𝑠𝑖 )
𝑝𝑖 − 𝑎𝑖
∥𝑝𝑖 − 𝑎𝑖 ∥

. (2)

Thus, one can explore the space of feasible surfaces by sampling

a set of per-arc points a = {𝑎1, . . . , 𝑎𝑛} and computing their as-

sociated normal vectors 𝑛1, . . . , 𝑛𝑛 . This data forms an oriented

point cloud that one can pass as input to any point-cloud-to-surface

reconstruction algorithm to obtain a surface Ω(a) (see Figure 7,

right). The choice of reconstruction algorithm corresponds to the

choice of representative element in the partition class; in practice, it

encodes any prior we may use to discriminate between all surfaces

with the same tangency set. We choose screened Poisson Surface

Reconstruction (sPSR) [Kazhdan and Hoppe 2013], which has been

shown to promote smoothness [Sellán and Jacobson 2022, 2023].

Based on this exploration strategy, we propose a two-step algo-

rithm for reconstructing a surface from any SDF data (see Figure 2;

Algorithm 1 in Supplemental). First, we find an initial valid set with

one point from each feasibility arc 𝑎0
1
, . . . , 𝑎0𝑛 . Then, we iteratively

fine-tune these points based on a surface smoothness prior to ob-

tain an oriented point cloud (𝑎★
1
, 𝑛★

1
), . . . , (𝑎★𝑛 , 𝑛★𝑛 ), from which we

recover our final reconstructed surface Ω★
using sPSR.

4 IMPLEMENTATION
Both algorithmic steps described above present implementation

challenges related to the computational intractability of finding the

exact feasibility arc A𝑖 for each of a large number of spheres 𝑛.

This difficulty complicates both sampling the initial tangency set

{𝑎0
1
, . . . , 𝑎0𝑛} as well as ensuring that any fine-tuning strategy only

displaces each 𝑎𝑖 within its arc A𝑖 .

4.1 Finding the initial tangency set {𝑎0
1
, . . . , 𝑎0𝑛}

We begin by building an Axis-Aligned Bounding-Box tree data

structure containing all input spheres, making queries of the type

“is point 𝑥 contained in any sphere?”, “what is the signed distance

from 𝑥 to the set of all spheres?” and “what are the 𝑘 closest spheres

to 𝑥?” logarithmic in complexity. These atomic operations will form

the basic building blocks of our algorithm.

spheres sampling W projecting
onto arcs

making points
locally feasible

Figure 8: We produce an initial feasible tangency set a in
three steps: We sample the empty space between the spheres
W (center left), project the closest of these samples onto each
sphere (center right) and locally displace those projections
onto each sphere’s feasibility arc (right).

Sampling the feasibility arcs is far from trivial. While perhaps

possible in 2D, analytically computing A𝑖 for each SDF data posi-

tion 𝑝𝑖 and value 𝑠𝑖 is intractable in 3D. Trying to compute even

one 𝑎𝑖 via rejection sampling can be incredibly inefficient even with

logarithmic-complexity rejection/acceptance queries, sinceA𝑖 is in

practice often significantly smaller than its containing sphere S𝑖 .

S₁
S₂

S₃
S₄

S₅

S₆

W

Fortunately, the set of feasibility arcsA𝑖 form

the boundary of the feasibility volume, the region
of space exterior to every sphere

W = B \
𝑛⋃
𝑖=1

int(S𝑖 ) ,

where B is a box containing all 𝑝𝑖 and int(S) is the ball whose

boundary is S. Thus, if we procure a dense sampling 𝑤1, . . . ,𝑤𝑚

of W and find (with a K-D tree) the closest sample to each sphere

𝑤𝑖 = argmin𝑗𝑑 (𝑤 𝑗 ,S𝑖 ) , (3)

it is likely that𝑤𝑖
is very close to a feasible arc point 𝑎𝑖 (see Figure 8).

Densely samplingW is its own challenge. Strategies like naive re-

jection sampling become highly inefficient as the number of spheres

increases and the size ofW relative to B becomes smaller. One also

encounters a similar behavior when using a Metropolis-Hastings

strategy based on the minimum sphere distance. One may be able

to sample W through complex importance sampling strategies us-

ing purpose-made data structures; instead, we propose a simpler

alternative: rasterizing the spheres on a 𝑑-dimensional image grid

to obtain a set of empty cells, from which we can easily sample.
1

This process not only scales linearly with the number of spheres,

regardless of the relative size ofW, but also can be easily computed

on a GPU for massive performance gains (see Figure 10).

Notably, making use of a rasterization image grid for this inter-

nal step of our algorithm in no way assumes any structure (grid or

otherwise) present in the input SDF positions 𝑝𝑖 ; thus, it does not

harm our algorithm’s generality. Furthermore, while the rasteriza-

tion grid resolution 𝑟 is an additional parameter in our method, we

experimentally find our reconstructions to be relatively stable to it

(see Figure 11), and opt for the heuristic 𝑟 = 64⌈ 𝑑
√
𝑛/16⌉.

