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ABSTRACT 
The performance of server-side applications is becoming 
increasingly important as more applications exploit the Web 
application model. Extensive work has been done to improve the 
performance of individual software components such as Web 
servers and programming language runtimes. This paper describes 
a novel approach to boost Web application performance by 
improving inter-process communication between a programming 
language runtime and Web server runtime. The approach reduces 
redundant processing for memory copying and the context switch 
overhead between user space and kernel space by exploiting the 
zero-copy data transfer methodology, such as the sendfile system 
call. In order to transparently utilize this optimization feature with 
existing Web applications, we propose enhancements of the PHP 
runtime, FastCGI protocol, and Web server. Our proposed 
approach achieves a 126% performance improvement with micro-
benchmarks and a 44% performance improvement for a standard 
Web benchmark, SPECweb2005.  

Categories and Subject Descriptors 
I.7.2 [Computing Methodologies]:  
Document and Text Processing—scripting languages;  
D.3.4 [Software]: Processors—runtime environments  

General Terms 
Performance, Experimentation 

Keywords 
Web Server, Zero Copy, FastCGI, sendfile, PHP, Scripting 

1. INTRODUCTION 
 In recent years, software applications are increasingly being 

developed to adopt the Web application model via HTTP protocol 
in the Web 2.0 era. This rapidly growing use is dramatically 
increasing the performance requirements for Web application 
servers, and much research is being done in this area 
[1][2][7][10][11][33]. Another recent technological trend is for 
Web applications to be developed with dynamic scripting 
languages such as PHP, Ruby, and Python, since this approach 
supports agile software development environments with rich sets 
of library functions.  

Such languages depend on runtime systems for high 
performance HTTP servers in commercial environments. The two 
components, the language runtime and the HTTP server are 
connected in two different ways. One approach is to embed the 
language runtime within the Web server process using the internal 
API provided by the Web server. The other approach is to 
separate the language runtime from the Web server with the use 
of a well-defined message exchange protocol, such as FastCGI [5]. 
Currently, the protocol-based communication method is becoming 
more popular, and the combination of Lighttpd [8] and FastCGI 
[5] is known to be especially fast for serving PHP Web 
applications. Our prior work [23] showed that Lighttpd and 
FastCGI outperform Apache [20] and mod_php in all SPECweb 
scenarios. Table 1 based on that research [23] shows the peak 
performance in simultaneous sessions (clients) of two Web 
servers, Apache and Lighttpd, with the Zend PHP Runtime 
available at [9].  

Table 1. A comparison of peak throughput in SPECweb2005 

In contrast to the API approach, protocol-based communication 
allows the programming language runtimes to be isolated from 
the Web server engines, which also improves the scalability and 
security. However, there is redundant processing in the Web 
server and the programming language runtime, especially in the 
communication between the two components. In this paper, we 
address this problem and make the following contributions:  

 We propose a performance optimization approach that 
reduces inter-process communication overhead between a 
Web server and a PHP runtime by using a zero-copy data 
transfer methodology such as the sendfile system call.  

  In order for existing PHP applications to take advantage of 
this optimization, we propose an enhancement of the PHP 
runtime that performs lazy file I/O operations while 
maintaining the language semantics without any 
modifications to the application programs. The runtime 
performs no File I/O operations when the content of a file is 
not required for other processing, and the transmission of a 
file to Web clients can is done by the Web server. We 
implement this feature in our PHP runtime engine.  
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Apache + 
mod_php 

  850 sessions 1,250 sessions 1,100 sessions 

Lighttpd + 
FastCGI 

1,250 sessions 2,000 sessions 1,350 sessions  

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

921



 We propose an enhancement of the FastCGI protocol to 
denote the location of files to be sent by a Web server, and an 
enhancement of the Web server so that it can insert the file 
content at an arbitrary location and send it using a zero-copy 
system call such as sendfile. The protocol is designed to 
utilize a single header to specify the transfer of multiple files.  

 We evaluate the new approach using both micro-benchmarks 
and a standard Web application benchmark, SPECweb2005, 
and show that our approach yields a 126% performance 
improvement on micro-benchmarks and a 44% improvement 
in the number of supportable SPECweb2005 client sessions 
with reasonable response times compared to the original 
implementation.  

