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Abstract

Web server performance has steadily improved since the
inception of the World Wide Web. We observe perfor-
mance gains of two orders of magnitude between the
original process-based Web servers and today’s threaded
Web servers. Commercial and academic Web servers
achieved much of these gains using new or improved
event-notification mechanisms and techniques to elimi-
nate reading and copying data, both of which required
new operating system primitives. More recently, exper-
imental and production Web servers began integrating
HTTP processing in the TCP/IP stack and providing zero
copy access to a kernel-managed cache. These kernel-
mode Web servers improved upon newer user-mode Web
servers by a factor of two to six.

This paper analyzes the significant performance gap
between the newer user-mode and kernel-mode Web
servers on Linux and Windows 2000. Several user-mode
and kernel-mode Web servers are compared in three ar-
eas: data movement, event notification, and communica-
tion code path. To establish a user-mode baseline, the pa-
per measures the performance of highly optimized Web
servers. The paper positions these user-mode implemen-
tations with those from related research projects. In par-
ticular, the “Adaptive Fast Path Architecture” (AFPA) is
described and then used to implement kernel-mode Web
servers on Linux and Windows 2000. AFPA is a platform
for implementing kernel-mode network servers on pro-
duction operating systems without kernel modifications.
AFPA runs on Linux, Windows 2000, AIX, and S/390.
The results show that kernel-mode performance greatly
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exceeds the performance of user-mode servers imple-
menting a variety of performance optimizations. The
paper concludes that significant opportunities remain to
bridge the gap between user-mode and kernel-mode Web
server performance.

1 Introduction

Increasing demand for Web content and services has mo-
tivated techniques to grow Web server capacity. As a
result, Web server performance has steadily improved
and Web-hosting infrastructure has become more com-
plex. Today’s Web “farms” are multi-tiered and employ
several types of specialized server systems dedicated to
caching static content, applications, and databases. For
example, network service providers use proxy caches
to geographically distribute content on behalf of spe-
cific customers. This reduces bandwidth costs and im-
proves end-user response times. Akamai [1], for in-
stance, has built a commercial service for caching por-
tions of their customer’s static content using geograph-
ically distributed edge caches. In addition to caching
static content, Web servers are able to cache dynamic
content such as price lists, stock quotes, or sports scores.
Dynamic content often changes at a coarse enough fre-
quency or requires publishing at intervals sufficient for
caching. Commercial efforts [2] and research projects
[3] have successfully exploited the ability to cache most
forms of dynamic content at the front tier of a Web deliv-
ery architecture. While some forms of dynamic content
have real-time publishing requirements and remain dif-
ficult to cache, it has been shown by [4] that the ratio
between all forms of dynamic and static content has re-
mained constant, defying the commonly-held belief that
dynamic workloads will dominate over time.

Caching Web servers are well-suited to analyzing net-
work server performance tradeoffs. These servers are



simple to implement and measure with existing, unmodi-
fied static Web benchmarks. Caching Web servers reduce
network server logic to parsing an HTTP GET request.
It’s possible to parse such a request with a few lines of C
code. What remains is experimentation with thread mod-
els, scheduling mechanisms, and new operating system
primitives to reduce memory copies. The simplicity of
parsing HTTP GET requests reduces the complexity of
the code required for kernel-mode caching Web servers.
Furthermore, it’s usually possible to implement kernel-
mode caching Web servers without modifying the oper-
ating system kernel, providing useful control cases for
assessing user-mode optimizations.

This paper analyzes the performance gap between
the fastest currently available user-mode caching Web
servers and their kernel-mode counterparts while hold-
ing the operating system and hardware fixed. The goal
of this analysis is to identify the potential performance
gains possible for future user-mode primitives. User-
mode servers employing current “best practices” are used
to establish a baseline for fastest possible user-mode per-
formance. The tested user-mode servers employ several
techniques to minimize data copies and reduce overhead
of network event notification. The paper measures sev-
eral kernel-mode Web servers, including servers based
on a platform called “Adaptive Fast Path Architecture”
(AFPA). The experiments are repeated for two differ-
ent operating systems: Linux 2.3.51 and Windows 2000.
In all cases, the CPU hardware, TCP/IP stack, network
hardware and operating system are held constant.

The paper compares the performance of several user-
mode and kernel-mode caching Web servers using dif-
ferent workloads. The results show a wide performance
margin between the better performing user-mode and
kernel-mode servers. The user-mode servers are shown
effective in reducing memory copies and reads while also
reducing scheduling overhead with efficient event no-
tification mechanisms and single thread, asynchronous
I/O implementations. The best of these efforts are still
two to six times slower than the fastest achieved kernel-
mode performance on the unmodified Linux and Win-
dows 2000 operating systems tested using the same hard-
ware. The results reveal significant potential to improve
user-mode server performance.

The paper is organized as follows: Section 2 classifies
Web server performance issues, describes current user-
mode and kernel-mode approaches, and describes related
work. Section 3 describes the Adaptive Fast Path Ar-
chitecture, a platform for building kernel-mode network
servers. Section 4 describes the methodology used to
measure and analyze user-mode and kernel-mode Web
server implementations. Section 5 reports and analyzes

the performance results for representative user-mode and
kernel-mode Web servers. Finally, Section 6 draws con-
clusions from the performance analysis, and Section 7
makes recommendations regarding Web server design,
and describes future work.

2 Web Server Performance Issues

Techniques to improve caching Web server performance
address one or more of the following objectives: elimi-
nation of data copies and reads, reduction of scheduling
and context switching overhead due to event notification,
and reduction of overall communication overhead in the
socket layer, TCP/IP stack, link layer, and network inter-
face hardware.

