
Highly Scalable Web Applications
with Zero-Copy Data Transfer

Toyotaro Suzumura, Michiaki Tatsubori

Scott Trent, Akihiko Tozawa, and Tamiya Onodera
Tokyo Research Laboratory, IBM Research

1623-14 Shimo-tsuruma, Yamato, Kanagawa, Japan

{toyo,mich,trent,atozawa,tonodera}@jp.ibm.com

ABSTRACT
The performance of server-side applications is becoming
increasingly important as more applications exploit the Web
application model. Extensive work has been done to improve the
performance of individual software components such as Web
servers and programming language runtimes. This paper describes
a novel approach to boost Web application performance by
improving inter-process communication between a programming
language runtime and Web server runtime. The approach reduces
redundant processing for memory copying and the context switch
overhead between user space and kernel space by exploiting the
zero-copy data transfer methodology, such as the sendfile system
call. In order to transparently utilize this optimization feature with
existing Web applications, we propose enhancements of the PHP
runtime, FastCGI protocol, and Web server. Our proposed
approach achieves a 126% performance improvement with micro-
benchmarks and a 44% performance improvement for a standard
Web benchmark, SPECweb2005.

Categories and Subject Descriptors
I.7.2 [Computing Methodologies]:
Document and Text Processing—scripting languages;
D.3.4 [Software]: Processors—runtime environments

General Terms
Performance, Experimentation

Keywords
Web Server, Zero Copy, FastCGI, sendfile, PHP, Scripting

1. INTRODUCTION
 In recent years, software applications are increasingly being

developed to adopt the Web application model via HTTP protocol
in the Web 2.0 era. This rapidly growing use is dramatically
increasing the performance requirements for Web application
servers, and much research is being done in this area
[1][2][7][10][11][33]. Another recent technological trend is for
Web applications to be developed with dynamic scripting
languages such as PHP, Ruby, and Python, since this approach
supports agile software development environments with rich sets
of library functions.

Such languages depend on runtime systems for high
performance HTTP servers in commercial environments. The two
components, the language runtime and the HTTP server are
connected in two different ways. One approach is to embed the
language runtime within the Web server process using the internal
API provided by the Web server. The other approach is to
separate the language runtime from the Web server with the use
of a well-defined message exchange protocol, such as FastCGI [5].
Currently, the protocol-based communication method is becoming
more popular, and the combination of Lighttpd [8] and FastCGI
[5] is known to be especially fast for serving PHP Web
applications. Our prior work [23] showed that Lighttpd and
FastCGI outperform Apache [20] and mod_php in all SPECweb
scenarios. Table 1 based on that research [23] shows the peak
performance in simultaneous sessions (clients) of two Web
servers, Apache and Lighttpd, with the Zend PHP Runtime
available at [9].

Table 1. A comparison of peak throughput in SPECweb2005

In contrast to the API approach, protocol-based communication
allows the programming language runtimes to be isolated from
the Web server engines, which also improves the scalability and
security. However, there is redundant processing in the Web
server and the programming language runtime, especially in the
communication between the two components. In this paper, we
address this problem and make the following contributions:

 We propose a performance optimization approach that
reduces inter-process communication overhead between a
Web server and a PHP runtime by using a zero-copy data
transfer methodology such as the sendfile system call.

 In order for existing PHP applications to take advantage of
this optimization, we propose an enhancement of the PHP
runtime that performs lazy file I/O operations while
maintaining the language semantics without any
modifications to the application programs. The runtime
performs no File I/O operations when the content of a file is
not required for other processing, and the transmission of a
file to Web clients can is done by the Web server. We
implement this feature in our PHP runtime engine.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

 Banking Ecommerce Support

Apache +
mod_php

 850 sessions 1,250 sessions 1,100 sessions

Lighttpd +
FastCGI

1,250 sessions 2,000 sessions 1,350 sessions

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

921

 We propose an enhancement of the FastCGI protocol to
denote the location of files to be sent by a Web server, and an
enhancement of the Web server so that it can insert the file
content at an arbitrary location and send it using a zero-copy
system call such as sendfile. The protocol is designed to
utilize a single header to specify the transfer of multiple files.

 We evaluate the new approach using both micro-benchmarks
and a standard Web application benchmark, SPECweb2005,
and show that our approach yields a 126% performance
improvement on micro-benchmarks and a 44% improvement
in the number of supportable SPECweb2005 client sessions
with reasonable response times compared to the original
implementation.

The remainder of the paper is organized as follows. First, the
motivation and problem statement of this research are presented
in Section 2. Section 3 describes the design and implementation
of our optimization approach. We present evaluations in Section 4
including micro-benchmarks and experimental results for the
standard Web application benchmark, SPECweb2005. Discussion
appears in Section 5, and related work is reviewed in Section 6,
followed by our conclusions and future directions in Section 7.

2. Motivation – Redundancy in Interprocess
Communication
This section describes the motivation and problem statement of
current Web architectures, focusing on their redundant processing
characteristics.

2.1 Current Web architectures
Current Web applications generally use a three-tier architecture,

consisting of an HTTP server, a programming language runtime,
and database servers. The HTTP server and the programming
language runtime are connected via a SAPI (Server Abstract API),
of which there are two main types. One type of SAPI is the
Apache [20] mod_php-like approach in which a language runtime
is embedded in the same address space as the Web server process,
connected via the proprietary API defined for the Apache HTTP
server. The other SAPI type uses a language runtime running as a
different process from the Web server, and the two processes
communicate with a well-defined protocol such as FastCGI [5].

