Postselection threshold against biased noise

(A probabilistic mixing lemma and quantum fault tolerance)

Ben W. Reichardt
Caltech

Results

- Existence of tolerable noise rates for many fault-tolerance schemes, including:
- Schemes based on error-detecting codes, not just ECCs (Knill-type)
- Tolerable threshold lower bounds*

- 0.1% simultaneous depolarization noise \dagger
- I.I\%, if error model known exactly
* Subject to minor numerical caveats
\dagger Versus $.02 \%$ best lower bound for error-
correction-based FT scheme [Aliferis, Cross 2006]

Fault-tolerance motivation:
 Fragility of entangled quantum systems

Schrödinger's cat:

$$
\left.\left.\frac{1}{\sqrt{2}}(\mid \text { live cat }\rangle+\mid \text { dead cat }\right\rangle\right)
$$

Fault-tolerance motivation:
 Fragility of entangled quantum systems

Schrödinger's cat:

$$
\left.\left.\frac{1}{\sqrt{2}}(\mid \text { live cat }\rangle+\mid \text { dead cat }\right\rangle\right)
$$

Analogous state in a quantum computer:

$$
\frac{1}{\sqrt{2}}(|00 \cdots 0\rangle+|11 \cdots 1\rangle)
$$

Moral:A single stray photon can collapse whole computer

Fault-tolerance problem

Factor a 1024 -bit number using 10^{11} gates

time \longrightarrow

Controlled-NOT gate

Noise model

For today:
Model a noisy gate as a perfect gate followed by independent bitflip errors - with total error rate at most P

[^0]
Fault-tolerance intuition

Noise model

\therefore Encode into an error-correcting code

$$
\begin{array}{lll}
0 & \mapsto & 000 \\
1 & \mapsto & 111
\end{array}
$$

Compute on top of the ECC

Fault-tolerance intuition

noisy transversal CNOTs

Fault-tolerance intuition

Improved reliability beneath a constant threshold

Tolerable noise threshold results

Fault tolerance based on error detection

CNOT gate

Fault tolerance based on error detection

CNOT gate

- In simulations, tolerates $10 x$ higher noise rates than error-correction-based FT schemes
- But previously, no proven positive threshold at all!
- Note: Overhead is substantial, but theoretically efficient

Renormalization frustrates previous proofs

Most of the time, errors are detected but (counterintuitively) survival probability for uncontrolled portion could be much higher

Uncentrolled
1\%

Proofs based on controlling events most of the time, with occasional failures

Uncontrolled fraction of probability mass increases exponentially after renormalization!

Proof intuition

CNOT gate

Notation: Noisy encoder

Proof intuition
Notation

bitwise-independent errors
bitwise-independent errors preceding encoded CNOT gate following encoded CNOT gate

Proof intuition
Notation

$$
P[X X X X] \sim p^{2} \quad P[X X X X]=p^{4}
$$

Proof intuition
Notation

$$
\stackrel{?}{=} \delta_{\phi_{\text {peat }}} \leqslant \varphi^{2}-\varepsilon=
$$

Proof intuition

Error orders are correct

Error	Probability
IIII	$\Theta(1)$
IIIX, IIXI, IXII, XIII	$O(p)$
XXII, IIXX, XXXX, XIXI, XIIX, IXXI, IXIX	$O\left(p^{2}\right)$
IXXX, XIXX, XXIX, XXXI	$O\left(p^{3}\right)$

Proof intuition

Proof intuition

Induction step

Analysis of the next encoded CNOT gate proceeds by picking one of the vertices - a nice distribution - then applying the CNOT mixing lemma:

Each output distibution can again be rewritten as mixture of nice distributions, etc.

Two-bit example of distribution mixing

Two-bit example of distribution mixing

Two-bit example of distribution mixing

Mixtures (convex combinations) of distributions having bitwiseindependent noise at rate $\leq 3 \mathrm{p}$

Two-bit example of distribution mixing

But convex hull of "nice" distributions is much more complicated, in many more dimensions; can't characterize it exactly (even numerically - number of faces is exponential in dimension)

Two methods for showing mixing

I.We are given upper and lower bounds for each coordinate of the distribution... So use a linear program to check that each vertex of the hypercube lies in the convex hull of extremal "nice" distributions.
(Computationally expensive in high dimensions.)

Two methods for showing mixing

2. Map to a higher-dimensional space in which convex hull can be easily characterized. (Loses a constant factor, but sufficient for threshold existence proof.)

$(0,0,0)$

Two-bit case is simple because every error event has distinct effect (convex hull of n points in n -I dimensions)

Two methods for showing mixing

$$
=\left\{\begin{array}{c}
\oiint_{\text {prfect }} \leq \rho^{2}-\varepsilon= \\
\varepsilon=
\end{array}\right\}
$$

A point $\left(q_{1}, \ldots, q_{n}\right) \in[0,1]^{n}$ corresponds to a bitwise-independent distribution over $\{0,1\}^{n}$, in which the probability of x is $\prod_{i=1}^{n} q_{i}^{x_{i}}\left(1-q_{i}\right)^{1-x_{i}}$. Define the lattice ordering $y \preceq x$ for $x, y \in\{0,1\}^{n}$ if considered as indicators for subsets of $[n], x \subseteq y$.

Mixing Lemma. The convex hull, in the space of distributions over n-bit strings, of the 2^{n} bitwise-independent distributions $\left\{0, p_{1}\right\} \times\left\{0, p_{2}\right\} \times \cdots \times\left\{0, p_{n}\right\}$ is given exactly by those $\mathbf{P}[\cdot]$ satisfying the inequalities, for each $x \in\{0,1\}^{n}$:

$$
\sum_{y \preceq x}(-1)^{|x \oplus y|} \frac{\mathbf{P}[\{z \preceq y\}]}{p(\{z \preceq y\})} \geq 0
$$

where $p(\{z \preceq y\})=\prod_{i=1}^{n} \delta_{y_{i}, 1} p_{i}$, i.e., the probability of $\{z: z \preceq y\}$ in the distribution $\left(p_{1}, \ldots, p_{n}\right)$.

Results

- Existence of tolerable noise rates for many fault-tolerance schemes, including:
- Schemes based on error-detecting codes, not just ECCs (Knill-type)
- Numerical threshold lower bounds*

- 0.1% simultaneous depolarization noise \dagger
- I.I\%, if error model known exactly
* Subject to minor numerical caveats
\dagger Versus $.02 \%$ best lower bound for error-correction-based FT scheme [Aliferis, Cross 2006]

[^0]: flips target if control bit is set