If we sampledW perfectly and with infinite density, then simply

selecting 𝑤𝑖
as the closest point to the 𝑖-th sphere would yield a

point on its feasibility arc A𝑖 . However, for a finite set of samples

1
Even simpler, it is actually enough to sample only a narrow band of two pixels around

the spheres, as other pixels will not contribute to (3).
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Figure 10: We find rasterization to be the most efficient strat-
egy for producing samples on the empty space W, especially
given the possibility of a GPU implementation (blue line).

ofW, the closest point𝑤𝑖
will likely not lie exactly on the sphere

S𝑖 , and projecting it onto S𝑖 may produce a point ProjS𝑖 (𝑤
𝑖 ) that

is just outside the feasibility arc A𝑖 (see Figure 8).

Should ProjS𝑖 (𝑤𝑖 ) be outside the feasibility arc for S𝑖 , we make

it feasible using a local iterative procedure. For up to 20 steps (or

until feasibility is achieved, whichever happens first), we collect the

first 𝑘
search

= ⌈2 𝑑
√
𝑛⌉ other spheres the point is contained in, and

replace𝑤𝑖
with the closest point tangent to S𝑖 outside all of these

spheres. We choose this closest point from among the intersection

of S𝑖 with one (𝑑 = 2, 𝑑 = 3 but tuples of spheres do not intersect)

or two (𝑑 = 3 using the algorithm of Fang [1986]) other sphere(s).

We follow this process for every sphere S𝑖 in a parallelized loop

(see Pseudocode 2 in Supplemental).

rasterization
misses feature

no misses

Sign separation. The feasibility volumeW sep-

arates the region containing the positive-sign

spheres (with 𝑠𝑖 > 0) and the negative sign ones

(with 𝑠𝑖 < 0). By definition of the SDF, these

two regions must never intersect each other;

however, they can be arbitrarily close to one an-

other, sometimes causing our rasterization-based

strategy to miss entire cells and produce closest

points𝑤𝑖
that are far from the spheres.

We resolve this issue by instead considering

these two sets of spheres separately, repeating the rasterization,

projection and local displacement approach first to obtain initial

tangency points for all the positive-sign spheres, and next for all

the negative-sign spheres. Because these two sets cannot intersect

one another, the information from a negative sphere will never

be relevant to finding the tangency arc for a positive sphere, and

vice versa, so no information loss is incurred through this separa-

tion. By combining the tangency points for both sets, we end this

algorithmic step with an initial set for most spheres {𝑎0
1
, . . . , 𝑎0𝑛}.

Our algorithm with rasterization resolution…Source MC
…50 …100 …150 …200

20  3 0.60 s 1.22 s 1.89 s 2.70 s

Figure 11: Our algorithm is relatively independent of the
resolution of the rasterization grid for initial point sampling.

4.2 Fine-tuning the tangency set
Since any discrete SDF data admits infinitely many possible tan-

gency sets defining infinitely many possible feasible surfaces, the

process from Section 4.1 only produces our initial tangency set

a0 = {𝑎0
1
, . . . , 𝑎0𝑛}. However, in general, this initial surface is unde-

sirable: it often contains high-frequency noise, and may not even

be feasible under our tangency definition.

We exploit the smoothness prior imposed by sPSR in a local-

global iterative optimization that reconstructs a surface from a

tangency set and then moves each 𝑎𝑖 such that it agrees with the

reconstructed surface as much as possible, occasionally adding

points to the cloud to enforce the surface’s feasibility with respect

to the SDF. Specifically, at the 𝑘-th fine-tuning iteration, we begin

by using sPSR to construct the triangle mesh Ω𝑘 = Ω(a𝑘 ), for
which we build an AABB data structure to make closest-point and

distance queries possible in logarithmic complexity.

not the closest point, but
the best-aligned normal

project surface to spheres
ci

qi
piThen, for each 𝑖-th sphere S𝑖 , we find its

signed distance 𝑡𝑖 to the surface Ω
𝑘
and its

closest point 𝑐𝑖 on Ω𝑘
. We project 𝑐𝑖 onto S𝑖

to obtain the ideal new tangency point

𝑞𝑖 = 𝑝𝑖 + sign(𝑠𝑖𝑡𝑖 ) |𝑠𝑖 |
𝑐𝑖 − 𝑝𝑖
∥𝑐𝑖 − 𝑝𝑖 ∥

,

where sign(𝑠𝑖𝑡𝑖 ) is intended to ensure that

spheres with 𝑠𝑖 < 0 are inside and spheres

with 𝑠𝑖 > 0 are outside the surface.

qi
Ωᵏ

γ(τ)
γ(τ/2)
aik

If 𝑎𝑘
𝑖
is not null (because Section 4.1 or

a previous iteration found a feasible point),

we now move 𝑎𝑘
𝑖
towards 𝑞𝑖 . Consider the

shortest arc-length parametrized geodesic 𝛾

on the sphere S𝑖 from 𝑎𝑘
𝑖
to 𝑞𝑖 . If 𝛾 (𝜏) (we

choose 𝜏 = 10
−2
) is not inside any other

sphere S𝑗≠𝑖 , then 𝛾 (𝜏) ∈ A𝑖 and we set 𝑎𝑘+1
𝑖

= 𝛾 (𝜏) (if 𝑞𝑖 is closer
to 𝑎𝑘

𝑖
than 𝛾 (𝜏), we set 𝑎𝑘+1

𝑖
= 𝑞𝑖 ). If, on the other hand, 𝛾 (𝜏) is

covered by another sphere, we adjust 𝜏 ← 𝜏/2 and check again,

halving iteratively 𝛾 (𝜏) ∈ A𝑖 , and then set 𝑎𝑘+1
𝑖

= 𝛾 (𝜏) (we know
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Figure 12: We opt for a batch size of 10, 000, which signifi-
cantly diminishes our algorithm’s runtime without a notice-
able penalty to accuracy.