 FastCGI is a variation of the earlier Common Gateway Interface
(CGI) for interfacing interactive programs with an HTTP server.
It avoids the “one new process per request” model of CGI , which
limits efficiency and scalability. Instead of creating a new process
for every request, FastCGI can use a single persistent process
which handles many requests over its lifetime. The other benefit
of using the FastCGI protocol is to allow the isolation of the
programming language runtime and the Web server. For a
language runtime developer, using FastCGI means the runtime
will work with any Web server that understands the FastCGI
protocol. For improved performance, FastCGI applications can
even be distributed among multiple machines, supporting high
scalability. The currently recommended default configuration for
PHP with the Lighttpd Web server is to use FastCGI.

2.2 Drawbacks in protocol-based inter-
process communication
As described in the previous subsection, protocol-based
communication methods provide isolation and scalability, but
redundant processing occurs in the language runtime and Web

server. For example, consider a PHP script that prints out a header
part, the content of a file, and then a footer part. The header part
and the footer part may be dynamically generated, but the file in
the middle is a static file or a cached result file retrieved earlier
from a database. Many projects [15] [30] are pursuing caching
technology for dynamic Web applications. Figure 1 illustrates the
series of steps from the point when the Web server receives an
HTTP request and sends the packet via the FastCGI protocol to
the PHP runtime, the PHP runtime executes a PHP script, and
finally responds by sending the generated HTML back to the
HTTP server via FastCGI. The figure also shows where memory
copying between the OS kernel space and the user space occurs.
The first notable copying operation (C3) occurs in retrieving the
content of a file that exists at the kernel level or in a disk cache,
when the data is copied to the user-level buffers, the FastCGI and
PHP runtime buffers. The second notable copying operation is C4.
When the FastCGI communication is done with shared memory
(when available), the PHP runtime buffer copies the content of the
buffer to shared memory, and then the Web server retrieves the
content from the shared memory and copies it again to a buffer in
the Web server (C5) and the kernel buffer (C6), and if the content
of the file for C3 is sufficiently large, then the memory copying
costs for C3, C4, C5, and C6 are similar. These memory copying
operations incur processing costs and lead to overall performance
degradation of the Web application server. Table 2 shows the
amounts of data for each scenario in SPECweb2005. This data is
copied at C3, C4, C5, and C6. SPECweb2005 uses dynamic
padding files that consist of random characters used to emulate
the typical sizes of Web content, but which are stored as static
files.

Table 2. Average data size for each SPECweb2005 scenario

A PHP runtime needs to dynamically retrieve the content of the
file and transmit it to the Web server, which causes the copying
operations at C3, C4, C5, and C6. According to our experiments
with our PHP runtime using the oprofile profiling tool [29] in the
SPECweb Ecommerce scenario, 15.7% of the total CPU time is
spent on memory copying operations. There is good opportunity
for improving Web application performance by reducing such
memory copying operations.

3. Interprocess Communication Optimization
 In this section we describe an optimization approach that
addresses the problems mentioned in the previous section.

3.1 Overview of Our Approach
Our approach is to leverage operating system support, especially
functions which use zero-copy data transfer [3][24] such as the
sendfile system call supported by state-of-the-art operating
systems to reduce redundant memory copying operations and
interactions between user space and kernel space. The sendfile
system call supports a zero-copy data path to transfer data from a
file descriptor to a socket without CPU processing or context
switching between kernel and user space. The data is immediately
read from disk into the OS cache memory using Direct Memory
Access (DMA) hardware, if possible. The data to be transferred is
usually used directly from system buffers, without context

 Bankin
g

Ecommerce Support

Average Data Size (KB) 34.8 143.9 78.5

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

922

switching. Thus, the usage of the sendfile system call significantly
reduces CPU load. The sendfile system call is available in most
modern operating systems such as Linux, AIX, Solaris, and
Windows.

In addition, the sendfile system call is used in recent Web server
implementations such as Lighttpd to send static HTML files and
images files. This technique works for static files, but cannot be
used when certain portions of the generated HTML are relatively
static (such as loading static or cached files), but other portions
are dynamic. This situation is increasingly frequent as more and
more dynamically generated applications are published.

We designed and implemented an approach that can handle such
mixed content while using the sendfile system call in a transparent
way, so application developers need not modify existing
applications.

3.2 Architecture Design
To transparently use the sendfile system call, we describe the
architectural design points for interprocess communication
optimization in the following sections.

3.2.1 Enhancement of PHP Runtime
To reduce the load of memory copying, we need a new type of
character string object for special handling in file processing. This
new character string object is called a “file-type character string
object”, abbreviated as FTCS object. An ordinary character string
object (such as “$a” in $a=file_get_contents (“/tmp/fileA.html”)
in a PHP script) holds the entire file as a character string. In
contrast, an FTCS object only holds the file name (URI) of a file.
This implementation is transparent to the application program,
and has the same semantics as an ordinary character string object.
If the content of a file is needed for character string operations
such as a regular expression operation with the preg_match
extension, an FTCS object actually reads the file and stores its
content in a form similar to an ordinary character string object.
However, for information such as the length of the character
strings in the file or its hash value (e.g., filesize), which can be
acquired from the file system attribute data of the file, the FTCS
object acquires the information without actually reading the file.
The FTCS object is returned by either PHP extensions 1 or

1 In PHP, an external C library function is called an “extension”.

standard built-in extensions such as file_get_contents. The
operations for an FTCS are of two types, lazy operations and
eager operations. A lazy operation such as echo does not actually
perform any file I/O operation, but instead the Web server sends
the content directly to the client using the sendfile system call. An
eager operation such as preg_match needs eager processing on the
FTCS object.