The remainder of the paper is organized as follows. First, the 
motivation and problem statement of this research are presented 
in Section 2. Section 3 describes the design and implementation 
of our optimization approach. We present evaluations in Section 4 
including micro-benchmarks and experimental results for the 
standard Web application benchmark, SPECweb2005. Discussion 
appears in Section 5, and related work is reviewed in Section 6, 
followed by our conclusions and future directions in Section 7.  

2. Motivation – Redundancy in Interprocess 
Communication 
This section describes the motivation and problem statement of 
current Web architectures, focusing on their redundant processing 
characteristics. 

2.1 Current Web architectures 
Current Web applications generally use a three-tier architecture, 

consisting of an HTTP server, a programming language runtime, 
and database servers. The HTTP server and the programming 
language runtime are connected via a SAPI (Server Abstract API), 
of which there are two main types. One type of SAPI is the 
Apache [20] mod_php-like approach in which a language runtime 
is embedded in the same address space as the Web server process, 
connected via the proprietary API defined for the Apache HTTP 
server. The other SAPI type uses a language runtime running as a 
different process from the Web server, and the two processes 
communicate with a well-defined protocol such as FastCGI [5].  

 FastCGI is a variation of the earlier Common Gateway Interface 
(CGI) for interfacing interactive programs with an HTTP server. 
It avoids the “one new process per request” model of CGI , which 
limits efficiency and scalability. Instead of creating a new process 
for every request, FastCGI can use a single persistent process 
which handles many requests over its lifetime.  The other benefit 
of using the FastCGI protocol is to allow the isolation of the 
programming language runtime and the Web server. For a 
language runtime developer, using FastCGI means the runtime 
will work with any Web server that understands the FastCGI 
protocol. For improved performance, FastCGI applications can 
even be distributed among multiple machines, supporting high 
scalability. The currently recommended default configuration for 
PHP with the Lighttpd Web server is to use FastCGI. 

2.2 Drawbacks in protocol-based inter-
process communication 
As described in the previous subsection, protocol-based 
communication methods provide isolation and scalability, but 
redundant processing occurs in the language runtime and Web 

server. For example, consider a PHP script that prints out a header 
part, the content of a file, and then a footer part. The header part 
and the footer part may be dynamically generated, but the file in 
the middle is a static file or a cached result file retrieved earlier 
from a database. Many projects [15] [30] are pursuing caching 
technology for dynamic Web applications. Figure 1 illustrates the 
series of steps from the point when the Web server receives an 
HTTP request and sends the packet via the FastCGI protocol to 
the PHP runtime, the PHP runtime executes a PHP script, and 
finally responds by sending the generated HTML back to the 
HTTP server via FastCGI. The figure also shows where memory 
copying between the OS kernel space and the user space occurs. 
The first notable copying operation (C3) occurs in retrieving the 
content of a file that exists at the kernel level or in a disk cache, 
when the data is copied to the user-level buffers, the FastCGI and 
PHP runtime buffers. The second notable copying operation is C4. 
When the FastCGI communication is done with shared memory 
(when available), the PHP runtime buffer copies the content of the 
buffer to shared memory, and then the Web server retrieves the 
content from the shared memory and copies it again to a buffer in 
the Web server (C5) and the kernel buffer (C6), and if the content 
of the file for C3 is sufficiently large, then the memory copying 
costs for C3, C4, C5, and C6 are similar. These memory copying 
operations incur processing costs and lead to overall performance 
degradation of the Web application server. Table 2 shows the 
amounts of data for each scenario in SPECweb2005. This data is 
copied at C3, C4, C5, and C6. SPECweb2005 uses dynamic 
padding files that consist of random characters used to emulate 
the typical sizes of Web content, but which are stored as static 
files.  

Table 2. Average data size for each SPECweb2005 scenario 

 
A PHP runtime needs to dynamically retrieve the content of the 
file and transmit it to the Web server, which causes the copying 
operations at C3, C4, C5, and C6. According to our experiments 
with our PHP runtime using the oprofile profiling tool [29] in the 
SPECweb Ecommerce scenario, 15.7% of the total CPU time is 
spent on memory copying operations. There is good opportunity 
for improving Web application performance by reducing such 
memory copying operations.  

3. Interprocess Communication Optimization  
 In this section we describe an optimization approach that 
addresses the problems mentioned in the previous section. 