this point exists, as 𝛾 (0) = 𝑎𝑘
𝑖
∈ A𝑖 ). This could yield a point 𝑎𝑘+1

𝑖

that is not on an uninterrupted arc from 𝑎𝑘
𝑖
to 𝑎𝑘+1

𝑖
, but this is

not a problem, since any 𝑎𝑘+1
𝑖
∈ A𝑖 is valid. Finally, if 𝑎

𝑘
𝑖
is null,

meaning that we are yet to find a single feasible point on the arc

A𝑖 , we give the 𝑖-th sphere a “second chance” by testing whether

𝑞𝑖 happens to be on A𝑖 (i.e., outside every S𝑗≠𝑖 ), in which case we

make 𝑎𝑘+1
𝑖

= 𝑞𝑖 . Otherwise, we maintain 𝑎𝑘+1
𝑖

= null.

We repeat this process in a parallelized loop over every sphereS𝑖
and for 𝑘max total fine-tuning iterations, leading to a final tangency

set a★, from which we obtain our final reconstruction Ω★ = Ω(a★).

Preventing intersections. The method de-

scribed thus far could still, even in the limit

of fine-tuning where Ω𝑘
passes through every

point 𝑎𝑖
𝑘
, produce a surface that intersects a

sphere (see inset). Fortunately, these cases can

be identified during each fine-tuning iteration

by checking whether |𝑡𝑖 | < |𝑠𝑖 |, and prescrib-

ing more than one tangency point for such

spheres (up to 𝜅max per sphere): Instead of just

a single tangency point 𝑎𝑘
𝑖
, we now have a set a𝑘

𝑖
= {𝑎𝑘

𝑖,1
, . . . , 𝑎𝑘

𝑖,𝜅
}.

We construct this set as follows (see Figure 9 and Algorithm 3).

• If the intersection is determined to be severe (|𝑡𝑖 | < 4

5
|𝑠𝑖 |), not

only do we add a new point 𝑎𝑘+1
𝑖

as already described, but we

also keep all the existing points in a𝑘
𝑖
and move them towards

their projected closest points on Ω. This results in the addition

of one new point, i.e., a𝑘+1
𝑖

has one more element than a𝑘
𝑖

• If there is no severe intersection, we add the new point 𝑎𝑘+1
𝑖

as

described, and discard the point in a𝑘
𝑖
farthest away from Ω𝑘

(all

other points get moved as in the severe case). In this scenario,

a𝑘+1
𝑖

has the same number of elements as a𝑘
𝑖

Source

Marching Cubes

0.1

0.01

Chamfer error

0.03

30  SDF grid3

0 5 10 15 20
Fine tuning iteration

Figure 13: Our fine-tuning strategy rapidly decreases recon-
struction error, with eventual diminishing returns.
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Figure 14: While we did not optimize our algorithm’s run-
time beyond asymptotics, its experimental complexity is, as
expected, super-linear: O(𝑛 log𝑛).

Batching. Our algorithm’s memory and runtime complexity are

dominated by storing the AABB tree containing all spheres S𝑖 and
answering queries related to it; mainly, the “what are the 𝑘 closest

spheres to 𝑥?” operation critical for projecting𝑤𝑖
and 𝑞𝑖 onto the

feasibility arc A𝑖 in Sections 4.1 and 4.2. This is not dissimilar

from the challenge encountered by Sellán et al. [2023], which they

propose tackling by batching the spheres and using only a subset of
them for each iteration of their flow. We propose a similar strategy:

before finding the first tangency set a0 and before each fine-tuning

iteration, we randomly select a batch of 𝑏 spheres. We use this

subset in all feasibility queries, while still looping over all spheres

elsewhere in the algorithm (e.g., we generate a tangency point 𝑎𝑖
for all spheres, not just the batched ones). In practice, we find that a

batch size of 𝑏 = 10
4
massively improves our algorithm’s scalability

without a significant penalty to accuracy (see Figure 12).

Implementation details. We implemented our algorithm in a com-

bination of C++ and Python, using libigl [Jacobson et al. 2018] and

gpytoolbox [Sellán and Stein 2023] for common geometry pro-

cessing subroutines in each respective language. The GPU sphere

rasterization described in Section 4.1 was implemented in C++ using

WebGPU. Our comparisons to the SDF reconstruction algorithms

by Chen et al. [2022] and Sellán et al. [2023] use their respective

official Python implementations, which we thank the authors for

releasing publicly. Our 3D results are rendered in Blender using the

rendering toolbox of Liu [2023]. All our reported runtimes were

measured on a 20-Core M1 Ultra Mac Studio with 128GB RAM.
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Figure 15: The screening weight used in our call to sPSR
balances smoothness with adherence to the point cloud.