3.2.2 Enhancement of the FastCGI Protocol and
the Web Server
In cases where a PHP runtime creates an FTCS object but
performs no actual I/O processing, the runtime can communicate
with its Web server using the FastCGI protocol with our newly
added header named X-ZeroCopy. File name and location are
included in the body portion of a FastCGI message. The offset
value indicating the position of the first character of the file name,
and the length of the file name are written in an X-ZeroCopy
header. The X-ZeroCopy header follows the HTTL extension
header [34] and is specified as follows:

X-ZeroCopy = “X-ZeroCopy” “:” # (offset “/” length)

The header is recursively defined to allow the transmission of
multiple files. For example, consider the following pseudo-
FastCGI packet. The two files, /tmp/A.htm and /tmp/B.htm, are to
be sent by a Web server via a zero-copy data transfer such with
the sendfile system call. The second line indicates the body
content of a FastCGI packet, and the first line is an X-ZeroCopy
header that specifies the location of file references in the body by
specifying the offsets and lengths of any file names.

X-ZeroCopy:5/10:21/10
hello/tmp/A.htmworld/tmp/B.htmbye

Our PHP runtime automatically generates this header and body
content in a transparent manner from unmodified PHP scripts.
The key feature of this approach is to allow a mix of dynamic
content and the metadata for multiple files to be sent alternatively
by the sendfile system call. For example, the original PHP script
that is converted to the above FastCGI message by our PHP
runtime is shown as follows.

HTTP
Server
Buffer

PHP
Buffer

FastCGI
request Packet

http
response

Kernel
Buffer

Receive

Memory
copy

fileA

Kernel
Buffer

FastCGI
Buffer

Kernel
Buffer

Kernel
Buffer

PHP RuntimeHTTP Server

http
request

http
request FastCGI

Packet
Script

execution

FastCGI
response packet

Disk
cache

Script
execution

Read file

C1
C2

C3

C5 C4
C6

Figure 1. Interactions between HTTP server and PHP
runtime.

HTTP
Server
Buffer

PHP
Buffer

FastCGI
request Packet

chunk 1

Kernel
Buffer

Receive

Memory
copy

fileA

Kernel
Buffer

FastCGI
Buffer

Kernel
Buffer

Kernel
Buffer

PHP RuntimeHTTP Server (Extended)

http
request

http
request FastCGI

Packet Script
execution
(chunk1)

FastCGI
response packet

with X-ZeroCopy
HTTP header

and chunk1 and
chunk2 in HTTP

Body

Script
execution
(chunk2)

C1

C2

C6’

fileA

C6’’

C4’C5’

sendfile

chunk2

Figure 2. Interactions between HTTP server and PHP
runtime with our optimization method.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

923

The PHP runtime first parses the PHP script and translates it
into instruction code. Then the PHP runtime executes the
translated instruction code. While executing the instruction code
corresponding to ECHO (display a character string in the standard
output), the PHP runtime determines whether or not the target
variable is an FTCS object. In the current example, since the
file_get_content extension returns an FTCS object, the FastCGI
packet will contain the file’s URI (e.g., /tmp/A.htm) rather than
the actual file contents.

The FastCGI packet generated by the PHP runtime is transmitted
to the HTTP server for processing. The HTTP server parses the
header of the received FastCGI packet. Upon finding an X-
ZeroCopy header, the HTTP server returns the files designated by
the X-ZeroCopy header to the client by using multiple sendfile
system calls, instead of just forwarding the FastCGI packet to the
socket. With this approach, a file that does not require processing
by the PHP runtime is acquired directly by the HTTP server
instead of passing through the PHP runtime, and is then
transmitted to the client. Therefore the memory copying by the
PHP runtime for the file can be omitted and the file is not copied,
even during the memory copying carried out when the PHP
runtime transmits the FastCGI packet to the HTTP server. Also,
when the HTTP server returns its response to the client, the file is
transmitted directly from the kernel memory to the client without
passing through user memory. Therefore additional memory
copying for the file is avoided, thus improving the operational
performance of the Web application server. The interaction flow
between a Web server and a PHP runtime in the case of sending a
single file is depicted in Figure 2. The memory copying for C3 is
eliminated, and C4 and C5 is reduced to C4’ and C5’ which only
contain dynamically generated parts. We can calculate the amount
of memory copied as C3 + (C4 – C4’) + (C5 – C5’) + (C6 –
(C6’+C6’’)).

3.2.3 File Change Management
When a Web application server uses this approach, there is a

delay from the time when the PHP runtime executes the
instruction code until the time when the HTTP server acquires the
file specified by the instruction code. Therefore, the content of the
file could change during this delay. Some assurance is needed that
the file to be transmitted has the same content as it had at the time
the code was executed by the PHP runtime. Our approach tracks
the content of each file by using a hard link with a Copy-on-write
function at the OS level or at the PHP processor level. For the
OS-level approach, the PHP runtime generates a copy when the
write operation is performed on a file, with a hard link using the
Copy-on-write function implemented in the OS. This approach
can only be used with a file system such as ext3cow [16]. For the
PHP-level approach, the check is provided by an extension library
for the PHP runtime. The PHP runtime locks the file with an
exclusive lock, generates a hard link to a copy of the file,
monitors any write to the file, and generates a copy when a write

operation takes place, and unlocks the file after the copy has been
transmitted to the HTTP server.

In general, it is best if the write operation is performed on the
file before the transmission of the file by the HTTP server, so the
PHP runtime generates and retains a copy of the file on which the
write operation has not yet been performed. Then the HTTP
server transmits the file for which the write operation has not yet
been performed.

3.3 Implementation
We implemented our approach using our own PHP runtime, by

modifying the Lighttpd HTTP server, and also by extending
OpenMarket’s FastCGI implementation [5] of the mod_fastcgi
module to support a modified FastCGI protocol enhanced with
our proposed HTTP header.