3.1 Overview of Our Approach 
Our approach is to leverage operating system support, especially 
functions which use zero-copy data transfer [3][24] such as the 
sendfile system call supported by state-of-the-art operating 
systems to reduce redundant memory copying operations and 
interactions between user space and kernel space. The sendfile 
system call supports a zero-copy data path to transfer data from a 
file descriptor to a socket without CPU processing or context 
switching between kernel and user space. The data is immediately 
read from disk into the OS cache memory using Direct Memory 
Access (DMA) hardware, if possible. The data to be transferred is 
usually used directly from system buffers, without context 

 Bankin
g 

Ecommerce Support

Average Data Size (KB) 34.8 143.9 78.5 
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switching. Thus, the usage of the sendfile system call significantly 
reduces CPU load. The sendfile system call is available in most 
modern operating systems such as Linux, AIX, Solaris, and 
Windows. 

In addition, the sendfile system call is used in recent Web server 
implementations such as Lighttpd to send static HTML files and 
images files. This technique works for static files, but cannot be 
used when certain portions of the generated HTML are relatively 
static (such as loading static or cached files), but other portions 
are dynamic. This situation is increasingly frequent as more and 
more dynamically generated applications are published.  

We designed and implemented an approach that can handle such 
mixed content while using the sendfile system call in a transparent 
way, so application developers need not modify existing 
applications.  

3.2 Architecture Design 
To transparently use the sendfile system call, we describe the 
architectural design points for interprocess communication 
optimization in the following sections.  

3.2.1 Enhancement of PHP Runtime 
To reduce the load of memory copying, we need a new type of 
character string object for special handling in file processing. This 
new character string object is called a “file-type character string 
object”, abbreviated as FTCS object. An ordinary character string 
object (such as “$a” in $a=file_get_contents (“/tmp/fileA.html”) 
in a PHP script) holds the entire file as a character string. In 
contrast, an FTCS object only holds the file name (URI) of a file. 
This implementation is transparent to the application program, 
and has the same semantics as an ordinary character string object. 
If the content of a file is needed for character string operations 
such as a regular expression operation with the preg_match 
extension, an FTCS object actually reads the file and stores its 
content in a form similar to an ordinary character string object. 
However, for information such as the length of the character 
strings in the file or its hash value (e.g., filesize), which can be 
acquired from the file system attribute data of the file, the FTCS 
object acquires the information without actually reading the file. 
The FTCS object is returned by either PHP extensions 1  or 

                                                                 
1 In PHP, an external C library function is called an “extension”.  

standard built-in extensions such as file_get_contents. The 
operations for an FTCS are of two types, lazy operations and 
eager operations. A lazy operation such as echo does not actually 
perform any file I/O operation, but instead the Web server sends 
the content directly to the client using the sendfile system call. An 
eager operation such as preg_match needs eager processing on the 
FTCS object.  

3.2.2 Enhancement of the FastCGI Protocol and 
the Web Server  
In cases where a PHP runtime creates an FTCS object but 
performs no actual I/O processing, the runtime can communicate 
with its Web server using the FastCGI protocol with our newly 
added header named X-ZeroCopy. File name and location are 
included in the body portion of a FastCGI message. The offset 
value indicating the position of the first character of the file name, 
and the length of the file name are written in an X-ZeroCopy 
header. The X-ZeroCopy header follows the HTTL extension 
header [34] and is specified as follows:  

X-ZeroCopy = “X-ZeroCopy” “:” # (offset “/” length ) 

 
The header is recursively defined to allow the transmission of 
multiple files. For example, consider the following pseudo-
FastCGI packet. The two files, /tmp/A.htm and /tmp/B.htm, are to 
be sent by a Web server via a zero-copy data transfer such with 
the sendfile system call. The second line indicates the body 
content of a FastCGI packet, and the first line is an X-ZeroCopy 
header that specifies the location of file references in the body by 
specifying the offsets and lengths of any file names.  
 

X-ZeroCopy:5/10:21/10 
hello/tmp/A.htmworld/tmp/B.htmbye 

  

Our PHP runtime automatically generates this header and body 
content in a transparent manner from unmodified PHP scripts. 
The key feature of this approach is to allow a mix of dynamic 
content and the metadata for multiple files to be sent alternatively 
by the sendfile system call. For example, the original PHP script 
that is converted to the above FastCGI message by our PHP 
runtime is shown as follows.  
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Figure 1. Interactions between HTTP server and PHP 
runtime. 
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Figure 2. Interactions between HTTP server and PHP 
runtime with our optimization method. 
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The PHP runtime first parses the PHP script and translates it 
into instruction code. Then the PHP runtime executes the 
translated instruction code. While executing the instruction code 
corresponding to ECHO (display a character string in the standard 
output), the PHP runtime determines whether or not the target 
variable is an FTCS object. In the current example, since the 
file_get_content extension returns an FTCS object, the FastCGI 
packet will contain the file’s URI (e.g., /tmp/A.htm) rather than 
the actual file contents.  