5 RESULTS
5.1 Experiments
Executing our algorithm requires specifying many parameters. For-

tunately, for the majority of them, we find our algorithm to be

surprisingly stable; for the rest, we make use of experiments to

decide on reasonable default values.

For example, as shown in Figure 13, we find that most recon-

struction error is corrected in the first few iterations of tangency

set fine-tuning, so we set 𝑘max = 10. Similarly, as evidenced by

Figure 11, the resolution of our rasterization grid 𝑟 does not have

much of an effect as it is large enough, motivating our heuristic

from Section 4.1. On the other hand, we note that the batch size

𝑏 can provoke failures if set too low (see Figure 12); inspired by

Sellán et al. [2023], we also choose 𝑏 = 10, 000 as a default.

Finally, sPSR, the surface reconstruction algorithm that we use at

each fine-tuning iteration step and as a final step before outputting

the surface Ω★
, also has its own parameters. Most notably, the

screening weight balancing smoothness and adherence to the point

cloud is particularly critical for our application, since our fine-

tuning strongly relies on the surface not perfectly adhering to the

point cloud. We explore the effects of this parameter in Figure 15,

and choose to fix it at 10 for all others.

Both of our main algorithmic steps constitute a loop over every

one of the 𝑛 SDF samples. Within each iteration of these loops, we

find that the computational bottleneck is the sphere AABB tree

traversal necessary to project 𝑤𝑖
onto A𝑖 in Section 4.1, and to

check whether 𝛾 (𝜏) is on A𝑖 in Section 4.2. For a set of randomly

generated spheres, this traversal should average logarithmic com-

plexity on the number of spheres 𝑛. Unfortunately, we find that

the specific structure of our problem, in which vast numbers of

spheres heavily intersect each other and our query points are very

close to these intersections, causes these traversals to be closer to

linear in complexity, making our full algorithm (without batching)

quadratic O(𝑛2). Fortunately, as evidenced in Figure 12, our pro-

posed batching strategy makes these traversals have sublinear cost,

resulting in our complete algorithm having subquadratic complex-

ity O(𝑛 log𝑛). We show that this is the case at medium and high

resolutions in Figure 14; at low resolutions, the sub-linear cost of

our GPU rasterization dominates instead.

Table 1: Average Chamfer error across one hundred shapes
at different resolutions (see Table 2 for full results).

Resolution Marching Cubes Neural DC RFTS Ours (RFTA)
6
3

0.2644 0.1852 0.0865 0.0672
10

3
0.1706 0.1166 0.0559 0.0472

20
3

0.0688 0.0470 0.0514 0.0295
30

3
0.0322 0.0217 0.0497 0.0203

40
3

0.0234 0.0166 0.0521 0.0156
60

3
0.0129 0.0087 0.0423 0.0109

100
3

0.0054 0.0040 0.0332 0.0069

20³
SDF
grid

marching cubes NDCx (learning) [Sellán et al. 2023] Ourssource
55³

SDF
grid

Figure 16: We outperform MC and NDC at low and medium
resolutions, avoiding the catastrophic singularities of RFTS.

5.2 Comparisons
Qualitative comparisons. By defining and exploring the set of

feasible reconstruction surfaces, our algorithm extracts the max-

imum amount of global information possible from the input SDF

samples (Figure 20). This behavior is in marked contrast to com-

monly used grid-based algorithms like Marching Cubes [Lorensen

and Cline 1998] and Dual Contouring [Ju et al. 2002], which utilize

only the SDF information in each grid cell to decide on the local

shape of the surface in it. Their neural counterparts [Chen et al.

2022; Chen and Zhang 2021] use larger input windows (7
3
), but are

still restricted to a limited set of stencils for a given grid cell. As

evidenced in Figure 4 and Figure 5, these conventional algorithms

often miss out on capturing detailed surface features, a limitation

that cannot be circumvented by artificially upsampling the input

data (see Figure 17) and which is not present in our approach, as

further highlighted in Figure 1, Figure 9, Figure 13, and Figure 16.

As seen in Figure 21, our method is better than such previous work

at recovering thin features, but smooths out sharp features.

To produce these high-quality reconstructions, our algorithm

builds on the theoretical observations by Sellán et al. [2023] in

their work Reach for the Spheres (RFTS). Our method addresses the

main limitation in their algorithm, by removing the requirement

that the input SDF has genus zero and instead allowing for any

reconstruction surface topology. We exemplify this in Figure 6,

where both reconstructions are qualitatively similar for the zero

genus shapes but completely different for the more topologically

rich examples: ours produces valid results while theirs encounters a

flow singularity and fails. Interestingly, our algorithm outperforms

RFTS even for some zero genus shapes in which the latter also

encounters singularities, as shown in Figure 18.
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Figure 17: Our method’s use of global SDF information out-
performs MC, even if the input is naively upsampled via
interpolation (example from Sellán et al. [2023, Fig. 12]).