For our own language runtime, we extended our PHP runtime,
known as P9 [28], a PHP runtime engine with a just-in-time
compiler. A unique feature of our runtime is that it reuses an
optimizing JIT compiler from a production Java virtual machine.
Our motivation for that approach is to explore the retargeting of a
production compiler for a statically typed language (Java) to a
dynamically typed language (PHP). By exploiting various optimi-
zation features, we should be able to exploit many of the existing
optimizations and features in the JIT compiler that were intended
for a statically typed language. We also added new optimizations
that are critical for optimizing a dynamically typed language.

4. Performance Evaluation
This section evaluates our optimization approach by running a set
of micro-benchmarks and a standard Web benchmark application,
SPECweb2005 [14].

4.1 Experimental Environment
All of the experiments in the following subsections use the same

experimental environment described here. We used Lighttpd
1.4.19 as a web server running on an IBM IntelliStation M Pro
3.4-GHz Pentium 4 uniprocessor with 2 GB of RAM running
Fedora Core 7 (kernel 2.6.17). Lighttpd was configured to use one
parent process, two worker processes, and eight FastCGI
processes. (We measured other variations of numbers of parent,
worker, and FastCGI processes, but did not find other
configurations to perform significantly better.) For the client
machine, we used an IBM IntelliStation M Pro 2.0-GHz
uniprocessor machine connected to the server via a 1 GB Ethernet
LAN. The network latency was 0.12 ms, and the actual network
throughput measured with netperf [30] was 941 Mbit/second.

4.2 Micro-benchmark
Theoretically our approach should be effective when the FastCGI
communication overhead between the PHP runtime and the Web
server is a major performance bottleneck. To find the threshold
where file size becomes a bottleneck, we prepared a simple PHP
script micro-benchmark that simply displays a file via the
file_get_contents PHP extension. With the script, we evaluated
the performance with file sizes ranging from 10 KB to 200 KB, as
shown in Figure 3. The x-axis is the file size and the left y-axis
shows the throughput of unmodified P9 and P9 with our
optimization approach (P9ZC). Throughput is measured by the
number of requests handled, and the right axis shows the speed-up
ratio for P9 over P9ZC as measured by the ab

<?php

echo “hello”;
echo file_get_contents(‘/tmp/A.html’);
echo “world”;
echo file_get_contents(‘/tmp/B.htm’);
echo “bye”;

?>

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

924

 (Apache Bench) tool with 1 process, 100 concurrent requests, and
a 60 second run, measured after sufficient warm-up.

Figure 3 shows that the speedup of P9ZC over P9 increases from
1.26 for a 10 K file up to 2.26 for a 60 K file. After 60K, the
speedup gradually decreases but P9ZC remains roughly twice as
fast as P9. Figure 4 shows the cumulative CPU usage of the
memcpy function used by the Lighttpd Web server and the PHP
runtime, and the table below the graph shows the values as
percentages of CPU usage. The graph shows that P9ZC
significantly reduces CPU usage for the memcpy function while
P9 uses approximately 20% to 60% of CPU time to perform
memory copying. Figure 4 shows why performance
improvements are not seen for large files with P9ZC in Figure 3.
This is because the CPU usage of the memcpy function for P9 is
saturated when file size is greater than 60KB. As with
SPECweb2005 described in the next section, this is not a CPU-
bound activity

Since these micro-benchmarks are idealized test cases for our
optimization, we also performed experiments by adding multiple
integer operations other than printing out a 60-KB file by using
the file_get_contents extension to improve the CPU usage for
further processing. By increasing the number of integer operations
from 0 to 50,000, the CPU usage for the memcpy function was
reduced by 56 percentage points to 7.6% as shown in Figure 5.
The throughput and speedup (%) of P9ZC over P9 with varying
numbers of integer operations is shown in Figure 6, and the result
shows that the speedup gradually decreases, and in proportion to
the percentage of the CPU used for the memcpy function.

2.2

1.9

1.6
1.5 1.4 1.3

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10000 20000 30000 40000 50000

of integer operations

T
h
ro

u
gh

pu
t

(#
 o

f
re

qu
e
st

s
pe

r
se

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
pe

e
du

p
o
f
P

9
F
S

 o
ve

r
P

9

P9

P9ZC

Speedup

Figure 6. Throughput and Speedup (%) of P9ZC over P9 with
varying numbers of integer operations and a 60-KB file.

4.3 SPECweb2005 Benchmark

SPECweb2005 [14] is a standard Web application benchmark
defined by SPEC (Standard Performance Evaluation Corporation).
The three-tier architecture used for SPECweb2005 consists of a
Web server, a PHP runtime, and a BESIM backend database
simulator. SPECweb2005 has three representative Web
application scenarios: Banking, Ecommerce, and Support. Each
scenario has different performance characteristics representing the
different types of Web applications. The goal of SPECweb is not
only to compare the numbers of request being processed, the
throughput, but also to consider the response times. The
completed requests are classified as good, tolerable, or failed
depending on the response time set for each scenario. We will
explain the performance results with each scenario. We use Zend,
P9, and P9ZC, respectively, as labels for the type of PHP runtime.
Zend is a PHP runtime available from [9] and configured with
APC (Alternative PHP Cache) turned on, which allows the
runtime to cache PHP intermediate codes. P9ZC is the enhanced
PHP runtime that adds our proposed technique to the P9 runtime.