The FastCGI packet generated by the PHP runtime is transmitted 
to the HTTP server for processing. The HTTP server parses the 
header of the received FastCGI packet. Upon finding an X-
ZeroCopy header, the HTTP server returns the files designated by 
the X-ZeroCopy header to the client by using multiple sendfile 
system calls, instead of just forwarding the FastCGI packet to the 
socket. With this approach, a file that does not require processing 
by the PHP runtime is acquired directly by the HTTP server 
instead of passing through the PHP runtime, and is then 
transmitted to the client. Therefore the memory copying by the 
PHP runtime for the file can be omitted and the file is not copied, 
even during the memory copying carried out when the PHP 
runtime transmits the FastCGI packet to the HTTP server. Also, 
when the HTTP server returns its response to the client, the file is 
transmitted directly from the kernel memory to the client without 
passing through user memory. Therefore additional memory 
copying for the file is avoided, thus improving the operational 
performance of the Web application server. The interaction flow 
between a Web server and a PHP runtime in the case of sending a 
single file is depicted in Figure 2. The memory copying for C3 is 
eliminated, and C4 and C5 is reduced to C4’ and C5’ which only 
contain dynamically generated parts. We can calculate the amount 
of memory copied as C3 + (C4 – C4’) + (C5 – C5’) + (C6 – 
(C6’+C6’’)).  

3.2.3 File Change Management 
When a Web application server uses this approach, there is a 

delay from the time when the PHP runtime executes the 
instruction code until the time when the HTTP server acquires the 
file specified by the instruction code. Therefore, the content of the 
file could change during this delay. Some assurance is needed that 
the file to be transmitted has the same content as it had at the time 
the code was executed by the PHP runtime. Our approach tracks 
the content of each file by using a hard link with a Copy-on-write 
function at the OS level or at the PHP processor level. For the 
OS-level approach, the PHP runtime generates a copy when the 
write operation is performed on a file, with a hard link using the 
Copy-on-write function implemented in the OS. This approach 
can only be used with a file system such as ext3cow [16]. For the 
PHP-level approach, the check is provided by an extension library 
for the PHP runtime. The PHP runtime locks the file with an 
exclusive lock, generates a hard link to a copy of the file, 
monitors any write to the file, and generates a copy when a write 

operation takes place, and unlocks the file after the copy has been 
transmitted to the HTTP server. 

In general, it is best if the write operation is performed on the 
file before the transmission of the file by the HTTP server, so the 
PHP runtime generates and retains a copy of the file on which the 
write operation has not yet been performed. Then the HTTP 
server transmits the file for which the write operation has not yet 
been performed. 

3.3 Implementation 
We implemented our approach using our own PHP runtime, by 

modifying the Lighttpd HTTP server, and also by extending 
OpenMarket’s FastCGI implementation [5] of the mod_fastcgi 
module to support a modified FastCGI protocol enhanced with 
our proposed HTTP header. 

For our own language runtime, we extended our PHP runtime, 
known as P9 [28], a PHP runtime engine with a just-in-time 
compiler. A unique feature of our runtime is that it reuses an 
optimizing JIT compiler from a production Java virtual machine. 
Our motivation for that approach is to explore the retargeting of a 
production compiler for a statically typed language (Java) to a 
dynamically typed language (PHP). By exploiting various optimi-
zation features, we should be able to exploit many of the existing 
optimizations and features in the JIT compiler that were intended 
for a statically typed language. We also added new optimizations 
that are critical for optimizing a dynamically typed language.  

4. Performance Evaluation 
This section evaluates our optimization approach by running a set 
of micro-benchmarks and a standard Web benchmark application, 
SPECweb2005 [14]. 

4.1 Experimental Environment 
All of the experiments in the following subsections use the same 

experimental environment described here. We used Lighttpd 
1.4.19 as a web server running on an IBM IntelliStation M Pro 
3.4-GHz Pentium 4 uniprocessor with 2 GB of RAM running 
Fedora Core 7 (kernel 2.6.17). Lighttpd was configured to use one 
parent process, two worker processes, and eight FastCGI 
processes. (We measured other variations of numbers of parent, 
worker, and FastCGI processes, but did not find other 
configurations to perform significantly better.) For the client 
machine, we used an IBM IntelliStation M Pro 2.0-GHz 
uniprocessor machine connected to the server via a 1 GB Ethernet 
LAN. The network latency was 0.12 ms, and the actual network 
throughput measured with netperf [30] was 941 Mbit/second. 