Quantitative comparisons. For a principled evaluation of our

algorithm’s performance, we randomly select 100 shapes from

Thingi10k [Zhou and Jacobson 2016], preprocessed through TetWild

[Hu et al. 2018] to ensure that they are closed. For each, we sample

its SDF on a grid of varying resolution, and pass it as an input to

our algorithm, RFTS, MC and NDC. Whenever RFTS encounters a

singularity, we use the flow’s last converged result.

We then compare the reconstruction errors of each method as

given by the Hausdorff and Chamfer distances to the ground truth.

The full results are summarized in Table 1, and visualized graphi-

cally in Figure 19. For simplicity, we also include the averages over

all shapes for each method and resolution in Table 2. We find that

our quantitative results match our qualitative observations: our

algorithm outperforms Marching Cubes and Neural Dual Contour-

ing at low and medium resolutions, while matching them at higher

ones. Our algorithm also matches or outperforms RFTS for genus

zero shapes, while vastly outperforming it for more topologically

complex ones. Based on these results, we believe our proposed

method can be considered the new state-of-the-art for recovering

surfaces from any discrete SDF data at low and medium resolutions.

5.3 Generalizations & Applications
Our algorithm can be used in any application requiring reconstruc-

tion from SDFs. We prototype a collision-detection task in Figure 22,

in which we generate random projectiles and check whether they

impact the surface. Our algorithm’s reconstruction is more accurate

than MC and NDC, with significantly fewer false negatives.

On the other hand, many purported applications of SDFs use

functions that are not strictly signed distance fields, and for which

many of our algorithmic assumptions (i.e., the lack of intersection

between inside and outside spheres) are violated. For example, they

may utilize noisy SDFs, to which our algorithm is reasonably stable

(see Figure 23) until the noise magnitude is large enough that the

feasible volume becomes almost nonexistent. A more interesting

example is the computation of swept volumes: despite having been

shown to benefit from SDF-like representations [Sellán et al. 2021],

as noticed by Marschner et al. [2023], they are often represented by

pseudo-SDFs that do not necessarily satisfy the distance property.

As shown in Figure 25, our algorithm can also accommodate these.

Finally, machine learning applications often clamp SDFs them to

avoid spending network resolution in irrelevant regions. As long as

the clamp value is known, these SDFs can also be incorporated into

our algorithm (see Figure 24), by simply refraining from adding

tangency points to any sphere whose data value matches the clamp.

50  SDF grid3

Source

[Sellán et al. 2023] Ours

50  SDF grid3

Source

[Sellán et al. 2023] Ours

Figure 18: The flow by Sellán et al. [2023] hits a singularity
and fails for these two simple shapes, unlike ours.

6 LIMITATIONS & CONCLUSION
We have introduced Reach for the Arcs, an algorithm for reconstruct-

ing meshes from discrete samples of SDFs that outperforms existing

schemes at low and medium resolutions, while at the same time

overcoming the strongest limitation of its most relevant competitor.

Our algorithmworks by codifying the SDF information through a

tangency point cloud, fromwhich a surface can be produced through

standard point-cloud-to-surface reconstruction techniques. While

we opt for screened Poisson Surface Reconstruction [Kazhdan and

Hoppe 2013], the specific reconstruction method used can encode

more complex priors about the input geometry (e.g., data-driven).

While we experimented with this possibility only briefly in Fig-

ure 26, we believe it to be a promising avenue for future work.

We optimized our algorithm’s computational complexity to be

only super-linear; however, its wallclock runtime remains orders

of magnitude worse than competing methods like Marching Cubes.

Promising avenues to reduce this discrepancy in order to com-

pletely supplant previous methods in every use-case may include

prioritizing certain spheres over others in the fine-tuning strategy,

or introducing batching in the initially generated tangency points.

On a more fundamental level, our work advocates for exploiting

the observed duality between SDFs and point clouds. By shining a

light on this underexplored fact, we hope to inspire a new genera-

tion of work which combines the vast literatures that have resulted

from studying each of these shape representations independently.
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Figure 19: Each dot corresponds to one shape in our one-hundred-shape experiment. Our algorithm’s error is consistently
below our main competitors at lower resolutions (left, middle) and closely matches neural approaches at higher resolutions
(right). Colored circles indicate averaged errors.

source 5² SDF grid 10² 30² 50²

Figure 20: Our approach manages to use even very small
amounts of global information to reconstruct a surface, thus
producing good rough shapes even when almost no data is
available at all. As the available data increases, our method
reconstructs the ground truth more and more faithfully.
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Figure 21: Our method reconstructs thin features better than
marching cubes (left), but smooths out sharp features much
like marching cubes (right).
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Figure 22: As an additional error metric, we study the ac-
curacy of our method to detect collisions with randomly
sampled projectiles. Our algorithm produces a more conser-
vative reconstruction from the SDF data, producing a very
low number of false negatives and higher overall accuracy.

0

0.2

0.1

0.15

0.05
no

noise
0.1%
noise

1%
noise

2%
noise

5%
noise

no
noise

10%
noise

MC

Chamfer error

Source

Ours Ours Ours
Ours

Ours

25 3

Figure 23: Our reconstruction is relatively robust tomoderate
noise in the input SDF, even outperforming MC (with noise-
free input) for up to 2% noise amplitude. However, at large
amplitudes, our algorithm cannot find feasible tangency sets
and can fail (see rightmost bars).