2.1 Data Copies and Reads

Eliminating copies and reads for a Web transaction of-
fers significant performance improvements for large re-
sponses. Data copies can be difficult to avoid in user-
mode Web servers where the data to be sent resides in the
file system cache. In cases where data is already mapped
into the user-mode address space, BSD-style socket im-
plementations will perform one or more copies before
delivering the data to the network adapter. Even where
data copies are eliminated, the additional overhead in
reading the data to compute a checksum remains. The
data copy problem is solved by providing a mechanism to
send response data directly from the file system cache to
the network interface. The checksum problem is solved
either by precomputing and embedding the checksum in
a Web cache object or by relying on network interface
hardware to offload the checksum computation.

2.2 Event Notification

A second performance issue is minimizing the cost of
event notification. We define event notification as the
queuing of a client request by a server for response by a
server task. In the case of a HTTP 1.0 request, the client
request is formed by the arrival of a TCP SYN packet
and subsequent data packets containing the request. The
server must handle these two events with minimal over-
head. First, it must complete the three-way TCP hand-
shake started with the arrival of the first SYN packet.
Second, it must receive the data forming the request, and
read this data into a user-mode memory area. To handle
multiple clients, the server supports concurrency either
by assigning a single task from a pool of tasks to each



client request or by using asynchronous system calls to
manage many requests with a few tasks.

Achieving efficient event notification requires a thread
model with minimal scheduling overhead. The map-
ping between threads and requests is taxonomized by
[5] as multiple process/thread (MP) or single process
event driven (SPED). In the MP model, a server cre-
ates a new task for each new request. Because creat-
ing a new task can be time consuming, most MP servers
reduce the overhead by pre-allocating a pool of tasks.
However, pre-allocating a pool of tasks to avoid task cre-
ation still incurs unwanted scheduling overhead. Every
request requires a reschedule to the task for that request.
Apache [6] is the canonical example of the MP archi-
tecture. Ideally, the unnecessary scheduling inherent to
the MP model is avoided in a design where a single task
services requests on behalf of multiple clients.

In the SPED model, a few processes handle requests
from multiple clients concurrently. The SPED model re-
lies on asynchronous notification mechanism for notify-
ing a server task of incoming network requests. For ex-
ample,select() is the event notification mechanism
commonly used on user-mode UNIX Web servers and
I/O completion ports are commonly used on Windows
2000. Web servers such as Zeus [7], IIS [8] use a SPED
model. Flash [5] also uses a SPED model for cached con-
tent, using only one thread for serving cache hits. The
Windows 2000 APIs implementing zero copy data trans-
fer and efficient event notification are described in [9].

2.3 Communication Code Path

A third performance issue is the overall communication
code path through the socket layer, TCP/IP stack, link
layer, and network interface. The socket layer is not nec-
essarily tailored to the needs of Web servers. Researchers
have modified existing socket APIs or implemented new
APIs with Web servers in mind [10].

Some commercial operating systems provide interfaces
specifically for Web servers. In particular, Windows NT
provides interfaces eliminating redundant system calls:
AcceptEx() andTransmitFile() . In addition to
other benefits, these interfaces aggregate several system
calls, reducing the code path between the Web server
and TCP/IP stack. For example,AcceptEx() com-
bines accepting a new connection, reading the request
data, and obtaining peer address information, eliminat-
ing system calls and redundant socket layer code. Like-
wise, TransmitFile() combines reading data from
the file system and writing header and data to the socket,
also eliminating system calls.

In addition to socket layer optimizations, the TCP/IP
stack has also been improved for Web server work-
loads. For example, TCP/IP implementations have
been redesigned to efficiently manage short-lived con-
nections [11]. Commercial operating systems have also
been optimized for short-lived connections, improving
management of TCP control blocks and sockets in the
TIME WAIT TCP/IP state.

The network interface hardware and corresponding
driver are other key places for optimizations in the com-
munication code path. For the purposes of this paper,
we hold the network interface and driver implementa-
tions fixed when comparing servers on the same oper-
ating system. For completeness, it should be noted that
network interfaces and their drivers can have a significant
impact on performance. “Smart” network interface cards
with on board processors are capable of coalescing inter-
rupts, offloading fragmentation, checksum computation,
and higher level TCP/IP processing such as connection
establishment [12].

2.4 Current Approaches

User-mode Approaches

This paper analyzes several user-mode Web servers tak-
ing advantage of the performance enhancements de-
scribed above. These user-mode Web servers rely heav-
ily on the operating system to provide the primitives nec-
essary to reduce data movement, limit event notification
overhead, and minimize the communication code path.
One approach is to optimize existing interfaces and their
implementations. For example, implementations ofse-
lect() andpoll() have been improved by [13, 14]
to reduce event notification overhead.

Another approach is to define completely new interfaces,
building Web servers around these new interfaces. For
example, new user-mode interfaces to eliminate memory
copies and mitigate checksum computation include IO-
Lite [15] and Windows NT’sTransmitFile() API.
IO-Lite provides a generic interface and mechanism to
unify data management among operating system sub-
systems and user-mode servers.TransmitFile()
provides the same performance effect in avoiding data
copies, but is limited to sending files with prefix or suffix
data from the file system cache. AIX implements a simi-
lar zero copy API calledsendfile() . Linux provides
a sendfile() API, but the implementation requires a
data copy to move the data from the file system to the
network stack. This paper analyzes the performance of
IIS and Zeus, two production Web servers leveraging ex-
amples of these new APIs. Lastly, the paper describes



an additional SPED user-mode Web server for Windows
2000 and Linux called Howl. Howl is described in more
detail in Section 5.3.

