Postselection threshold against biased noise

(A probabilistic mixing lemma and quantum fault tolerance)

Ben W. Reichardt Caltech

Results

- Existence of tolerable noise rates for many fault-tolerance schemes, including:
 - Schemes based on error-detecting codes, not just ECCs (Knill-type)
- Tolerable threshold lower bounds*
 - 0.1% simultaneous depolarization noise[†]
 - 1.1%, if error model known *exactly*

* Subject to minor numerical caveats

†Versus .02% best lower bound for errorcorrection-based FT scheme [Aliferis, Cross 2006] Fault-tolerance motivation: Fragility of entangled quantum systems

Schrödinger's cat:

$$\frac{1}{\sqrt{2}} \left(|\text{live cat}\rangle + |\text{dead cat}\rangle \right)$$

Fault-tolerance motivation: Fragility of entangled quantum systems

Schrödinger's cat: $\frac{1}{\sqrt{2}} \left(|\text{live cat}\rangle + |\text{dead cat}\rangle \right)$

Analogous state in a quantum computer:

$$\frac{1}{\sqrt{2}}\left(\left|00\cdots0\right\rangle+\left|11\cdots1\right\rangle\right)$$

Moral: A single stray photon can collapse whole computer

Fault-tolerance problem

Factor a 1024-bit number using 10¹¹ gates

Controlled-NOT gate

flips target if control bit is set

Noise model

For today:

Model a noisy gate as a perfect gate followed by independent *bitflip* errors — with total error rate at most p

Fault-tolerance intuition

 $\begin{array}{c} \therefore \text{ Encode into an error-correcting code} \\ 0 & \mapsto & 000 \\ 1 & \mapsto & 111 \end{array} \end{array}$

Compute on top of the ECC

Fault-tolerance intuition

Fault-tolerance intuition

Tolerable noise threshold results

Shor

Aharonov & Kitaev Ben-Or

Knill/Laflamme/ Zurek Gottesman Terhal/Burkard prove positive tolerable noise rate (1997) for codes of distance d≥5

Proofs

Aliferis/Gottesman/ Preskill, Reichardt (2005) first numerical threshold lower bounds, threshold for distance-3 codes

Today: Positive threshold for postselection-based FT scheme

Estimates & Simulations

Steane ('02-'04) develops efficient FT scheme, runs extensive simulations estimates 10⁻³ threshold noise rate with reasonable overhead

Knill ('04-'05) 🛠

developed FT scheme based on postselection — error detection, not error correction (d=2 codes) estimates 3-6% threshold with high overhead Zalka

Preskill Svore/Cross/ Chuang/Aho Szkopek et al. Svore/Terhal/ DiVincenzo

Fault tolerance based on error detection

Fault tolerance based on error detection

- In simulations, tolerates 10x higher noise rates than errorcorrection-based FT schemes
- But previously, no proven positive threshold at all!
- Note: Overhead is substantial, but theoretically efficient

Renormalization frustrates previous proofs

Notation

bitwise-independent errors preceding encoded CNOT gate bitwise-independent errors following encoded CNOT gate

$\varepsilon =$ would be nice, since

encoded FT circuit

Notation

 $P[XXXX] \sim p^2$

 $P[XXXX] = p^4$

Notation

encoded FT circuit

Error orders are correct

Error	Probability
IIII	$\Theta(1)$
IIIX, IIXI, IXII, XIII	O(p)
XXII, IIXX, XXXX, XIXI, XIIX, IXXI, IXIX	$O(p^2)$
IXXX, XIXX, XXIX, XXXI	$O(p^3)$

In fact, true distribution is close to many nice (RHS) distributions, and lies in their convex hull

nice dist.

Analysis of the next encoded CNOT gate proceeds by picking one of the vertices — a nice distribution — then applying the CNOT mixing lemma: c

Each output distibution can again be rewritten as mixture of nice distributions, etc.

Two-bit example of distribution mixing $\mathbf{P}[\mathbf{XX}]$ $(3p, 9p^2)$ $\mathbf{P}[\mathrm{II}] = 1 - 4p - 5p^2$ $(2p, 5p^2)$ $\mathbf{P}[\mathrm{IX}] = \mathbf{P}[\mathrm{XI}] = 2p$ $\mathbf{P}[\mathbf{XX}] = 5p^2$ slight positive correlation - (p,p^2) $\mathbf{P}[\mathrm{IX}] = \mathbf{P}[\mathrm{XI}]$ $\begin{pmatrix} 2p \\ 5p^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} p \\ p^2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 3p \\ 9p^2 \end{pmatrix}$

() bitwise-independent errors

Two-bit example of distribution mixing

Two-bit example of distribution mixing

Mixtures (convex combinations) of distributions having bitwiseindependent noise at rate ≤3p

Two-bit example of distribution mixing

But convex hull of "nice" distributions is much more complicated, in many more dimensions; can't characterize it exactly (even numerically — number of faces is exponential in dimension)

Two methods for showing mixing

I.We are given upper and lower bounds for each coordinate of the distribution... So use a linear program to check that each vertex of the hypercube lies in the convex hull of extremal "nice" distributions. (Computationally expensive in high dimensions.)

Two methods for showing mixing

A point $(q_1, \ldots, q_n) \in [0, 1]^n$ corresponds to a bitwise-independent distribution over $\{0, 1\}^n$, in which the probability of x is $\prod_{i=1}^n q_i^{x_i}(1-q_i)^{1-x_i}$. Define the lattice ordering $y \leq x$ for $x, y \in \{0, 1\}^n$ if considered as indicators for subsets of $[n], x \subseteq y$.

Mixing Lemma. The convex hull, in the space of distributions over n-bit strings, of the 2^n bitwise-independent distributions $\{0, p_1\} \times \{0, p_2\} \times \cdots \times \{0, p_n\}$ is given exactly by those $\mathbf{P}[\cdot]$ satisfying the inequalities, for each $x \in \{0, 1\}^n$:

$$\sum_{y \preceq x} (-1)^{|x \oplus y|} \frac{\mathbf{P}[\{z \preceq y\}]}{p(\{z \preceq y\})} \ge 0 \quad ,$$

where $p(\{z \leq y\}) = \prod_{i=1}^{n} \delta_{y_i,1} p_i$, i.e., the probability of $\{z : z \leq y\}$ in the distribution (p_1, \ldots, p_n) .

Results

- Existence of tolerable noise rates for many fault-tolerance schemes, including:
 - Schemes based on error-detecting codes, not just ECCs (Knill-type)
- Numerical threshold lower bounds*
 - 0.1% simultaneous depolarization noise[†]
 - I.1%, if error model known *exactly*

* Subject to minor numerical caveats

†Versus .02% best lower bound for errorcorrection-based FT scheme [Aliferis, Cross 2006]