Source Ours, with input SDF clamped to…
[-1, 1] [-0.5, 0.5] [-0.1, 0.1] [-0.05, 0.05] [-0.01, 0.01]50  grid3

Figure 24: Our method can handle clamped SDFs with only
minor modifications, where we trust the distance data only
within certain bounds. As the clamps get tighter, our method
degrades gracefully, until the very end, where not much in-
formation is left to aid with reconstruction.
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Figure 25: Our algorithm can be used to reconstruct surfaces
from pseudo-SDFs like those obtained from sweeping closed
surfaces and studied by Marschner et al. [2023]. We recover
thin features not captured by MC (left) and avoid the singu-
larities encountered in all three cases by RFTS.

Our method, using…
…sPSR (default) …alpha shapes …ball pivoting
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…as the point-cloud reconstruction strategysource
25³

Figure 26: Our choice of point-cloud-to-surface reconstruc-
tion method is incidental, and can be made differently de-
pending on the application and the prior knowledge about
the reconstruction surface. By default, we choose sPSR [Kazh-
dan and Hoppe 2013], but also experiment with alpha shapes
[Edelsbrunner et al. 1983], ball pivoting [Bernardini et al.
1999], learned triangulations [Sharp and Ovsjanikov 2020]
and Point2Mesh [Hanocka et al. 2020].
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SUPPLEMENTAL MATERIAL
Parameters
By default, we run our algorithm with 𝑘max = 10 fine-tuning itera-

tions, 𝑏 = 10, 000 batch size, 10.0 sPSR screening weight, 𝑛max = 3

maximum points added per sphere and 20 local search iterations.

Below, we specify the non-default parameters used for some of the

figures in the paper:

Figure 1, Figure 5 and Figure 6. 𝑘max = 50.

Figure 4, Figure 20 and Figure 22. 𝑘max = 50, 𝑛max = 50.

The 2D results for Sellán et al. [2023] are limited to 100 iterations,

since the official implementation does not terminate on 2D blow-

ups and iterations get very expensive.

Figure 11 and Figure 24. 𝑘max = 20.

Figure 9. 𝑘max = 20, 𝑛max = 30.

Figure 13. 𝑛max = 30.

Figure 16. 𝑘max = 100, 𝑛max = 16.

Figure 26. 𝑘max = 5.

Pseudocode Implementation
This section features pseudocode for the major routines mentioned

in Section 4 in Algorithms 1, 2, and 3.

Detailed Quantitive Evaluation Data
The full results of our large-scale experiment over nine different

resolutions and one hundred different shapes are provided in the

supplemental file results.csv. The average errors over all shapes are
also presented in Table 2 for ease of reference.

Algorithm 1 Reach for the Arcs

1: function reach_for_the_arcs( {𝑝1, . . . , 𝑝𝑛 }, {𝑠1, . . . , 𝑠𝑛 } )
2: separate sphere indices 𝑖 into {S (𝐼 )

𝑖
}𝑖 (inside) and {S (𝑂 )𝑖

}𝑖 (out-
side)

3: for 𝜎 = 𝐼 ,𝑂 do
4: w(𝜎 ) ← rasterize

(
{S (𝜎 )

𝑖
}𝑖
)

5: for S (𝜎 )
𝑖
∈ {S (𝜎 )

𝑖
}𝑖 do

6: 𝑤𝑖 ← argmin
𝑗 ∈w(𝜎 )𝑑 (𝑤𝑗 , S (𝜎 )𝑖

)

7: 𝑤𝑖 ← make_feasible

(
𝑤𝑖 , 𝑖, p(S (𝜎 )

𝑖
), s(S (𝜎 )

𝑖
)
)

8: a0 ← {𝑤1, . . . , 𝑤𝑛 }
9: for 𝑘 = 1, . . . , 𝑘max do
10: a𝑘 ← fine_tune(a𝑘−1, {𝑝1, . . . , 𝑝𝑛 }, {𝑠1, . . . , 𝑠𝑛 })
11: return point_cloud_to_mesh(a𝑘max

)

Algorithm 2 Make feasible

1: function make_feasible( 𝑤, i, {𝑝1, . . . , 𝑝𝑛 }, {𝑠1, . . . , 𝑠𝑛 } )
2: for 20 times do
3: if 𝑤 not within any sphere then
4: break
5: B← up to 𝑘

search
spheres containing 𝑤

6: C← {}
7: if 𝑑 = 2 or |B | = 2 then
8: for (𝑏, 𝑟 ) ∈ B do
9: 𝐶 ← 𝐶 ∪ {intersections of (𝑝𝑖 , 𝑠𝑖 ) with (𝑏, 𝑟 )
10: not within any sphere}
11: else if 𝑑 = 3 then
12: for (𝑏1, 𝑟1 ), (𝑏2, 𝑟2 ) ∈ B do
13: 𝐶 ← 𝐶 ∪ {intersections of (𝑝𝑖 , 𝑠𝑖 ) with (𝑏1, 𝑟1 )
14: and (𝑏2, 𝑟2 ) not within any sphere}
15: 𝑤 ← argmin𝑣∈𝐶𝑑 (𝑣, 𝑤 )
16: return 𝑤

