
Teaching CS1 with Karel the Robot in Java 
 

Byron Weber Becker 
Department of Computer Science 

University of Waterloo 
Waterloo, Ontario, Canada  N2L 3G1 

bwbecker@uwaterloo.ca 
 

Abstract 
Most current Java textbooks for CS1 (and thus most current 
courses) begin either with fundamentals from the 
procedural paradigm (assignment, iteration, selection) or 
with a brief introduction to using objects followed quickly 
with writing objects.  We have found a third way to be 
most satisfying for both teachers and students:  using 
interesting predefined classes to introduce the fundamentals 
of object-oriented programming (object instantiation, 
method calls, inheritance) followed quickly by the 
traditional fundamentals of iteration and selection, also 
taught using the same predefined classes.   
Karel the Robot, developed by Richard Pattis [6] and well-
known to many computer science educators, has aged 
gracefully and is a vital part of our CS1 curriculum.  This 
paper explains how Karel may be used and the advantages 
of doing so. 

1 Introduction 
We began the development of our Java-based introductory 
programming course for CS majors and Math students in 
1998.  At the outset we realized the obvious:  we would 
have to make a paradigm shift from procedural 
programming to object-oriented programming.  What 
surprised us was the second paradigm shift required – the 
paradigm for teaching an OO language (Java) is different 
from teaching a procedural language such as Pascal, C or 
even C++. 
The first time we taught the course we used a textbook 
which was very well-written but placed objects relatively 
late – about where a Pascal text would place records.  We 
were uneasy with this, feeling that objects really ought to 
be introduced and used from day 1, but as we could not 
find a satisfactory text which supported this we made an 
attempt to provide our own examples parallel to the text.  

It was a disaster.  The fundamental object-oriented 
concepts (object instantiation, method calls, inheritance) 
came too late in the course.  Students didn’t have enough 
time to master the topics.  This was worsened by the fact 
that most of our students come with some (procedural) 
programming experience from high school.  When the early 
part of the course focused on iteration and selection 
(without objects, except for the little we provided 
ourselves), most students thought they already knew it all. 
After reviewing textbooks again, our standard rant went 
like this:  “Textbooks start with a vague, airy-fairy 
descriptions of objects (Java is an object-oriented language 
after all), but then go into primitive types.  No objects.  
Chapter 3 is selection using payroll as an example.  No 
objects.  Chapter 4 is iteration – no objects.  Suddenly, in 
chapter 5, students are expected to use and write objects.  
And they say, ‘Remind me what an object is…  What are 
they good for?  How do I use them?  What are the 
characteristics of a good object?’.” 
Shortly thereafter we discovered Karel the Robot in 
Karel++:  A Gentle Introduction to the Art of Object-
Oriented Programming [2], the most recent incarnation of 
Rich Pattis’ idea from the early 1980’s.  It was a revelation 
to us.  This was how we wanted to teach Java.  There were 
just two problems.  First, the book is really oriented 
towards C++ rather than Java.  Second, it’s only the 
introduction to an introductory course, covering the first 4-
5 weeks. 
After convincing the publisher to allow us to translate 
Karel++ to Java, adding a second textbook, writing 
software to support Karel, and rewriting all our lectures, we 
have a course we are very happy with.  The remainder of 
this paper discusses Karel the Robot and the advantages we 
see in starting the course by using an interesting object. 

2 Karel and Karel’s World 
Karel inhabits a very simple world. There are avenues 
running north and south numbered one to infinity and 
streets running east and west, also numbered one to 
infinity. Walls may block avenues or streets. Beepers may 
be placed on the intersections of the avenues and streets.  
Several robots may exist within the same world. 
Within this world, robots may move forward from one 
intersection to an adjacent intersection unless the way is 
blocked by a wall. They may turn left 90 degrees to face a 

 



 

package HarvestSquare;
import cs1Lib.karel.Robot;
import cs1Lib.karel.World;

public class Main extends Object
{
public static void

main(String[] args)
{ // Instantiate a new world, initialized with walls and 

  // beepers as specified in a file. 
World square = new

World("HarvestAroundSquare.txt");

// Instantiate a new Robot and add it to the world at 
// the corner of 2nd avenue and 3rd street facing east. 
HarvesterRobot karel =

new HarvesterRobot();
square.addRobot(karel, 2, 3,

World.EAST);

// Move into the intial position, then pick the beepers 
  // and turnoff. 

karel.move();
karel.pickBoundedRectangle();
karel.turnOff();