Kernel-mode Approaches

Kernel-mode Web servers have been implemented in the
context of both production and experimental operating
systems. Migration of services considered integral to
a server’s operation into the kernel is not a new idea.
For example, most commercial operating systems in-
clude kernel-mode file servers. Delivery of static Web
responses amounts to sending files on a network inter-
face and does not require extensive request parsing. A
kernel-mode Web server can fetch response data from a
file system or kernel-managed Web cache. If the kernel-
mode caching Web server determines that it cannot serve
the request from its cache, it forwards it to a full-featured
user-mode Web server.

Kernel-mode Web servers can be characterized accord-
ing to the degree of their integration with the TCP/IP
stack and whether responses are derived in a thread or in-
terrupt context. Microsoft’s Scalable Web Cache (SWC)
[16] is tightly integrated with the Windows 2000 TCP/IP
stack. By contrast, Linux’s kHTTPd [17] uses socket in-
terfaces in kernel-mode. Both SWC and kHTTPd han-
dle response processing from kernel-mode threads. TUX
[18] is another in-kernel Web server introduced by Red-
Hat on Linux. Like kHTTPd, TUX uses a threaded
model, but it offers greater features and performance.
First, TUX caches objects in a pinned memory cache
rather than using the file system. Second, TUX imple-
ments zero copy TCP send from this pinned memory
cache and a checksum cache for network adapters with-
out hardware support for offloading checksum computa-
tion.

Other Approaches

In addition to extending production operating systems,
researchers have implemented specialized or new operat-
ing systems to experiment with Web server performance.
The Lava hit-server [19] achieves cache performance
limited only by memory bus bandwidth. While this pa-
per holds the TCP/IP stack, network driver, and network
hardware fixed, the hit-server focuses on network driver
optimizations and a non-TCP transport protocol to min-
imize memory conflicts between the CPU and network
controller for performance. The Cheetah Web server [20]
is another example of a Web server designed with perfor-
mance in mind on a new operating system. Rather than

extending production systems as described in this paper,
the Cheetah Web server uses a specialized TCP stack on
a research operating system called Exokernel [21]. The
Exokernel approach demonstrates the performance pos-
sible when subsystems such as the network stack and file
system are tightly integrated. The AFPA results in this
paper appear consistent with the factor of three to six
performance gain reported for Cheetah on the Exokernel
operating system. However, the AFPA results use un-
modified, production operating systems allowing direct
comparisons with state of the art user-mode optimiza-
tions on Linux and Windows 2000.

3 AFPA

We now provide a brief overview of the Adaptive Fast
Path Architecture (AFPA) [22], a software architecture
for high-performance network servers. AFPA features:

� Support for a variety of application protocols.

� Direct integration with the TCP/IP protocol stack.

� A kernel-managed, zero copy cache.

3.1 Overview

AFPA is a flexible kernel-mode platform for high-
performance network servers. The architecture is flexible
in several ways. First, it can be applied to a variety of ap-
plication protocols such as HTTP, FTP, LDAP, and DNS.
Such protocols are implemented as AFPA modules. Sec-
ond, it has been implemented on four platforms: Linux,
Windows 2000, AIX, and OS/390. The latter three im-
plementations have been incorporated into current IBM
products, the first of which was released as the Netfinity
Web Server Accelerator in 1998. The architecture was
implemented on Linux and Windows 2000 solely as a
kernel module. Third, it can be used as a caching server
or an efficient layer 7 router. Fourth, it can be tightly inte-
grated and co-located with a conventional user-level net-
work server or implemented as a stand-alone front-end
accelerator that offloads processing from a set of “back-
end” servers without requiring any modification to the
conventional servers. Fifth, AFPA can be used to enforce
quality of service [23]. This section focuses on AFPA
application to Web servers.

Several factors contribute to AFPA’s efficiency. These
factors are now described in terms of data movement,
event notification, and communication code path for the



Linux and Windows 2000 AFPA implementations. First,
data copies and reads are eliminated, improving perfor-
mance when sending larger responses. The data copies
are avoided by passing references to pinned cache ob-
jects directly to the protocol stack. Reads are eliminated
by avoiding checksum computation when sending cache
objects as responses. On Windows 2000, checksum com-
putation is off-loaded to the network interface hardware.
On Linux, cache objects include pre-computed check-
sums.

Second, scheduling and context switching overhead in
responding to TCP/IP events is significantly reduced or
eliminated using AFPA. AFPA parses requests on the
same software interrupt on which TCP/IP processing oc-
curs. AFPA then sends corresponding responses from the
same interrupt context or queues the response for sending
in a thread context. In implementations where responses
are derived from software interrupt context, no schedul-
ing or context switching overhead is incurred. As shown
in Section 5, responding from software interrupt provides
better performance, but responses must reside in pinned
memory. The AFPA module can also use a thread-based
configuration where responses are sent from a thread
context. This approach mitigates livelock problems in-
herent to the software interrupt approach [24]. A hybrid
approach has also been implemented. Requests for con-
tent not currently pinned are processed on software inter-
rupt, but unpinned responses are sent from a kernel-mode
thread context where page faults are tolerated.