Algorithm 3 Fine tune

1: function fine_tune( a, {𝑝1, . . . , 𝑝𝑛 }, {𝑠1, . . . , 𝑠𝑛 } )
2: Ω = point_cloud_to_mesh(a)
3: for i = 1, ..., n do
4: a𝑖 ← {𝑎 ∈ a | idx(𝑎) = 𝑖 }
5: 𝑐𝑖 ← closest point on Ω to 𝑝𝑖

6: if 𝑐𝑖 on sphere (𝑝𝑖 , 𝑠𝑖 ) then
7: break
8: 𝑞𝑖 ← proj_onto(𝑐𝑖 , 𝑝𝑖 , 𝑠𝑖 )

9: ⊲ idx returns the sphere index of a tangency point

10: if 𝑐𝑖 outside sphere (𝑝𝑖 , 𝑠𝑖 ) then
11: a𝑖 ← {transport(argmin𝑎∈a𝑖𝑑 (𝑎,𝑞𝑖 ) , 𝑞𝑖 , 𝑝𝑖 , 𝑠𝑖 ) }
12: else if 𝑐𝑖 inside sphere (𝑝𝑖 , 𝑠𝑖 ) then
13: 𝑎new ←transport(argmin𝑎∈a𝑖𝑑 (𝑎,𝑞𝑖 ) , 𝑞𝑖 , 𝑝𝑖 , 𝑠𝑖 )
14: for 𝑎 (1)

𝑖
, . . . , 𝑎

(𝜅 )
𝑖
∈ a𝑖 do

15: 𝑐
( 𝑗 )
𝑖
← closest point on Ω to 𝑎

( 𝑗 )
𝑖

16: 𝑞
( 𝑗 )
𝑖
← proj_onto(𝑐

( 𝑗 )
𝑖

, 𝑝𝑖 , 𝑠𝑖 )

17: 𝑎
( 𝑗 )
new
←transport(𝑎

( 𝑗 )
𝑖

, 𝑞𝑖 , 𝑝𝑖 , 𝑠𝑖 )

18: if 𝑐𝑖 only barely inside (𝑝𝑖 , 𝑠𝑖 ) or 𝜅 = 𝜅max then
19: a𝑖 ← {𝑎new, 𝑎 (1)new

, . . . , 𝑎
(𝜅−1)
new

}
20: else
21: a𝑖 ← {𝑎new, 𝑎 (1)new

, . . . , 𝑎
(𝜅 )
new
}

22: a← a1 ∪ . . . ∪ a𝑛
23: for 𝑎 ∈ a do
24: 𝑎 ← make_feasible(𝑎, idx(𝑎), {𝑝1, . . . , 𝑝𝑛 }, {𝑠1, . . . , 𝑠𝑛 })
25: return a
26: function proj_onto(𝑐 , 𝑝 , 𝑠)

27: 𝑡 ← signed distance from 𝑐 to 𝑝

28: 𝑞 ← 𝑝 + sign(𝑡𝑠 ) |𝑠 | 𝑐−𝑝
∥𝑐−𝑝 ∥

29: return q

30: function transport(𝑥 , 𝑦, 𝑝 , 𝑠)

31: 𝜏 ← 0.01

32: repeat
33: 𝑧 ← 𝑥 transported 𝜏 towards 𝑦 along geodesic on (𝑝, 𝑠 )
34: 𝜏 ← 𝜏/2
35: until 𝑧 not within any sphere

36: return 𝑧
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Table 2: Reconstruction accuracy of our method compared to Marching Cubes [Lorensen and Cline 1998], Neural Dual
Contouring [Chen et al. 2022] and Reach for the Spheres [Sellán et al. 2023] on one hundred randomly selected inputs from
Thingi10K [Zhou and Jacobson 2016]. Accuracy is measured via Chamfer error (left), Hausdorff distance (middle) and the SDF
energy introduced by Sellán et al. [2023] (right). Our algorithm, which requires no training data, outperforms every other
method at low and medium resolutions, and is only narrowly bested by neural approaches at higher resolutions.

Grid Chf MC Chf NDC Chf RFTS Chf RFTA Hdf MC Hdf NDC Hdf RFTS Hdf RFTA E𝑆𝐷𝐹 MC E𝑆𝐷𝐹 NDC E𝑆𝐷𝐹 RFTS E𝑆𝐷𝐹 RFTA

Average results over all test shapes

6
3

0.2644 0.1852 0.0865 0.0672 0.4837 0.3873 0.1956 0.1519 64.1815 25.2839 4.0003 0.0611
10

3
0.1706 0.1166 0.0559 0.0472 0.3546 0.2778 0.1410 0.1169 28.2937 13.1524 0.3003 0.0271

20
3

0.0688 0.0470 0.0514 0.0295 0.1799 0.1366 0.1368 0.0822 5.3163 2.9343 1.9020 0.0125
30

3
0.0322 0.0217 0.0497 0.0203 0.1038 0.0753 0.1395 0.0614 1.0028 0.1903 2.7906 0.0057

40
3

0.0234 0.0166 0.0521 0.0156 0.0811 0.0593 0.1414 0.0491 0.8186 0.2274 2.7921 0.0031
50