}
}

/** A new kind of robot which knows how to harvest beepers  
laid out in a rectangle with a wall marking the end of each 
side. */
class HarvesterRobot extends Robot
{

/** Pick the beepers in a rectangle where the end of each 
 side is bounded by a wall. */
public void pickBoundedRectangle()
{ for(int side=0; side<4; side++)
{ this.pickUntilWall();
this.turnLeft();

}
}

/** Pick one beeper from each intersection between the  
 current location and the nearest wall in the direction faced 
 by the robot. */
private void pickUntilWall()
{ while (this.frontIsClear())
{ this.move();
this.pickBeeper();

}
}

}

Figure 2:  One solution to pick up all the beepers in the
world shown in Figure 1. 
 

different direction. Robots may pick up a beeper from their 
current intersection (if one or more are present), or place a 
beeper on their current intersection (provided they are 
carrying at least one beeper). Robots may carry beepers 
between intersections in their “beeper bag” and may detect 
whether or not their beeper bag is empty. 
Robots may also determine if they are facing north (or any 
of the other 3 compass positions), if there is a beeper on the 
current intersection or if there is another robot on the 
current intersection. 
The world and the actions of any robots within it are shown 
visually on the computer monitor. A sample is shown in 
Figure 1.  If the goal of the robot is to pick up all of the 
beepers, then one possible solution is shown in Figure 2.  
This example may be seen running as an applet at 
http://www.math.uwaterloo.ca/~bwbecker/papers/sigcse20
01/samples.html.  A second on-line example shows four 
robots solving the same problem.  A third example uses 
threads so that four robots work simultaneously (instead of 
taking turns) to solve the problem. 

 
3 Differences from Previous Work 
Our implementation of Karel differs from Karel++ and the 
original Karel in a number of significant ways.  The most 
obvious is that we use Java while the previous two use their 
own languages.  Karel uses a Pascal-like language while 
Karel++ uses a language similar to C++.  Neither language, 
however, supports parameters or non-Robot variables while 

our approach allows the full power of the J
programming language – including objects which do 
extend Robot, local and instance variables of any type 
threads. 
The previous implementations were programs wh
integrated a development environment with a simula

 

Figure 1:  An initial situation with one robot (an
arrowhead), twelve beepers (circles) and ten walls
(rectangles). 
 

a
n
a

i
to
va 
ot 
nd 

ch 
r.  

http://www.math.uwaterloo.ca/~bwbecker/ papers/sigcse2001/samples.html
http://www.math.uwaterloo.ca/~bwbecker/ papers/sigcse2001/samples.html


The robot and world classes were built right into the 
combined program.  Our approach uses a standard Java 
development environment.  When students write a robot 
program they simply import the required classes from a 
library.  This removes the need to switch environments 
mid-way through the course, but is somewhat more 
complex at the beginning. 
Because the previous implementations built the definition 
of the robot’s world into the simulator, the behaviors of the 
world couldn’t change.  In our implementation the world is 
a fully extendable class.  We encourage students to extend 
it with new behaviors for placing walls and beepers, for 
instance. 

4 Course Outline 
A typical CS1 course would use Karel for the first four to 
five weeks to introduce objects, inheritance, selection, 
iteration, and related concepts.  After this introduction, 
robots would be left behind in favor of a wide range of 
examples. 

4.1 Week 01:  Instantiating and Using Objects 
In the first week we describe robots and the world they 
inhabit.  After reviewing several simple programs, students 
understand how to instantiate objects, invoke an object’s 
methods and that it is possible to have several objects 
belonging to the same class, each with its own state.  A 
typical homework problem is to instruct one or more robots 
to perform a fixed task such as retrieve a beeper from a 
given intersection. 

4.2 Week 02:  Extending Existing Classes 
During the first week students often ask “Can a robot turn 
right?” (or move forward more than one intersection at a 
time or …) – which they can’t.  This is the perfect 
opportunity to extend the Robot class with new behaviors.  
For instance, to create a new class of robots capable of 
turning right, we write 
import cs1Lib.karel.Robot;

public class RightRobot extends Robot
{ public void turnRight()
{ this.turnLeft();
this.turnLeft();
this.turnLeft();

}
}
This basic idea is quickly expanded into step-wise 
refinement to solve a more complex problem such as 
picking up all the beepers in a fixed-size rectangular area.  
A natural extension, parameterized methods, is deferred to 
leave sufficient time for discussing inheritance and step-
wise refinement thoroughly. 