Third, the overall communication overhead incurred in
AFPA implementations is less than a user-mode server
relying on a socket API. AFPA interfaces directly with
TCP/IP by overloading TCP/IP events with HTTP spe-
cific processing. These events include connection estab-
lishment (SYN), data arrival, and disconnection (FIN).
In overloading these events, AFPA drives a state machine
associated with the protocol modules such as HTTP. Di-
rect integration with TCP avoids the queueing and de-
scriptor management incurred using a socket API.

3.2 State Machine

Using a state machine interface, it is possible to imple-
ment a variety of protocols in the AFPA framework. Pro-
tocol specific code for a given application such as Web
serving is encapsulated in an AFPA module.

Each AFPA module is partitioned into three components:
state, program actions, and control elements. AFPA
manages three types of internal state data for each mod-
ule instance: global data, connection data, and request
data. Global data is data independent of each connec-

tion and request. Connection data is information that
changes on a per connection basis. Request data is in-
formation that changes per request within the same con-
nection. State functions are either written by the mod-
ule developer, exist in another AFPA module’s library
of state functions, or are intrinsic to AFPA as a general
service. State functions indirectly manage state transi-
tions through a separately managed table. The layer of
indirection permits state functions to be reusable and re-
configurable.

Derive Request

Derive Cached
Response

Send 
Engine

Derive Miss 
Response

Derive Uncached 
Response

Derive Remote 
Response

Derive Deferred 
Response

Begin 
Proxy 

Connection

Defer 
Request for 
User-Mode 

Server

Figure 1: AFPA HTTP State Machine

A simplified version of the state machine used by the
AFPA HTTP module is shown in Figure 1. The state
machine illustrates how the HTTP module can be used as
a standalone Web cache, work in conjunction with a user-
mode Web server, or act as a front end Web cache for one
or more back end Web servers. The module implements
a function corresponding to each of the following client
connection states:

� Derive Request

This function is invoked when new data is received
on a connection. When sufficient data has arrived to
complete a well-formed request, the function com-
putes the parsed request, storing it in the connection
data structure.

� Derive Cached Response

This function uses the parsed request in the connec-
tion data structure to perform a key-based lookup in
the AFPA cache. If successful, the cache object is
sent. If unsuccessful, the connection transitions to
Derive Miss Response state.

� Derive Miss Response



This function is invoked when a response is not
found in the AFPA cache. The HTTP module ei-
ther performs necessary file I/O to create a new
cache object (Derive Uncached Response ),
passes the request to a local user-mode Web server
(Derive Deferred Response ), or sends the
request to a remote Web server (Derive Remote
Response ).

� Derive Uncached Response

This function creates a cache object and response
header. The file is either read into the newly created
cache object or a reference to the file system cache
is created depending on the AFPA implementation.
Once created, the cache object is sent to the client.
Any errors creating the cache object may result in
sending request to another Web server or generating
an error response.

� Derive Remote Response

This function routes the parsed request to a remote
server. In versions of AFPA modules acting as
content-based routers, this function expands to an
alternate state machine for managing connections to
other Web servers.

� Derive Deferred Response

This function routes the parsed request to a user-
mode server which takes control of the connection.

� Send Engine

The Send Engine is a function invoked by the
Derive Cached Response or Derive Un-
cached Response states. The send engine
sends the cache object. Persistence, serialization,
and fragmentation of large requests are managed by
AFPA. This function is exported by the AFPA run-
time system.

3.3 TCP/IP Integration

A key aspect of AFPA is its close integration with the
TCP/IP protocol stack. Layer 7 protocols are processed
on the same software interrupt on which TCP/IP in-
put processing occurs. To achieve this, AFPA relies on
the ability to extend the TCP/IP stack through callback
mechanisms. AFPA cache objects use native TCP/IP
data structures such as BSD mbufs, Linux skbuffs, or
Windows 2000 MDLs (lists of chained page frames used
to describe buffers) [25].

3.3.1 Linux TCP/IP Integration

AFPA on Linux intercepts events in the TCP/IP stack
without kernel modification. The Linux kernel socket
structure contains function pointers which are invoked
whenever the state of the connection changes, inbound
data is queued on the socket, or outbound data is removed
from the socket queue. AFPA on Linux replaces the data
arrival hook with its own. When the first data packet ar-
rives on the socket, the main AFPA hook gets called from
within the network bottom half (i.e. software interrupt
handler). AFPA then parses the request packet, looks up
the cache object, queues the response in the socket out-
put queue, and sends the response. If the request does
not fit entirely into the first packet, AFPA creates a con-
nection context which it retrieves when the next packet
arrives and parses the request.

To manage sending data, AFPA on Linux rewrites the
skbuff free hook, which is called whenever a network
buffer is freed. This hook is used to send responses in 64
kB chunks. The last packet of a chunk is flagged. When
the AFPA hook detects that last packet of a chunk, the
AFPA hook sends the next chunk. When a request is not
found in the cache, the request is queued and picked up
by a service kernel thread. Tight synchronization has to
be provided between the thread and the software inter-
rupt which are competing for the socket’s accept queue.

AFPA on Linux allocates a number of 128 KB blocks
of pinned memory which are managed by AFPA’s own
memory allocator. When APFA creates a cache ob-
ject, it opens the corresponding file and reads it into
Ethernetframe-sized buffers. AFPA allocates space in
each buffer for TCP, IP, and Ethernet headers. It re-
serves additional space in the first buffer for HTTP head-
ers. When APFA receives a request, it fills in the HTTP
header and queues each frame associated with the ob-
ject for transmission. For large responses, AFPA queues
frames in 64 KB chunks. If an additional request is re-
ceived for a cache object that is in the process of being
sent, AFPA makes an additional copy of the buffer (i.e.
Ethernet frame).

