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• Existence of tolerable noise rates for 
many fault-tolerance schemes, 
including:

• Schemes based on error-detecting 
codes, not just ECCs (Knill-type)

• Tolerable threshold lower bounds*

• 0.1% simultaneous depolarization 
noise†

• 1.1%, if error model known exactly

Results

* Subject to minor numerical caveats
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† Versus .02% best lower bound for error-
correction-based FT scheme [Aliferis, Cross 2006]



Fault-tolerance motivation: 
Fragility of entangled quantum systems

Schrödinger’s cat:
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Fault-tolerance motivation: 
Fragility of entangled quantum systems

Schrödinger’s cat:

Analogous state in a quantum computer:

Moral: A single stray photon can collapse whole computer

1√
2

(|00 · · · 0〉+ |11 · · · 1〉)

1√
2

(|live cat〉+ |dead cat〉)



Fault-tolerance problem

•
≤ p
!"#$%&'()*+,-./0

perfect

Noise model

a • a

b !"#$%&'( a⊕ b

Controlled-NOT gate

For today: 

Model a noisy gate as a perfect 
gate followed by independent bit-
flip errors — with total error 
rate at most p

•!"#$%&'( • !"#$%&'( •

• !"#$%&'( !"#$%&'(!"#$%&'( • X
time

Factor a 1024-bit number using 1011 gates

flips target if control bit is set



Fault-tolerance intuition

•
≤ p
!"#$%&'()*+,-./0

perfect
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Noise model

0 !→ 000
1 !→ 111

∴ Encode into an error-correcting code

Compute on top of the ECC



Fault-tolerance intuition

noisy transversal CNOTs!

perfect
decoding

"
perfect CNOT

!
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Fault-tolerance intuition

(0, 0)

cp2 p

p

Prob. diagram
fails to commute

Threshold for
improvement: 1/c

noisy transversal CNOTs!

perfect
decoding

"
perfect CNOT

!

perfect
decoding

"

•!"#$%&'( !−→
•
•
•!"#$%&'(!"#$%&'(!"#$%&'(

•!"#$%&'( !−→
•

EC•
•!"#$%&'(

EC!"#$%&'(!"#$%&'(
Improved reliability beneath a 
constant threshold



Tolerable noise threshold results

Estimates & 

Simulations

develops efficient FT scheme, 
runs extensive simulations

estimates 10-3 threshold noise 
rate with reasonable overhead

ProofsShor

Aharonov & 
Ben-Or

Steane

Knill

Kitaev

prove positive tolerable 
noise rate (1997)

Gottesman

Knill/Laflamme/
Zurek

Zalka

Aliferis/Gottesman/
Preskill, Reichardt (2005)

first numerical threshold 
lower bounds, threshold 

for distance-3 codes

Today: Positive threshold for 

postselection-based FT scheme

('02-'04)

('04-'05)

Terhal/Burkard

developed FT scheme based on 
postselection — error detection, 
not error correction
estimates 3-6% threshold with 
high overhead

Preskill

Svore/Cross/
Chuang/Aho

Svore/Terhal/
DiVincenzo

Szkopek et al.

for codes of  distance d!5

(d=2 codes)

*

*



Fault tolerance based on error detection

CNOT gate
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•!"#$%&'( !−→
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Fault tolerance based on error detection

CNOT gate

• In simulations, tolerates 10x higher noise rates than error-
correction-based FT schemes

• But previously, no proven positive threshold at all!

• Note: Overhead is substantial, but theoretically efficient



Uncontrolled

50% 50%

Controlled

Renormalization frustrates previous proofs

Uncontrolled

1% 1%

Controlled

Proofs based on controlling events most of the time, 
with occasional failures

Controlled
(well-bounded)

Uncontrolled
(worst-case)

99%

1%

Most of the time, errors are detected — 
but (counterintuitively) survival probability for 
uncontrolled portion could be much higher 

Uncontrolled fraction of probability 
mass increases exponentially after 
renormalization!



•!"#$%&'( !−→
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0 !"#$%&'( !"#$%&'( 0!"#$%&'( •!"#$%&'( •
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Proof intuition

CNOT gate

Notation: Noisy encoder



Proof intuition
Notation

?=

bitwise-independent errors 
preceding encoded CNOT gate

bitwise-independent errors 
following encoded CNOT gate



would be nice, since=
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encoded FT circuit

perfect circuit



Proof intuition

!=

P[XXXX] = p4P[XXXX] ~ p2

Notation



Proof intuition
Notation

?=



would be nice, since=
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encoded FT circuit

perfect circuit
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perfect perfect



≈

true dist.

nice dist.

true dist.

nice dist.

nice dist.

nice dist.