4.3 Week 03:  Selection and Iteration 
In the third week we tackle selection and iteration.  The 
Robot class includes several methods which return Boolean 
values, including frontIsClear (is there a wall 
immediately in front of the robot?), nextToABeeper (is 
there a beeper on the same intersection as the robot?), 

facingNorth (is the robot facing North?), and 
anyBeepersInBeeperBag (is the robot carrying one or 
more beepers?).  These allow a number of interesting 
problems such as the one shown in Figure 1, constructing a 
histogram out of beepers, or having the robot run a hurdles 
race where hurdles are represented by walls.  Value-
returning methods and Boolean expressions fit naturally 
with the discussion of the provided predicates. 

4.4 Week 04:  Methods with Parameters 
Methods can be made much more general, of course, with 
parameters.  Simpler problems include a move method 
which takes an integer distance parameter or a 
harvestPlot method which collects all the beepers from 
an area defined by the parameters.  A more complex 
example is a Contractor robot which has several 
subcontractors to help build a house.  The subcontractors 
are passed via parameters and give a good opportunity to 
compare passing primitive types with passing reference 
types. 

4.5 Week 05:  Instance Variables 
In the last week spent with robots, we extend the Robot 
class with additional instance variables.  We start with a 
DeliveryRobot which keeps track of how many moves it 
makes so that a customer can be charged for its services.  
After this relatively brief example we quickly move to 
other, non-robot, examples such as a date or bank account 
class. 
After introducing the fundamentals of object-oriented 
programming, the remainder of the course focuses on a 
wide range of topics including arrays, graphical user 
interfaces, and object-oriented design. 

4.6 Discussion 
Taking five weeks to cover these topics seems slow, but it’s 
not.  Topics such as procedural decomposition, parameters, 
iteration and selection are hard for most beginners.  They 
were hard back in the days of Pascal – and that hasn’t 
changed just because we have moved to object-oriented 
languages.  In the Pascal predecessor to this course we 
spent two weeks on control structures, two weeks on 
subprograms, and another week on records.   
Many courses may be able to move faster.  In fact, we do.  
By 1995 we observed that most of our incoming students 
had some previous programming experience.  After making 
this a prerequisite for our “first” course (and providing a 
remedial course for those who didn’t have it) we shaved a 
week off the schedule suggested above.  
Some people assume robots are over-used and that students 
soon tire of them.  This is not the case.  We could not use 
them longer, but just over four weeks is not too long.  
Students enjoy the visual aspects and the 
anthropomorphism they make possible.  In the course 
evaluations many students say they thoroughly enjoyed the 
robots;  few mention them negatively. 



We do need to mention often in class that we are only using 
robots as a tool to learn about programming.  It’s not a 
course about robots – it’s a course about programming!  
We reinforce this with frequent allusions to other possible 
classes such as Employee or Date or Account, indicating 
that the concept under discussion applies to those 
situations, too. 

5 Advantages 
There are a number of advantages to using Karel the Robot 
to introduce objects. A number have been alluded to 
already. They are more carefully enumerated here. 

5.1 Object-Oriented Fundamentals First 
Karel the Robot emphasizes the fundamental concepts in 
OO programming (instantiating objects, invoking methods, 
extending existing classes) from the beginning.  It’s 
important that students be able to practice these concepts as 
long as possible and that they not be left to the middle or 
end of the course where they might be skimmed over 
lightly if time is tight. 
Of course the foundations of procedural programming 
(selection, iteration, procedural decomposition) are also 
very important.  The Robot class allows them to be 
naturally introduced with the OO fundamentals so that 
they, too, can be practiced throughout the course. 
Many courses reverse these sets of fundamentals – 
introducing selection and iteration before using objects, 
sometimes treating objects as fancy Pascal records.  There 
are at least two problems with this approach:  a paradigm 
shift and missed opportunities. 
Students are often asked to write programs typical of those 
in chapter 3 of [4].  These are programs which count, sum 
or generate comments based on user input.  None of these 
programs use objects except for System.out, strings, and 
(once or twice) an instance of NumberFormat.  Later, the 
students must shift from a “do it all myself right here” 
paradigm to a “find/build some objects to cooperate in 
getting the job done” paradigm.   
The missed opportunities of this approach are in the 
richness of tasks that can be done with existing objects.  
Why should students be summing numbers when they 
could be doing more interesting things which are 
pedagogically just as valid? 
Another common approach in existing textbooks is to make 
extensive use of System.out and the String class as 
example objects.  These programs use objects but the 
object creation is hidden by the run-time system (in the 
case of System.out) or special language support (strings).  
Creating objects – including multiple instances from the 
same class – is an important part of students understanding 
what objects are and how they work. 
By using a sufficiently complex and interesting predefined 
class such as Robot students can begin using the OO 
fundamentals from the beginning and avoid a paradigm 
shift later on. 