3.3.2 Windows 2000 TCP/IP Integration

On Windows, AFPA interacts with the TCP stack using
the Transport Driver Interface (TDI) [25]. TDI is an
interface, defined by Microsoft, by which kernel-mode
“clients” interact with protocol drivers such as TCP/IP.
TDI defines a set of client requests, including accept,
connect, disconnect, send, and receive. It also defines
a set of callback routines, each associated with a net-
work event such as connection establishment, discon-



nection, and reception. TDI allows but does not require
a client to register a callback routine for any event per
connection end point. TDI uses an asynchronous model.
Each request has an associated client-specified comple-
tion routine that is invoked when the request completes
(whether synchronously or asynchronously). Client-
registered callback routines are invoked asynchronously
as well.

When a TCP SYN packet arrives on a port to which
AFPA is bound, TDI invokes AFPA’s connect event han-
dler. This routine allocates an AFPA connection struc-
ture, in which application-specific information associ-
ated with the connection is stored, then builds and returns
an accept request. The completion routine for the accept
request simply cleans up in case of error. Arrival of re-
quest data from the client causes AFPA’s receive event
handler to be invoked.

On Windows 2000, AFPA reads cache objects from the
file system, pins them in memory, and passes them to
the TCP stack in 64 KB chunks. Each chunk is repre-
sented by an entry in the cache object’s pin array. When
AFPA creates a cache object, it opens the correspond-
ing file. AFPA initializes each entry in the pin array to
indicate that the corresponding chunk has not yet been
read or pinned. When it sends a cache object, AFPA se-
quentially traverses the object’s pin array. If a chunk is
currently pinned, its pin count is incremented, and it is
sent immediately in the context of a software interrupt.
If the chunk is not pinned, the request must be queued
to a pool of worker threads because the Windows 2000
memory architecture does not permit access to unpinned
memory from software interrupts. The send completion
routine decrements the pin count (which acts as a refer-
ence count) for the current chunk and repeats the process
for the next chunk.

3.4 Cache Architecture

A complete description of the AFPA cache is beyond
the scope of this paper. We do, however describe sev-
eral aspects particularly relevant to response processing.
First, AFPA cache objects contain mutable header data,
immutable header data, and data payload. On Windows
2000, the cache object is represented as an MDL. Cache
objects do not include precomputed checksums because
Windows 2000 supports a number of network adapters
that offload checksum computation as well as payload
fragmentation. On Linux, the cache object is presented
as a list of skbuff structures with precomputed check-
sums. This architecture allows zero copy send opera-
tions, not supported by the Linux 2.2 kernel. Second,
AFPA cache objects are opaque data types which can be

backed by any number of memory systems. For exam-
ple, it is possible to implement AFPA cache objects using
Windows 2000 support for x86 PAE (Physical Address
Extensions) mode and manage a cache of up to 64 GB in
size. It is also possible to back AFPA cache objects di-
rectly with the file system cache, thereby leveraging the
system cache for selected cached files. Third, the cache
architecture supports a hybrid approach to handling re-
sponses at software interrupt or kernel thread. This al-
lows a two level cache where frequently accessed small
files remained pinned, allowing them to be delivered in
a software interrupt context, while larger and less fre-
quently accessed files are served using threads. Finally,
cache objects are divided into fragments. Each fragment
can be pinned and passed to the TCP/IP stack indepen-
dently.

4 Experimental Methodology

In this section, we present experimental methodology
used to compare user-mode Web server performance
with kernel-mode implementations based on the AFPA
framework described in the previous section. The goal
of the methodology is to establish a baseline for user-
mode performance and compare the best performing
user-mode approaches with Web servers based on AFPA.
We compare several user-mode and kernel-mode HTTP
servers: Apache 1.3.9 [6], Zeus 3.3.5 [7], IIS 5.0 [8], and
two experimental Web servers referred to as Howl. We
also consider other kernel-mode Web servers: kHTTPd
[17] and TUX [18] on Linux, and Microsoft’s SWC 2.0
[16].

4.1 Workload

We use two different synthetic workloads for our ex-
periments: SPECWeb96 [26] and WebStone 2.5 [27].
SPECWeb96 was the first standard HTTP benchmark.
The SPECWeb96 working set comprises files that range
in size from 100 bytes to 900 kB, where small files are
referenced more often than large files (50% of the total
number of requests reference files smaller than 10 kB).
In addition, the SPECWeb96 working set scales with the
expected server throughput. In all of our experiments, the
entire working set fit into the server’s RAM, thus avoid-
ing any performance distortion due to disk accesses.

SPECWeb96 has been superseded by SPECWeb99
as the industry-accepted Web serving benchmark.
SPECWeb99 exercises HTTP/1.1 features, such as per-
sistent connections, and includes requests for dynami-



cally generated pages.

Although SPECWeb96 does not take into account some
aspects of current HTTP workloads (e.g. no persistent
connections, no dynamic content), it is well suited for
measuring static file serving performance, which is the
main purpose of our performance evaluation. Further-
more, large HTTP sites often use several servers that
are partitioned into groups serving different types of
content such as static files, user logins, and databases.
The static content servers are likely to experience work-
loads similar to the SPECWeb96 workload. Finally, the
SPECWeb96 execution guidelines are sufficiently strict
as to allow meaningful comparison of independently re-
ported results.