4.3.1 Banking Scenario
The banking scenario represents an online Web banking

application, characterized as a secure Web application with SSL
communication, which supports viewing account information,
transferring money to other accounts, and so forth. The average
size of the data sent to the Web client is 34.8 KB, as shown in
Table 2. Figure 7 illustrates the performance results of the
banking scenario in SPECweb with different runtime
configurations, Zend, P9, and P9ZC. As shown in the graph, the
peak performance of Zend is 1,000 sessions, versus 1,200 sessions
for P9 and P9ZC. The performance advantage of P9 and P9ZC is
attributable to just-in-time compilation, while Zend is an
interpreter-based runtime. The results also show that there is no
performance advantage of P9ZC over P9. Figure 24 shows that
the memory copying operation consumes only around 2% of the
CPU usage. This is because SSL processing accounts for a large
portion of the CPU processing in this scenario, and thus there are
few copy cycles for our approach to eliminate. Another important
fact is that the sendfile system call becomes ineffective when
using SSL. With an SSL-enabled configuration, the Web server
loads the content of a file, encodes it, and then sends it to the
network socket. This issue could be resolved by applying
Keromytis’s work [24] on an SSL-enabled sendfile that performs
the SSL processing at the kernel level. Although SSL is

Figure 3. Throughput and Speedup (%) of
P9ZC over P9 with varying file sizes.

CPU Usage of memcpy

0

10

20

30

40

50

60

70

File Size (KB)

C
P

U
 U

sa
ge

 o
f
m

e
m

c
py

 (
%
)

P9

P9FS

P9 22.8 33.6 46 50.4 55.5 55.7 59.7 60.4 61.5 62.5

P9FS 4.32 4.12 3.93 3.32 2.9 2.8 2.64 2.43 2.56 2.46

20 40 60 80 100 120 140 160 180 200

P9ZC

P9ZC

CPU Usage of memcpy

0

10

20

30

40

50

60

70

File Size (KB)

C
P

U
 U

sa
ge

 o
f
m

e
m

c
py

 (
%
)

P9

P9FS

P9 22.8 33.6 46 50.4 55.5 55.7 59.7 60.4 61.5 62.5

P9FS 4.32 4.12 3.93 3.32 2.9 2.8 2.64 2.43 2.56 2.46

20 40 60 80 100 120 140 160 180 200

P9ZC

P9ZC

Figure 4. CPU usage for the memcpy
function.

17.88

47.61
55.26 59.25 61.89 64.78

56.86

24.36 15.62 11.48 9.21 7.58

0

10

20

30

40

50

60

70

80

0 10000 20000 30000 40000 50000
of integer operations

C
P
U

 u
sa

ge
 (

%
)

P9 integer operations libc (memcpy)

Figure 5. CPU usage for memcpy with
varying numbers of integer operations and
a 60-KB file.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

925

required for a compliant SPECweb benchmark, we also
performed the experiment with SSL turned off to assess the
effectiveness of our approach. In that experiment, we observed
that the peak performance of P9ZC is 2,100 sessions, which is 5%
better than the P9 peak of 2,000 sessions.

The performance advantage is more evident when considering the
number of requests with good response times, as shown in Figure
11. A comparison by response time is shown in Figure 12. The
response time of P9 increases more sharply from 2,200 sessions
than P9ZC, and this phenomenon is also seen in the throughput
data shown in Figure 11. CPU usage for memory copying
operations is shown in Figure 24 as "Banking (No SSL)". P9 uses
7.2% of CPU time for memory copying, but P9ZC uses 5.1%.
This 2.2% memory copying reduction contributes to the end-to-
end performance improvement of P9ZC.

4.3.2 Ecommerce Scenario
The ecommerce scenario represents an online shopping

application which supports searching for certain products,
displaying product details, and finally purchasing the product.
SSL is used only at checkout time. The average size of the data
sent in this scenario is around 143.9 KB, which is larger than the
other scenarios. Figure 13, Figure 14, and Figure 15 illustrate the
performance results of the Ecommerce scenario with Zend, P9,
and P9ZC, respectively. The peak performance of Zend is
between 1,300 and 1,400 sessions and P9 is between 1,700 and
1,800 sessions. P9ZC reaches peak performance between 2,100
and 2,200 sessions. This result demonstrates that our optimization
approach outperforms the original runtime, P9 by 22.2%, and
Zend by 57.1%. We also compare the requests with good response
times in Figure 16. This graph clearly shows the performance

advantage of P9ZC. The comparison by response times is shown
in Figure 17. Figure 17 also shows that the response time of
P9ZC is better than the other two configurations at high load
levels. Figure 24 displays the CPU usage for memory copying,
showing that it drops from 15.6% to 3.4%. This memory
reduction is larger than the other two scenarios since the volume
of data traffic is larger, as previously mentioned.

4.3.3 Support Scenario
The support scenario represents a company support website

where customers can download files such as drivers and manuals.
The dynamic proportion is relatively small, and many files are
simply sent from a Web server without any intervention by the
PHP runtime. The average size of a data transfer is 78.5 KB.
Figure 19, Figure 20, and Figure 21 illustrate the performance of
the support scenario with Zend, P9, and P9ZC, respectively. The
peak performance of Zend is between 700 and 800 sessions. P9 is
between 800 and 900 sessions. P9ZC peaks between 1,200 and
1,300 sessions. This result demonstrates that our optimization
outperforms P9 by 44.4%. The CPU usage graph in Figure 24
shows that the CPU usage for memory copying drops from 12.4%
to 4.4%. This shows our approach is highly effective with the
ecommerce and support scenarios, and could be effective with the
banking scenario if SSL is not used. Since it is not realistic to
send unencrypted data in a banking scenario, we will discuss this
issue in Section 5. A comparison of the numbers of total requests
is shown in Figure 18, and more detailed memory reduction
information is shown in Table 2. This profiling data was
measured when each runtime configuration (P9 and P9ZC) was
operating at peak load.