5.2 Robots are Visual 
The fact that robot worlds have a visual representation 
provides a number of benefits. 
• Many problems can be specified using a picture of the 

initial situation and another of the final situation, plus a 
few lines of text.  We find that students have fewer 
questions about homework problems specified this way. 

• The animation provides visual feedback on the 
correctness of an algorithm.  If the student’s program 
doesn’t result in the same image as the problem 
statement, there must be a bug (of course, just because it 
looks the same doesn’t mean it was done right…). 

• Students can often see where their program goes wrong 
simply by watching the animation.  Because the human 
brain is highly optimized to process visual input this is 
faster and easier than, say, scanning a list of numbers 
from a console program.  

• Because robots provide output visually, traditional input 
and output can be delayed. This is particularly attractive 
in Java where I/O is cumbersome, at best. 

5.3 Robots are Fun 
Robots are fun!  This is, perhaps, the biggest advantage of 
the approach.  Students enjoy directing robots to do various 
tasks. Acting out a program in class is more fun than 
tracing a listing. Visual output is more fun than textual 
output. 

6 Related Work 
Since we developed this course textbooks have, in general, 
moved objects earlier.  Most, however, use a scattering of 
Java classes such as String or Random (which we find 
inferior to the approach recommended here) or expect 
students to write their own classes almost as soon as they 
learn about objects.  See [1] for a more thorough treatment. 
A few textbooks come closer.  Slack [9] uses turtle 
graphics rather than a robot but uses a spiral approach.  
Chapter 2 is a difficult chapter, packed with concepts 
illustrated with turtle graphics.  Chapters 4, 5, 7 and parts 
of 10 then come back to cover the concepts in more depth.   
Morelli [5] uses a “CyberPet” as an interesting example to 
illustrate object-oriented fundamentals as well as iteration 
and selection.  The difference is that it is not a pre-defined 
class, as are the robots.  Instead students develop it as they 
go along.   
Wu [10] gives a well-crafted rationale for using objects 
early.  The objects his students use, however, are a 
simplified interactive I/O library used in the context of 
other problems. 
Otterbein College uses Karel the Robot as an introduction 
to programming.  They have a sophisticated environment 
developed by Duane Buck which supports a Java-like 
syntax (as well as Pascal and Lisp) and has an integrated 
compiler and execution environment.  Differences from our 
approach is that our students use a Java development 



environment, importing the necessary classes.  Their 
students use one environment for Karel and a different one 
for other programs.  In the Otterbein environment only a 
single robot can be used in any given program.  The 
environment is available at http://math.otterbein.edu/ 
JKarelRobot/.  Their larger approach is discussed in [3]. 
Joseph Bergin has made his own translation of  Karel++ to 
Java available on the web, along with classes implementing 
the robot.  It may be found at http://csis.pace.edu/~bergin/ 
KarelJava/Karel++JavaEdition.html.  
Our own work is at http://www.undergrad.math.uwaterloo 
.ca/~cs130/. 
Rich Pattis, the originator of Karel the Robot, has extended 
the idea into artificial life simulations.  The result is a much 
more complex set of classes for students to master, but one 
that also affords many more possibilities [7]. 