The results presented here do not meet SPECWeb96 re-
porting guidelines and are not certified SPECWeb96 re-
sults. The SPECWeb96 benchmark was executed for
the largest workload corresponding to the reported result
rather than ten evenly spaced lower throughput work-
loads as required by SPECWeb96 for reporting purposes.
This does not affect the results reported in this paper.

WebStone is another HTTP server benchmark. Unlike
SPECWeb96, it allows a user to change the workload
characteristics, making it easier to identify performance
bottlenecks for given file sizes. For WebStone, our work-
load consists of fixed-size files, ranging from 64 bytes to
1 MB. The file size is varied in each test.

4.2 Test Environment

Experiments were performed on two operating systems:
Windows 2000 Advanced Server (build 2195) and Red-
Hat Linux 6.1 with a Linux 2.3.51 kernel. One server,
TUX, which does not run on a Linux 2.3.51 kernel, was
run on a Linux 2.4.0 kernel instead. AFPA on Windows
2000, IIS, and SWC were run on Windows 2000. AFPA
on Linux, kHTTPd, TUX, Zeus, and Apache were run
on Linux. To quantify the benefit of serving responses
in a software interrupt context, a version of AFPA that
does not include this optimization and instead serves all
responses using kernel threads was implemented.

All experiments were performed on the same server
hardware: an IBM Netfinity 7000 M10 with four 450
Mhz Pentium II Xeon processors, 4 GB of RAM and four
Alteon ACEnic gigabit Ethernet adapters. The server
hardware has two 33 Mhz PCI buses (one 32 bit and one
64 bit). Each PCI bus had two gigabit Ethernet adapters.
Distributing these adapters over the two PCI buses was
necessary to maximize the bandwidth of the memory bus.
For all experiments, only one of the server’s four CPUs
were used. The presence of three empty CPU sock-

ets does not interfere with the uniprocessor experiments.
Ten client machines were used to generate load. The
clients were IBM Intellistation Z-Pro systems with two
450 Mhz Pentium II Xeon processors, 256 MB RAM),
and a single Alteon ACEnic gigabit Ethernet adapter.
The clients ran RedHat Linux 6.1 and were connected
to the server via a pair of Alteon ACEswitch 180 gigabit
Ethernet switches.

The Netfinity 7000 M10 supports up to 280 MB/s mem-
ory to memory bandwidth based on timingmemcpy() .
In practice, the tested Netfinity hardware is at most
capable of 200 MB/s bandwidth from main memory
to the PCI buses. Including TCP/IP headers, HTTP
request, and HTTP response, the maximum possible
SPECWeb96 result is 11,400 requests per second.

All experiments were run using 9000 byte (jumbo) Eth-
ernet frames. We chose jumbo Ethernet frames rather
than standard 1500 byte Ethernet frames since it allowed
our SPECWeb96 results to be compared with officially
published results [26]. Limited experiments using stan-
dard Ethernet frames did not reveal in any significant dif-
ference in the performance trends seen with 9000 byte
frames.

We note the following limitations of our test method-
ology. All experiments were performed with the same
limited number of client machines. Our results focus al-
most entirely on uniprocessor rather than multiprocessor
servers. Experiments were performed solely with non-
persistent connections. Our analysis is constrained to
static content only. Finally, results are reported only for
the Linux and Windows 2000 operating systems running
on the same Intel processor.

4.3 Performance Tuning

On the server side, Linux and Windows 2000, as well as
each individual Web server, were tuned to achieve max-
imum performance. To this end, we used tuning param-
eters provided with submitted SPECWeb96 results. For
servers that support time-to-live values for cached ob-
jects, we set the timeout to eliminate cache invalidations.
This ensures we achieve a 100% hit rate.

5 Performance Analysis

Two benchmarks are used to compare the user-mode and
kernel-mode Web servers. SPECWeb96 is used for com-
paring workloads with mixed file sizes. Webstone is used
to compare performance for fixed file sizes.



5.1 SPECWeb96 workload

The results for the SPECWeb96 workload are presented
in Figure 2. Results are presented for the following
user-mode Web servers: Apache (Linux), Zeus (Linux),
IIS (Windows 2000). Results are also presented for the
following kernel-mode Web servers: kHTTPd (Linux),
TUX (Linux), SWC (Windows 2000), AFPA on Linux,
and AFPA on Windows 2000. Table 1 enumerates and
describes the Web servers tested on Linux and Windows
2000.

architecture cache 0 copy direct TCP
Apache MP/user filesystem no no
Zeus SPED/user filesystem no no
IIS SPED/user filesystem yes no
kHTTPd SPED/kernel filesystem no no
TUX SPED/kernel memory yes no
SWC SPED/kernel fs or mem yes yes
AFPA softint/kernel fs or mem yes yes

Table 1: Web Server Characteristics

The “architecture” column describes servers as MP,
SPED, or softint (software interrupt) as defined in Sec-
tion 2.2 and kernel-mode or user-mode. The “cache” at-
tribute defines whether the Web server’s cache is backed
by the file system, memory, or both. The “0 copy” col-
umn indicates whether or not the Web server performs a
copy to send a cache object. The “direct TCP” column
indicates whether or not the Web server is directly inte-
grated with the TCP/IP stack or uses the socket layer.
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Figure 2: SPECWeb96 results

The results show that AFPA on Linux achieves the fastest
performance of the tested servers. The SPECWeb96 re-
sult of 10,269 represents over 1.2 Gb per second server
throughput. This amounts to 90% of the hardware ca-
pacity as described in section 4.2. Therefore, AFPA on
Linux is a reasonable performance target for evaluating
user-mode optimizations.