Comparison by Good+Tolerable Requests

0

5000

10000

15000

20000

25000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

sessions

#
 o

f
re

qu
e
st

s

Zend

P9

P9 ZC

Figure 7. Comparison by Good+Tolerable
Requests in Banking (SSL)

Comparison by Good + Tolerable Requests in Banking

0

5000

10000

15000

20000

25000

30000

35000

40000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00

sessions

#
 o

f
re

q
u
e
st
s

Zend

P9

P9 ZC

Figure 8. Good+Tolerable Requests in
Banking (No SSL)

Comparison by Response Time in Banking

0

1

2

3

4

5

6

7

8

9

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

Sessions

T
h
ro

u
gh

p
u
t
(#

 o
f
R
e
q
u
e
st

s)

Zend

P9

P9ZC

Figure 9. Comparison by Response Time in
Banking (No SSL)

Banking without SSL (Zend)

0

5000

10000

15000

20000

25000

30000

35000

40000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

2
9
0
0

3
0
0
0

Session

T
hr

ou
g
hp

ut
 (R

eq
u
es

ts
 p

er
 s

ec
on

d)

Good Tolerable Failed

Figure 10. Performance of Zend in Banking
(No SSL)

Banking without SSL (P9)

0

5000

10000

15000

20000

25000

30000

35000

40000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

2
9
0
0

3
0
0
0

Session

T
h
ro

u
gh

p
ut

 (
R

eq
u
es

ts
 p

e
r

s
e
co

n
d)

Good Tolerable Failed

Figure 11. Performance of P9 in Banking (No
SSL)

Banking without SSL (P9 with Zero Copy)

0

5000

10000

15000

20000

25000

30000

35000

40000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

2
9
0
0

3
0
0
0

Session

T
hr

ou
gh

pu
t

(R
eq

u
es

ts
 p

e
r

se
co

nd
)

Good Tolerable Failed

Figure 12. Performance of P9ZC in Banking
(No SSL)

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

926

4.3.4 Temporary Files Experiment
We also evaluated the effectiveness of storing the PHP runtime
results in a temporary RAM disk file. Filename information was
sent to a Web server with the special HTTP header, X-Sendfile as

supported by the Lighttpd Web server, so we were able to reduce
the amount of data transmitted between the PHP runtime and Web
server. The Web server can directly send a given file via sendfile
without copying it to user space. However, the file needs to be
retrieved from kernel space or disk cache to a user-level buffer in
the PHP runtime, which leads to extra memory overhead. Figure

Ecommerce (Zend)

0

5000

10000

15000

20000

25000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

2
9
0
0

3
0
0
0

Session

T
h
ro

u
g
h
pu

t
(R

eq
u
e
s
ts

 p
e
r

s
e
c
o
nd

)

Good Tolerable Failed

Figure 13. Performance of Zend in Ecommerce

Ecommerce (P9)

0

5000

10000

15000

20000

25000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

2
9
0
0

3
0
0
0

Session

T
hr

o
u
gh

pu
t

(R
e
qu

es
ts

 p
e
r

se
c
o
n
d)

Good Tolerable Failed

Figure 14. Performance of P9 in Ecommerce

Ecommerce (P9 with Zero Copy)

0

5000

10000

15000

20000

25000

100

200
300

400

500

600
700

800
900

1000
1100

1200
1300

1400
1500
1600

1700
1800

1900

2000

2100
2200

2300
2400

2500
2600

2700
2800

2900
3000

Session

T
hr

ou
gh

pu
t

(R
e
qu

es
ts

 p
er

 s
ec

on
d)

Good Tolerable Failed

Figure 15. Performance of P9ZC in
Ecommerce

Comparison by Good Requests (Ecommerce)

0

5000

10000

15000

20000

25000

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00

sessions

#
 o

f
re

q
u

e
st

s

Zend

P9

P9 ZC

P9 Level 1

Figure 16. Comparison by Good Requests in
Ecommerce

Comparison by Response Time in Ecommerce

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sessions

R
e
sp

o
n
se

 T
im

e
 (
s)

Zend

P9

P9ZC

Figure 17. Comparison by Response Time

Comparison by Total Requests

25717.2

14350.8

9966.48

37517

18286.1

12227.9

37442.2

22580.6

16109.3

0

5000

10000

15000

20000

25000

30000

35000

40000

Banking Ecommerce Support

#
 o

f
T
o
ta

l
R
e
q
u
e
st

s

Zend

P9

P9 ZC

Figure 18. Comparison by Total Requests in 3
scenarios

Support (Zend)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Session

T
h
ro

u
gh

pu
t

(R
e
qu

e
st

s
pe

r
se

c
o
n
d)

Good Tolerable Failed

Figure 19. Performance of Zend in Support

Support (P9)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Session

T
h
ro

u
gh

pu
t

(R
e
qu

e
st

s
pe

r
se

c
o
n
d)

Good Tolerable Failed

Figure 20. Performance of P9 in Support

Support (P9 with Zero Copy)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Session

T
h
ro

u
gh

pu
t

(R
e
qu

e
st

s
pe

r
se

c
o
n
d)

Good Tolerable Failed

Figure 21. Performance of P9ZC in Support

Comparison by Good+Tolerable Requests in Support

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00

sessions

#
 o

f
re

qu
e
st

s

Zend

P9

P9ZC

Figure 22. Comparison by Good+Tolerable
Reqs in Support

Comparison by Response Time in Support

0

5

10

15

20

25

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00

sessions

R
e
sp

o
n
se

 T
im

e
 (
s)

Zend

P9

P9 ZC

Figure 23. Comparison by Response Time in
Support

CPU Usage of memcpy

3.13

9.04

12.48

12.6

2.1931

7.22

15.64

12.43

1.5534

5.05

3.43

4.42

0 2 4 6 8 10 12 14 16 18

Banking

Banking (No SSL)

Ecommerce

Support

Percentage when each runtime reaches up to the peak throughput

P9ZC

P9

Zend

Figure 24. CPU usage of memcpy in 3 scenarios

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

927

16 shows the performance results of this approach, labeled "P9
Level1." Due to the reduction of data transmitted between the
PHP runtime and Web server, and also the reduction of memory
copying overhead in the Web server, the peak performance of P9
Level 1 is around 2,000 sessions, an 11% improvement compared
to P9. We have only tested this approach with the Ecommerce
scenario, but it shows that our approach, labeled P9ZC, is more
effective than P9 Level 1.