4.2 Micro-benchmark 
Theoretically our approach should be effective when the FastCGI 
communication overhead between the PHP runtime and the Web 
server is a major performance bottleneck. To find the threshold 
where file size becomes a bottleneck, we prepared a simple PHP 
script micro-benchmark that simply displays a file via the 
file_get_contents PHP extension. With the script, we evaluated 
the performance with file sizes ranging from 10 KB to 200 KB, as 
shown in Figure 3. The x-axis is the file size and the left y-axis 
shows the throughput of unmodified P9 and P9 with our 
optimization approach (P9ZC). Throughput is measured by the 
number of requests handled, and the right axis shows the speed-up 
ratio for P9 over P9ZC as measured by the ab  

<?php  

echo “hello”; 
echo file_get_contents(‘/tmp/A.html’); 
echo “world”; 
echo file_get_contents(‘/tmp/B.htm’); 
echo “bye”;  

?> 
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 (Apache Bench) tool with 1 process, 100 concurrent requests, and 
a 60 second run, measured after sufficient warm-up. 

Figure 3 shows that the speedup of P9ZC over P9 increases from 
1.26 for a 10 K file up to 2.26 for a 60 K file. After 60K, the 
speedup gradually decreases but P9ZC remains roughly twice as 
fast as P9. Figure 4 shows the cumulative CPU usage of the 
memcpy function used by the Lighttpd Web server and the PHP 
runtime, and the table below the graph shows the values as 
percentages of CPU usage. The graph shows that P9ZC 
significantly reduces CPU usage for the memcpy function while 
P9 uses approximately 20% to 60% of CPU time to perform 
memory copying. Figure 4 shows why performance 
improvements are not seen for large files with P9ZC in Figure 3. 
This is because the CPU usage of the memcpy function for P9 is 
saturated when file size is greater than 60KB. As with 
SPECweb2005 described in the next section, this is not a CPU-
bound activity 

Since these micro-benchmarks are idealized test cases for our 
optimization, we also performed experiments by adding multiple 
integer operations other than printing out a 60-KB file by using 
the file_get_contents extension to improve the CPU usage for 
further processing. By increasing the number of integer operations 
from 0 to 50,000, the CPU usage for the memcpy function was 
reduced by 56 percentage points to 7.6% as shown in Figure 5. 
The throughput and speedup (%) of P9ZC over P9 with varying 
numbers of integer operations is shown in Figure 6, and the result 
shows that the speedup gradually decreases, and in proportion to 
the percentage of the CPU used for the memcpy function.  
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Figure 6. Throughput and Speedup (%) of P9ZC over P9 with 
varying numbers of integer operations and a 60-KB file. 

 

 

4.3 SPECweb2005 Benchmark 
 
SPECweb2005 [14] is a standard Web application benchmark 
defined by SPEC (Standard Performance Evaluation Corporation). 
The three-tier architecture used for SPECweb2005 consists of a 
Web server, a PHP runtime, and a BESIM backend database 
simulator. SPECweb2005 has three representative Web 
application scenarios: Banking, Ecommerce, and Support. Each 
scenario has different performance characteristics representing the 
different types of Web applications. The goal of SPECweb is not 
only to compare the numbers of request being processed, the 
throughput, but also to consider the response times. The 
completed requests are classified as good, tolerable, or failed 
depending on the response time set for each scenario. We will 
explain the performance results with each scenario. We use Zend, 
P9, and P9ZC, respectively, as labels for the type of PHP runtime. 
Zend is a PHP runtime available from [9] and configured with 
APC (Alternative PHP Cache) turned on, which allows the 
runtime to cache PHP intermediate codes. P9ZC is the enhanced 
PHP runtime that adds our proposed technique to the P9 runtime.  