Kernel-mode servers appear to have a factor of three per-
formance advantage over production user-mode servers.
On Linux, the fastest user-mode server measured (Zeus)
is 3.6 times slower than the fastest kernel-mode server
(AFPA). On Windows 2000, the fastest user-mode server
measured (IIS) is 3 times slower than the best kernel-
mode server (AFPA). Overall, the fastest kernel-mode
implementation (AFPA on Linux) is 3.5 times faster than
the best performing user-mode implementation mea-
sured (IIS on Windows 2000).

The slowest user-mode server in the SPECWeb96 results
was Apache. This is consistent with other published re-
sults [5, 28]. Apache seems to be penalized by a sig-
nificant process scheduling overhead. Note, however,
that Apache 1.3.9 does not feature a memory-based static
content cache; it uses the file system cache. Among other
optimizations, adding a memory based cache to Apache
reportedly increases its performance by 70% on Linux
[29] which would bring Apache in line with IIS and Zeus.

As mentioned before, both IIS and Zeus employ SPED
architectures. Although Linux does not feature zero copy
send, Zeus was on par with IIS. This somewhat contra-
dicts previous attempts at comparing user-mode Linux
and Windows Web servers [28]. These earlier results
were, however, obtained with Apache which exhibits
lower performance than Zeus.

In comparing kernel-mode servers, we found kHTTPd to
be relatively slow on the SPECWeb96 workload com-
pared to other kernel Web servers. In fact, kHTTPd
achieves nearly the same SPECWeb96 result (2893) as
Zeus (2843). kHTTPd has limited performance for two
reasons. First, kHTTPd requires one copy to send the re-
sponse. This is unavoidable due to kHTTPd’s reliance
on the file system as a cache. The Linux file system
interfaces lack a zero copy mechanism to send file sys-
tem data. Second, kHTTPd uses the kernel-mode version
of the Linux socket interface rather than interfacing di-
rectly with the TCP/IP stack. Therefore, kHTTPd’s per-
formance is not significantly different than Linux user-
mode Web servers, which are also forced by Linux to
use a one-copy send and a socket interface.

TUX offers nearly twice the performance of kHTTPd,
due primarily to its pinned memory cache and zero copy
send implementation. TUX and kHTTPd have other-
wise similar architectures for serving static content out
of main memory. They both use the socket API from
kernel threads for sending objects.
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Figure 3: Fixed file size performance results

5.2 Analyzing a Fixed File Size Workload

We next studied how performance varied as a function
of response size using a set of file sizes ranging from
64 bytes to 1 MB. The experiments were performed us-
ing the Webstone benchmarking tool. The connection
rates and delivered bandwidths are reported in Figure 3.
For small files, request latency was the dominant perfor-
mance factor.

Linux vs. Windows 2000

For 64 bytes files, AFPA on Linux was 21% faster
(12,522 requests per second) than AFPA on Windows
2000 (10,321 requests per second). In addition to obtain-
ing the requests per second, we also used the Intel pro-
cessor performance counters to measure several metrics
under the same workload. We found two metrics signif-
icantly different between AFPA on Linux and Windows
2000: the number of instructions executed and instruc-
tion TLB misses. Because the average cycles per instruc-
tion were nearly identical for both cases, we conclude
that the instruction count is a useful metric for compar-
ing the two implementations. In addition, both AFPA
implementations used the exact same source code to im-
plement the HTTP and caching logic. This implies that
any differences between the two would have to be limited
to the interfaces used to integrate AFPA in the TCP/IP
stack, the TCP/IP stack itself, and network driver. AFPA
on Linux executed 19% fewer instructions than AFPA on
Windows 2000 (26,000 versus 31,000 instructions per re-
quest). We also find that the number of instruction TLB
misses was ten per request on Windows 2000 versus zero
per request on Linux. The Linux kernel, TCP/IP stack,

and kernel modules are stored entirely in non-pageable 4
MB pages, so it does not experience any instruction TLB
misses. Only the Windows 2000 kernel is mapped using
4 MB pages; the TCP/IP stack is not.

Thread vs. Software Interrupt

Using the Pentium performance counters, we also com-
pared the software interrupt-version of AFPA with the
threaded version of AFPA on Windows 2000. For 64
byte files the software interrupt version was 12% faster
than the threaded version (10,321 versus 9,209 requests
per second). This closely matches the difference in the
number of instructions executed. This difference cor-
responds to the overhead of queueing/dequeuing work
items and scheduling the thread.

Effect of File Size

For large files, performance is determined primarily by
the speed at which the server can move data to the net-
work. As file size increases, the operating system over-
head for user-mode servers accounts for less and less
in the overall cost of processing requests. This is be-
cause processing latency is completely amortized for
large files. For example, Apache lags behind the other
Web servers for performance on small files, but is just
as good as other user-mode Linux servers for large files.
On Windows 2000, IIS performs as well as AFPA for
files 128 kB and larger, while it is 3.27 times slower than
AFPA for 64 byte files.

For user-mode Web servers, IIS was slower than Zeus
for files smaller than 32 kB, but for larger files gained an
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Figure 4: Efficiency of zero copy TCP send

advantage from having a zero copy send interface. The
importance of a zero copy TCP send is further empha-
sized on the throughput graph. There is almost a three-
fold performance difference between Web servers using
zero copy send interfaces and those using a one-copy
send interface. TUX achieved three times the through-
put of kHTTPd for large files. We also ran a modified
version of AFPA on Linux that does not use the AFPA
zero copy architecture. Its throughput on large files was
half that of the zero copy version.