5. Discussion
In this paper we focused on applying our optimization approach
to PHP, but our approach could be used with other programming
languages. For instance, dynamic scripting languages such as
Ruby and Python are candidates, since their high-level nature is
similar to PHP in using a lazy string implementation that is
transparent to application programs. Ruby [22] allows an override
of the println function and provides a polymorphic type of string,
as well as file strings at the user-level, so we could implement our
approach easily in a Ruby library. Also, the IO.read function in
Ruby can read an entire file, similar to the file_get_contents
function in PHP. For statically typed languages such as Java (used
with JSP), we could use Tomcat and the Java Servlet Engine with
Lighttpd using mod_proxy, which transfers the HTTP messages.
The transferTo method [25] in java.nio.channels.FileChannel is
available for transferring data from a channel to a given writable
byte channel through the sendfile system call. This would allow
us to reduce the communication overhead between the Java
Servlet Engine and the Web server with our proposed approach.

We could also apply our technique to other protocol-based
communication methods such as SCGI (Simple Common
Gateway Interface) [13]. The proposed approach assumes the
availability of UNIX domain sockets for inter-process
communication, but could easily be implemented for generic
TCP/IP communication.

Our technique could be extended to more general cases. If a
compiler identifies a relatively long and constant string that may
become a performance bottleneck, the compiler can automatically
generate a file that contains the string at compilation time, and the
compiler replaces that string with the filename of the generated
file. The PHP runtime would specify offset and length
information for the file with a X-ZeroCopy header, and then a
Web server can handle the file via a zero-copy system call. The
threshold for whether or not the compiler generates a file can be
determined by prior benchmarks conducted on the target system
environment, such as our micro-benchmarks described in Section
4.2.

In addition, we can extend our approach to the include statement
in PHP. The include statement is used for including both static
files and PHP scripts, but PHP developers often use this statement
for including header and footer HTML files or cached files. Our
PHP runtime can parse the included file, and if the runtime
determines it is a static file, then it can replace it with an FTCS
object, and send it with the sendfile system call.

6. Related Work
There are many papers that focus on improving the

performance of individual software components of Web servers
and language runtimes. For the ultimate performance gains, in-
kernel Web servers [21][10] have been proposed to avoid
expensive passing of data and control between kernel and user
space. Robert et al. [10] uses SPECweb96 to measure the serving
of static files with user-level Web servers and kernel-level Web

servers, and shows that the fastest user-mode server measured
(Zeus) is 3.6 times slower than the fastest kernel-mode server
(AFPA).

Nahum et al. [1] evaluates the performance advantages of the
sendfile system call. However as already mentioned, this
technique only focuses on optimization when serving static
HTML files. Our proposed approach uses sendfile, but it goes
beyond the system call to consider what is required to support a
programming language by extending the FastCGI protocol.

An approach known as Faster FastCGI [8] extends FastCGI
protocol to send static files via the sendfile system call. This
approach is available in the Lighttpd 1.5 beta HTTP server. In this
approach, a PHP processor writes an execution result to a file
assigned to shared memory (/dev/shm), and passes the file name
as an HTTP header (X-Sendfile) in the FastCGI protocol. Thus,
the FastCGI module (mod_php) of the HTTP server transmits
each message with a sendfile system call. As described in Section
4.3.4, we also implemented and measured this method as “P9
Level 1”, with the experimental results shown in Figure 16, and
demonstrated that our method is more effective.

Generally zero copying is well known technique, and various
layers from hardware to software apply this technique to reduce
memory copying overhead. For instance, Ishikawa et al [26]
proposes a zero copy approach to MPI (Message Passing
Interface) communication layer. However, no attempts have done
to apply this technique to Web application servers with multiple
cooperative software components.

Keromytis et al. [24] propose an approach for enabling the
sendfile system call in an SSL configuration by transferring data
directly from disk to a cryptographic accelerator card, and then
directly from the crypto card to the network card using OCF
(OpenBSD Cryptographic Framework) kernel API. We could
leverage their work to make our proposed method effective when
SSL communication is required such as in the SPECweb Banking
scenario.

Another paper from our team [32] describes a different approach
for improving web server throughput by offloading template
processing to the client side and only sending variable portions to
the client. Meanwhile, the proposed approach in this paper takes
a more traditional approach in that messages returned from the
Web server to the web client have completely the same HTML
content.

7. Conclusions and Future Directions
In this paper, we proposed a novel approach that improves Web
application performance by optimizing communications between
a Web server and a programming language runtime.

Our experiments show that our technique outperforms our original
PHP runtime by 126% with micro-benchmarks and by 44% with
SPECweb2005. The profiling data demonstrates that performance
gains are proportional to the reduced use of the memcpy operation,
which approximately equals the size of the generated HTML data.
Without our proposed optimization technique, our PHP runtime
with Just-in-Time compilation still outperforms the interpreter-
based Zend engine (with APC enabled), but only by 28%. This
data also shows that the effect of our proposed technique is
similar to that of Just-in-Time compilation if memory copying is
the major bottleneck.

Future work includes enhancements of the proposed approach.
For example, to widen the uses of this optimization, we could

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

928

generate files at compile time when string constants are known
and the lengths of the strings are long. Another area to explore is
the enhancement of kernel support for dynamic Web applications
such as an SSL-enabled sendfile system call [24] to deal with the
case seen in the SPECweb2005 banking scenario.