3
0.0169 0.0114 0.0421 0.0131 0.0611 0.0440 0.1311 0.0442 0.4964 0.0586 2.7342 0.0025

60
3

0.0129 0.0087 0.0423 0.0109 0.0502 0.0370 0.1247 0.0390 0.3190 0.0369 2.9077 0.0020
80

3
0.0074 0.0062 0.0351 0.0084 0.0325 0.0325 0.1056 0.0332 0.0598 0.0612 2.6553 0.0015

100
3

0.0054 0.0040 0.0332 0.0069 0.0294 0.0203 0.1209 0.0356 0.0507 0.0092 2.7148 0.0013

Average results over all test shapes with genus zero

6
3

0.2733 0.1607 0.0582 0.0570 0.4963 0.3450 0.1319 0.1285 67.7507 18.6811 0.0737 0.0399
10

3
0.1525 0.0893 0.0439 0.0412 0.3272 0.2360 0.1160 0.0956 20.3723 6.9478 0.1881 0.0186

20
3

0.0530 0.0304 0.0364 0.0254 0.1461 0.0977 0.0996 0.0662 2.9292 0.5201 1.0359 0.0098
30

3
0.0265 0.0182 0.0307 0.0183 0.0942 0.0596 0.0950 0.0539 0.7241 0.1472 0.2928 0.0076

40
3

0.0227 0.0174 0.0361 0.0138 0.0834 0.0607 0.1003 0.0407 1.0747 0.2745 1.2115 0.0034
50

3
0.0170 0.0103 0.0188 0.0119 0.0606 0.0372 0.0572 0.0381 0.9437 0.0344 0.0465 0.0029

60
3

0.0139 0.0071 0.0170 0.0099 0.0501 0.0293 0.0529 0.0341 0.6008 0.0160 0.1912 0.0024
80

3
0.0063 0.0048 0.0158 0.0070 0.0293 0.0201 0.0537 0.0293 0.0499 0.0109 0.4676 0.0016

100
3

0.0036 0.0024 0.0142 0.0049 0.0233 0.0148 0.0602 0.0330 0.0194 0.0031 0.4471 0.0011

Average results over all test shapes with genus over zero

6
3

0.2598 0.1980 0.1014 0.0725 0.4771 0.4096 0.2291 0.1642 62.3076 28.7504 6.0618 0.0723
10

3
0.1790 0.1293 0.0615 0.0499 0.3674 0.2972 0.1527 0.1268 31.9904 16.0479 0.3527 0.0311

20
3

0.0760 0.0546 0.0583 0.0314 0.1955 0.1544 0.1540 0.0896 6.4152 4.0456 2.3007 0.0137
30

3
0.0350 0.0233 0.0588 0.0213 0.1084 0.0828 0.1606 0.0650 1.1353 0.2108 3.9780 0.0048

40
3

0.0238 0.0162 0.0593 0.0164 0.0800 0.0587 0.1600 0.0529 0.7026 0.2061 3.5082 0.0030
50

3
0.0169 0.0119 0.0539 0.0138 0.0613 0.0475 0.1686 0.0473 0.2688 0.0709 4.1016 0.0023

60
3

0.0125 0.0095 0.0546 0.0114 0.0503 0.0406 0.1594 0.0413 0.1828 0.0470 4.2207 0.0018
80

3
0.0080 0.0071 0.0460 0.0092 0.0342 0.0396 0.1352 0.0353 0.0655 0.0898 3.8992 0.0015

100
3

0.0062 0.0047 0.0406 0.0077 0.0318 0.0224 0.1448 0.0367 0.0630 0.0116 3.6081 0.0014

Average results over all test shapes with genus over ten

6
3

0.3101 0.2243 0.0815 0.0859 0.6170 0.4880 0.1677 0.1664 89.2837 32.3581 0.2148 0.0665
10

3
0.1998 0.1463 0.0681 0.0587 0.4105 0.3627 0.1500 0.1327 35.0728 12.8121 0.2259 0.0261

20
3

0.1049 0.0856 0.0687 0.0347 0.2667 0.2079 0.1637 0.0912 12.4083 12.0323 1.0960 0.0105
30

3
0.0415 0.0268 0.0836 0.0292 0.1170 0.0885 0.2486 0.0806 1.4963 0.1589 8.6610 0.0072

40
3

0.0318 0.0239 0.0704 0.0222 0.0922 0.0782 0.1839 0.0638 0.9870 0.4756 3.8019 0.0040
50

3
0.0217 0.0160 0.1058 0.0175 0.0666 0.0500 0.3309 0.0555 0.3969 0.0419 12.0395 0.0031

60
3

0.0164 0.0139 0.0794 0.0144 0.0582 0.0562 0.2172 0.0498 0.3163 0.1029 5.7565 0.0026
80

3
0.0115 0.0108 0.0522 0.0116 0.0467 0.0475 0.1391 0.0426 0.0968 0.0958 2.9109 0.0023

100
3

0.0095 0.0072 0.0702 0.0095 0.0509 0.0311 0.2272 0.0409 0.1829 0.0242 4.2791 0.0020
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