Proof intuition



Error orders are correct

Error Probability
IIII Θ(1)

IIIX, IIXI, IXII, XIII O(p)
XXII, IIXX, XXXX, XIXI, XIIX, IXXI, IXIX O(p2)

IXXX, XIXX, XXIX, XXXI O(p3)

≈



+δ=

Proof intuition

Controlled
(well-bounded)

Uncontrolled
(worst-case)

99%

1%

true dist.

nice dist.

true dist.

nice dist.

nice dist.

nice dist.

Uncontrolled

50% 50%

Controlled

But this gives 
same problem 
as before, after 
error detection & 
renormalization



Proof intuition

true dist.

nice dist.

true dist.

nice dist.

nice dist.

nice dist.

In fact, true distribution is close to 
many nice (RHS) distributions, and 
lies in their convex hull

= +δ



true dist.

nice dist.

nice dist.

nice dist.

Induction step

Analysis of the next encoded CNOT gate proceeds by picking one of 
the vertices — a nice distribution — then applying the CNOT mixing 
lemma:

Each output distibution can again be rewritten as mixture of nice 
distributions, etc.

=



Two-bit example of distribution mixing

(
2p
5p2

)
=

1
2

(
p
p2

)
+

1
2

(
3p
9p2

)

P[II] = 1− 4p− 5p2

P[IX] = P[XI] = 2p

P[XX] = 5p2

(2p, 5p2)

(p, p2)

(3p, 9p2)

P[IX] = P[XI]

P[XX]

slight positive correlation

bitwise-independent errors



(0, 0)

(3p, 9p2)

Two-bit example of distribution mixing

mixtures of distn’s having bitwise-independent noise at 
rate ≤3p

P[IX] = P[XI]

P[XX]
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Two-bit example of distribution mixing

Mixtures (convex combinations) of distributions having bitwise-
independent noise at rate ≤3p

P[IX] = P[XI]

P[XX]
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Two-bit example of distribution mixing

But convex hull of “nice” distributions is much more complicated, in many 
more dimensions; can’t characterize it exactly (even numerically — number 

of faces is exponential in dimension)

P[IX] = P[XI]

P[XX]



Two methods for showing mixing

1. We are given upper and lower 
bounds for each coordinate of the 
distribution…  So use a linear 
program to check that each vertex of 
the hypercube lies in the convex hull 
of extremal “nice” distributions.  
(Computationally expensive in high 
dimensions.)

=



Two methods for showing mixing

2.  Map to a higher-dimensional space 
in which convex hull can be easily 
characterized.  (Loses a constant 
factor, but sufficient for threshold 
existence proof.)
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Two-bit case is simple 
because every error 
event has distinct effect 
(convex hull of n points 
in n-1 dimensions)

Now, different events can 
lead to same error 
— convex hull no longer 
a simplex

=



Two methods for showing mixing
=

A point (q1, . . . , qn) ∈ [0, 1]n corresponds to a bitwise-independent distribu-
tion over {0, 1}n, in which the probability of x is

∏n
i=1 qxi

i (1 − qi)1−xi . Define
the lattice ordering y # x for x, y ∈ {0, 1}n if considered as indicators for subsets
of [n], x ⊆ y.

Mixing Lemma. The convex hull, in the space of distributions over n-bit
strings, of the 2n bitwise-independent distributions {0, p1}×{0, p2}×· · ·×{0, pn}
is given exactly by those P[·] satisfying the inequalities, for each x ∈ {0, 1}n:

∑

y"x

(−1)|x⊕y| P[{z # y}]
p({z # y}) ≥ 0 ,

where p({z # y}) =
∏n

i=1 δyi,1pi, i.e., the probability of {z : z # y} in the
distribution (p1, . . . , pn).



• Existence of tolerable noise rates for 
many fault-tolerance schemes, 
including:

• Schemes based on error-detecting 
codes, not just ECCs (Knill-type)

• Numerical threshold lower bounds*

• 0.1% simultaneous depolarization 
noise†

• 1.1%, if error model known exactly

Results

* Subject to minor numerical caveats
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