8. REFERENCES
[1] Erich Nahum, Tsipora Barzilai, Dilip D.Kandlur,

Performance Issues in WWW Servers, IEEE/ACM
Transactions on Networking (TON), Volume 10, Issue 1,
February, 2002

[2] Vivek S. Pai, Peter Druschel, et al. “IO-Lite: A Unified I/O
Buffering and Caching System”, Third Symposium in
Operating Systems Design and Implementation (OSDI), 1999

[3] Dragan Stancevic, Zero copy I: user-mode perspective, Linux
Journal, Volume 3, Issue 105 (January 3), 2003

[4] Hsiao-keng Jerry Chu , Zero-copy TCP in Solaris,
Proceedings of the USENIX 1996 Annual Technical
Conference, 1996

[5] Mark R. Brown, “FastCGI: A High-Performance Gateway
Interface”, Fifth International World Wide Web Conference,
1996

[6] Mark R. Brown, “Understanding FastCGI Application
Performance”, http://www.fastcgi.com/

[7] Arun Iyengar and Jim Challenger, Improving Web Server
Performance by Caching Dynamic Data, Proceedings of the
USENIX Symposium on Internet Technologies and Systems,
1997

[8] Lighttpd, http://www.lighttpd.net/

[9] PHP, http://www.php.net/

[10] Robert B. King , Mark Russinovich T, John M. Tracey,
High-Performance Memory-Based Web Servers: Kernel and
User-Space Performance, Proceedings of the 2001 USENIX
Annual Technical Conference, 2001

[11] David Pariaq, Tim Brecht, et al., Comparing the Performance
of Web Server Architectures, ACM SIGOPS Operating
Systems Review, 2007

[12] Gaurav Banga, Peter Druschel, Jeffrey C. Mogul, Better
operating system features for faster network servers, Proc.
Of the Workshop on Internet Server Performance 1999

[13] SCGI: A Simple Common Gateway Interface Alternative,
http://python.ca/scgi/protocol.txt

[14] SPECweb2005, http://www.spec.org/web2005/

[15] Khalil Amiri, Sanghyun Park, et al., “DBProxy: A dynamic
data cache for Web applications” ICDE 2003, pages 821-831,
2003

[16] Z. N. J. Peterson and R. Burns: Ext3cow; A Time-Shifting
File System for Regulatory Compliance, ACM Transactions
on Storage (TOS), Volume 1, Issue 2 (May 2005), Pages
190-212

[17] Moti N. Thadani, An Efficient Zero-Copy I/O Framework
for Unix, Sun Microsystems Technical Report, May 1995

[18] Dong-Jae Kang, Young-Ho Kim, et al., Design and
Implementation of Zero-Copy Data Path for Efficient File

Transmission, High Performance Computing and
Communication, Sep, 2006

[19] Netcraft, http://survey.netcraft.com/Reports/200806/

[20] Apache Web Server, http://httpd.apache.org/

[21] Armol Shukla, et al, Evaluating the performance of user-
space and kernel-space Web servers, IBM Centre for
Advanced Studies Conference, 2004

[22] Ruby, http://www.ruby-lang.org/en/

[23] Scott Trent, Michiaki Tatsubori, Toyotaro Suzumura,
Akihiko Tozawa, and Tamiya Onodera. Performance
comparison of PHP and JSP as server-side scripting
languages. Proceedings of Middleware, 2008,
ACM/IFIP/USENIX 9th International Middleware
Conference, Leuven, Belgium, December 1-5, 2008, pages
164–182. Springer, 2008.

[24] Angelos D. Keromytis et al., Cryptography as an operating
system service: A case study, ACM Transactions on
Computer Systems (TOCS), Volume 24, Issue 1 (February
2006)

[25] Sathish K. Palaniappen, et al., Efficient Data Transfer
through zero copy, IBM Developerworks, Sep, 2008,
http://www.ibm.com/developerworks/library/j-zerocopy

[26] Francis O’Carroll, et Al., “The design and implementation
of zero copy MPI using commodity hardware with a high
performance network”, Proceedings of the 12th International
Conference on Supercomputing, 1998

[27] Nick Mitchell, Gary Sevitsky, Harini, Srivivasan, et al., The
Diary of a Datum: An Approach to Modeling Runtime
Complexity in Framework-Based Applications, IBM
Research Report, RC23703, 2005

[28] Akihiko Tozawa, Michiaki Tatsubori, Scott Trent, Toyotaro
Suzumura, and Tamiya Onodera, P9: High Performance PHP
Runtime, Japan Society for Software Science and
Technology, 25th Workshop, 2008

[29] OProfile, http://oprofile.sourceforge.net/

[30] Netperf, http://www.netperf.org/

[31] Lakshmish Ramaswamy, Ling Liu, and Fred Douglis
Automatic Fragment Detection in Dynamic Web Pages and
its Impact on Caching. IEEE Transactions on Knowledge
and Data Engineering vol. 17 #6, 2005

[32] Michiaki Tatsubori and Toyotaro Suzumura, HTML
Templates that Fly - A Template Engine Approach to
Automated Offloading from Server to Client, WWW 2009
(18th International World Wide Web Conference), Spain
Madrid, April, 2009

[33] Cecchet, E. Chanda, A., Elnikety, S., Marguerite, J.,
Zwaenepoel, W.: “Performance Comparison of Middleware
Architectures for Generating Dynamic Web Content”, 4th
ACM/IFIP/USENIX International Middleware Conference
(2003)

[34] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee: Hypertext
Transfer Protocol -- HTTP/1.1 (RFC 2616), June 1999.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

929