7 Future Directions 
The largest difficulty we have encountered is that Karel++, 
and thus our translation of that book, is only an 
introduction to object-oriented programming.  It doesn’t 
cover numerous topics expected in a CS1 course and so we 
jump to a standard text after several weeks.  Students often 
complain of this discontinuity. 
To overcome this I am writing a full CS1 textbook which 
starts with Karel but also includes all the expected CS1 
topics.  This text will also include a number of innovations 
beyond those discussed here.   
First, we currently discuss attributes of an object (instance 
variables) quite late.  After stressing in week 1 that an 
object has both behavior and attributes, it seems wrong to 
focus on behavior for so long without mentioning 
attributes.  In the text I will cover object usage, extending 
objects (behaviors), selection, and then attributes, bringing 
two core object-oriented concepts into a much closer 
relationship. 
Second, there will be a richer collection of classes.  In 
addition to the current Robot and World (renamed City) 
will be a CityBlock – the immediate environment of a 
robot.  Students will be able to extend the CityBlock class 
and robots will be able to interact with CityBlock objects.  
Picking up and putting down beepers then becomes just one 
example of possible interactions.  After studying how 
classes interact to implement beepers, students might go on 
to implement a robot that rakes leaves into piles or spreads 
piles of salt onto the streets or city blocks that display a 
different color after being visited by a robot.  Many of 
these projects make good use of instance variables.  This 
also allows simulations inspired by artificial life [7, 8]. 
Third, I am introducing a parallel track which reinforces 
concepts using non-robot objects.  Currently too many 
students don’t recognize that they are learning general 
concepts via Karel the robot.  Including other examples 
should alleviate this. 

Since students love graphics and GUI applications, I will 
follow [4] and others in providing a “GUI Supplement.”  In 
chapter 1 we will instantiate and invoke methods on a robot 
object followed by instantiating and invoking methods on a 
JFrame object.  In chapter 2 students will extend robots to 
do new things and also extend JFrame to do something 
new – paint a scene.  Other chapters will follow a similar 
structure. 

8 Conclusions 
We have been extremely pleased with using interesting 
predefined classes (Karel the Robot and its world) to teach 
object-oriented fundamentals (object instantiation, method 
calls, inheritance) and traditional procedural fundamentals 
(iteration, selection) early in the course.  The result has 
been a course that is fun for both students and instructors, 
and where students understand the fundamental concepts 
early, allowing them to approach advanced topics with 
confidence.   
References 
[1] Becker, Byron Weber.  Pedagogies for Teaching CS1 

in Java. http://www.math.uwaterloo.ca/~bwbecker/ 
papers/sigcse2001/javaPedagogies/index.html.  

[2] Bergin, Joseph, Mark Stehlik, Jim Roberts, and 
Richard Pattis.  Karel++:  A Gentle Introduction to the 
Art of Object-Oriented Programming.  John Wiley & 
Sons, 1997. 

[3] Buck, Duane and David J. Stucki.  Design Early 
Considered Harmful:  Graduated Exposure to 
Complexity and Structure Based on Levels of 
Cognitive Development.  SIGCSE Bulletin 1 (2000), p. 
75-79. 

[4] Lewis, John and William Loftus. Java Software 
Solutions.  Addison-Wesley, 2000. 

[5] Morelli, Ralph.  Java, Java, Java:  Object-Oriented 
Problem Solving.  Prentice-Hall, 2000. 

[6] Pattis, Richard E.. Karel the Robot:  A Gentle 
Introduction to the Art of Programming, John Wiley & 
Sons, 1981. 

[7] Pattis, Richard E.  Teaching OOP in C++ Using an 
Artificial Life Framework.  SIGCSE Bulletin 1 (1997), 
p. 39-43. 

[8] Resnick, Mitchel.  Turtles, termites, and traffic jams:  
explorations in massively parallel microworlds.  The 
MIT Press, 1994. 

[9] Slack, James M.  Programming and Problem Solving 
with Java.  Brooks/Cole, 2000. 

[10] Wu, C. Thomas.  An Introduction to Object-Oriented 
Programming with Java.  WCB/McGraw-Hill, 1999. 

http://math.otterbein.edu/ JKarelRobot/
http://math.otterbein.edu/ JKarelRobot/
http://csis.pace.edu/~bergin/ KarelJava/Karel++JavaEdition.html
http://csis.pace.edu/~bergin/ KarelJava/Karel++JavaEdition.html
http://www.undergrad.math.uwaterloo .ca/~cs130/
http://www.undergrad.math.uwaterloo .ca/~cs130/
http://www.math.uwaterloo.ca/~bwbecker/ papers/sigcse2001/javaPedagogies/index.html
http://www.math.uwaterloo.ca/~bwbecker/ papers/sigcse2001/javaPedagogies/index.html

	A
	Introduction
	Karel and Karel’s World
	Differences from Previous Work
	Course Outline
	Week 01:  Instantiating and Using Objects
	Week 02:  Extending Existing Classes
	Week 03:  Selection and Iteration
	Week 04:  Methods with Parameters
	Week 05:  Instance Variables
	Discussion

	Advantages
	Object-Oriented Fundamentals First
	Robots are Visual
	Robots are Fun

	Related Work
	Future Directions
	Conclusions