Jumbo Frames

Another interesting result is the nearly flat connection
rate for transfers less than 8 kB. Even with jumbo frames
enabled one would expect a more significant decrease in
the connection rate. It appears that the Alteon firmware
is optimized for bulk data transfers rather than fast con-
nection set-up. We ran some tests using a single client
thread requesting 1 kB transfers on Alteon, Intel gigabit,
and Intel 100 Mb adapters. This configuration measures
connection latency. We found the Alteon adapter to be
between two and three times slower than the Intel gigabit
and 100 Mb adapters, respectively. The high connection
set-up cost on the Alteon adapter most probably accounts
for the flat connection rate.

Zero copy TCP send

In order to evaluate the performance gain of a zero
copy send interface in the TCP/IP stack, we ran a mod-
ified version of AFPA on Linux that does not use the
AFPA zero copy cache architecture. In this version, net-
work buffers are allocated through the standard Linux

sock wmalloc() primitive; file data is copied from
the AFPA cache into network buffers and checksummed
before being sent. Figure 4 summarizes the performance
of these two implementations plus Zeus on Linux (which
does not use zero copy sends) and IIS on Windows 2000
(which does zero copy sends through theTransmit-
File() API).

As expected, the performance advantage of a zero copy
send interface increased with the file size. It is important
to note, however, that the benefits of a zero copy interface
can be seen for relatively small files. For 4 kB files the
performance difference is 25% and then grows to 111%
for 32 kB files.

For full efficiency, a zero copy send interface also re-
quires a network adapter with outbound packet check-
summing capability (such as the Alteon adapter used in
our test bed) in order to avoid reading the data to check-
sum it.

5.3 Howl

In defining the best possible user-mode performance it’s
important to not rely solely on commercial user-mode
examples for performance analysis. To that end a user-
mode Web server was implemented using the best prac-
tices for performance on Linux and Windows 2000. This
user-mode Web server is referred to as Howl. Howl is
an attempt at estimating the maximum performance that
can be achieved by a user-mode server on current ver-
sions of Linux and Windows 2000 using standard APIs.
On Linux, Howl is a simple loop executing four system
calls to process an HTTP request:accept() , read() ,
write() , and close() . It uses a user-mode ver-
sion of the AFPA cache for storing responses (with pre-



generated HTTP response headers). Howl offers very
limited functionality and performance (no logging, only
one request is processed at a time). Howl is a test case. It
is not intended for general use. But under the assumption
that (i) all requests fit into the first data packet, (ii) all re-
quests hit in the cache, (iii) all responses can be sent with
a non blocking write (by configuring a sufficiently large
socket buffer), and (iv) consecutive client requests do not
block the server task receiving the request, Howl has per-
formance close to the best achievable using the standard
Linux APIs. On Windows 2000, Howl usesAccep-
tEx() , TransmitFile() , and I/O Completion ports
to achieve best possible user-mode performance.

Compared to the user-mode results shown in Figure 3,
Howl on Linux is 32% faster than Zeus and Howl on
Windows is 21% faster than IIS for 64 byte files. Like-
wise, for 1 kB files, Howl on Linux is 29% faster than
Zeus and Howl on Windows is 16% faster than IIS. Given
that Zeus and IIS are production-level web servers, it is
not surprising to marginally improve upon their perfor-
mance with minimal prototypes such as Howl. How-
ever, the 16% to 29% performance improvement using
such prototypes for 1 kB files is significantly smaller
the 235% to 312% gap between these servers and their
kernel-mode counter parts. Given the size of this gap,
further significant performance improvements appear un-
likely without new user-mode APIs and operating system
modifications.

6 Conclusion

The paper showed the performance of several highly op-
timized user-mode Web servers, comparing these servers
to multiple kernel-mode Web servers while holding
TCP/IP and network driver implementations fixed. The
paper concludes that the best performing user-mode Web
servers are at least two times slower than the faster
kernel-mode server on the same hardware and unmodi-
fied operating system. The best kernel-mode results were
achieved using a software interrupt approach where re-
sponses are sent on software interrupt (Linux bottom half
handler or Windows 2000 deferred procedure call) rather
than a separately scheduled thread. The results showed
that software interrupt based kernel-mode servers per-
form 10% to 20% better than Overall, the best perform-
ing Web servers share three attributes. First, they use
a zero copy interface between cache and network with-
out TCP checksum computation to efficiently serve re-
sponses greater than 4 kB in size. Second, these servers
use an efficient event notification mechanism to serve
responses less than 4 kB in size with minimal schedul-

ing overhead. Third, these servers minimize communi-
cation code path using new socket APIs or eliminating
the socket layer altogether.

7 Future Work

The results motivate future work to close the gap with
the kernel-mode approaches described in this paper.
First, the software interrupt kernel-mode approach suf-
fers from the problems described by [24]. Second, even
the thread-based kernel-mode approach has limited ap-
plicability beyond simple caching. While it’s possible
to embed application-specific code in the kernel, the ap-
proach is awkward and leads to a paradigm where the
benefits of address spaces are lost.

Future work will focus on support for user-mode servers
to achieve kernel-mode performance without implement-
ing application-specific code in the kernel. In particular,
the performance advantages of a kernel-mode approach
might be amortized by batching multiple layer 7 requests
before indicating them to a user-mode server. Likewise,
response processing might also be aggregated over mul-
tiple responses before indicating those responses back to
the kernel. Future work will explore batching techniques
to amortize user-mode overhead using a kernel-mode re-
quest/response engine and cache.
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