4.3.1 Banking Scenario 
The banking scenario represents an online Web banking 

application, characterized as a secure Web application with SSL 
communication, which supports viewing account information, 
transferring money to other accounts, and so forth. The average 
size of the data sent to the Web client is 34.8 KB, as shown in 
Table 2. Figure 7 illustrates the performance results of the 
banking scenario in SPECweb with different runtime 
configurations, Zend, P9, and P9ZC. As shown in the graph, the 
peak performance of Zend is 1,000 sessions, versus 1,200 sessions 
for P9 and P9ZC. The performance advantage of P9 and P9ZC is 
attributable to just-in-time compilation, while Zend is an 
interpreter-based runtime. The results also show that there is no 
performance advantage of P9ZC over P9. Figure 24 shows that 
the memory copying operation consumes only around 2% of the 
CPU usage. This is because SSL processing accounts for a large 
portion of the CPU processing in this scenario, and thus there are 
few copy cycles for our approach to eliminate. Another important 
fact is that the sendfile system call becomes ineffective when 
using SSL. With an SSL-enabled configuration, the Web server 
loads the content of a file, encodes it, and then sends it to the 
network socket. This issue could be resolved by applying 
Keromytis’s work [24] on an SSL-enabled sendfile that performs 
the SSL processing at the kernel level. Although SSL is  

 
Figure 3. Throughput and Speedup (%) of 
P9ZC over P9 with varying file sizes. 
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Figure 4. CPU usage for the memcpy 
function. 
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Figure 5. CPU usage for memcpy with 
varying numbers of integer operations and 
a 60-KB file. 
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required for a compliant SPECweb benchmark, we also 
performed the experiment with SSL turned off to assess the 
effectiveness of our approach. In that experiment, we observed 
that the peak performance of P9ZC is 2,100 sessions, which is 5% 
better than the P9 peak of 2,000 sessions.  

The performance advantage is more evident when considering the 
number of requests with good response times, as shown in Figure 
11. A comparison by response time is shown in Figure 12. The 
response time of P9 increases more sharply from 2,200 sessions 
than P9ZC, and this phenomenon is also seen in the throughput 
data shown in Figure 11. CPU usage for memory copying 
operations is shown in Figure 24 as "Banking (No SSL)". P9 uses 
7.2% of CPU time for memory copying, but P9ZC uses 5.1%. 
This 2.2% memory copying reduction contributes to the end-to-
end performance improvement of P9ZC.  

4.3.2 Ecommerce Scenario 
The ecommerce scenario represents an online shopping 

application which supports searching for certain products, 
displaying product details, and finally purchasing the product. 
SSL is used only at checkout time. The average size of the data 
sent in this scenario is around 143.9 KB, which is larger than the 
other scenarios.  Figure 13, Figure 14, and Figure 15 illustrate the 
performance results of the Ecommerce scenario with Zend, P9, 
and P9ZC, respectively. The peak performance of Zend is 
between 1,300 and 1,400 sessions and P9 is between 1,700 and 
1,800 sessions. P9ZC reaches peak performance between 2,100 
and 2,200 sessions. This result demonstrates that our optimization 
approach outperforms the original runtime, P9 by 22.2%, and 
Zend by 57.1%. We also compare the requests with good response 
times in Figure 16. This graph clearly shows the performance 

advantage of P9ZC. The comparison by response times is shown 
in Figure 17. Figure 17 also shows that the response time of 
P9ZC is better than the other two configurations at high load 
levels. Figure 24 displays the CPU usage for memory copying, 
showing that it drops from 15.6% to 3.4%. This memory 
reduction is larger than the other two scenarios since the volume 
of data traffic is larger, as previously mentioned.  

4.3.3 Support Scenario 
The support scenario represents a company support website 

where customers can download files such as drivers and manuals. 
The dynamic proportion is relatively small, and many files are 
simply sent from a Web server without any intervention by the 
PHP runtime. The average size of a data transfer is 78.5 KB.  
Figure 19, Figure 20, and Figure 21 illustrate the performance of 
the support scenario with Zend, P9, and P9ZC, respectively. The 
peak performance of Zend is between 700 and 800 sessions. P9 is 
between 800 and 900 sessions. P9ZC peaks between 1,200 and 
1,300 sessions. This result demonstrates that our optimization 
outperforms P9 by 44.4%. The CPU usage graph in Figure 24 
shows that the CPU usage for memory copying drops from 12.4% 
to 4.4%. This shows our approach is highly effective with the 
ecommerce and support scenarios, and could be effective with the 
banking scenario if SSL is not used. Since it is not realistic to 
send unencrypted data in a banking scenario, we will discuss this 
issue in Section 5. A comparison of the numbers of total requests 
is shown in Figure 18, and more detailed memory reduction 
information is shown in Table 2. This profiling data was 
measured when each runtime configuration (P9 and P9ZC) was 
operating at peak load.  
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Figure 7. Comparison by Good+Tolerable 
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Figure 10. Performance of Zend in Banking 
(No SSL) 

Banking without SSL (P9)
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Figure 11. Performance of P9 in Banking (No 
SSL) 

Banking without SSL (P9 with Zero Copy)
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4.3.4 Temporary Files Experiment  
We also evaluated the effectiveness of storing the PHP runtime 
results in a temporary RAM disk file. Filename information was 
sent to a Web server with the special HTTP header, X-Sendfile as  

supported by the Lighttpd Web server, so we were able to reduce 
the amount of data transmitted between the PHP runtime and Web 
server. The Web server can directly send a given file via sendfile 
without copying it to user space. However, the file needs to be 
retrieved from kernel space or disk cache to a user-level buffer in 
the PHP runtime, which leads to extra memory overhead. Figure 
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Figure 13. Performance of Zend in Ecommerce 

Ecommerce (P9)
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Figure 14. Performance of P9 in Ecommerce 

Ecommerce (P9 with Zero Copy)
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Figure 15. Performance of P9ZC in 
Ecommerce 
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Figure 16. Comparison by Good Requests in 
Ecommerce 

Comparison by Response Time in Ecommerce
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Figure 17. Comparison by Response Time 
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Figure 19. Performance of Zend in Support 
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Figure 20. Performance of P9 in Support 

Support (P9 with Zero Copy)
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Figure 21. Performance of P9ZC in Support 

Comparison by Good+Tolerable Requests in Support
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Figure 22. Comparison by Good+Tolerable 
Reqs in Support 

Comparison by Response Time in Support
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16 shows the performance results of this approach, labeled "P9 
Level1." Due to the reduction of data transmitted between the 
PHP runtime and Web server, and also the reduction of memory 
copying overhead in the Web server, the peak performance of P9 
Level 1 is around 2,000 sessions, an 11% improvement compared 
to P9. We have only tested this approach with the Ecommerce 
scenario, but it shows that our approach, labeled P9ZC, is more 
effective than P9 Level 1. 

5. Discussion 
In this paper we focused on applying our optimization approach 
to PHP, but our approach could be used with other programming 
languages. For instance, dynamic scripting languages such as 
Ruby and Python are candidates, since their high-level nature is 
similar to PHP in using a lazy string implementation that is 
transparent to application programs. Ruby [22] allows an override 
of the println function and provides a polymorphic type of string, 
as well as file strings at the user-level, so we could implement our 
approach easily in a Ruby library. Also, the IO.read function in 
Ruby can read an entire file, similar to the file_get_contents 
function in PHP. For statically typed languages such as Java (used 
with JSP), we could use Tomcat and the Java Servlet Engine with 
Lighttpd using mod_proxy, which transfers the HTTP messages. 
The transferTo method [25] in java.nio.channels.FileChannel is 
available for transferring data from a channel to a given writable 
byte channel through the sendfile system call. This would allow 
us to reduce the communication overhead between the Java 
Servlet Engine and the Web server with our proposed approach. 

We could also apply our technique to other protocol-based 
communication methods such as SCGI (Simple Common 
Gateway Interface) [13]. The proposed approach assumes the 
availability of UNIX domain sockets for inter-process 
communication, but could easily be implemented for generic 
TCP/IP communication.  

Our technique could be extended to more general cases. If a 
compiler identifies a relatively long and constant string that may 
become a performance bottleneck, the compiler can automatically 
generate a file that contains the string at compilation time, and the 
compiler replaces that string with the filename of the generated 
file. The PHP runtime would specify offset and length 
information for the file with a X-ZeroCopy header, and then a 
Web server can handle the file via a zero-copy system call. The 
threshold for whether or not the compiler generates a file can be 
determined by prior benchmarks conducted on the target system 
environment, such as our micro-benchmarks described in Section 
4.2.  

In addition, we can extend our approach to the include statement 
in PHP. The include statement is used for including both static 
files and PHP scripts, but PHP developers often use this statement 
for including header and footer HTML files or cached files. Our 
PHP runtime can parse the included file, and if the runtime 
determines it is a static file, then it can replace it with an FTCS 
object, and send it with the sendfile system call. 

6. Related Work 
There are many papers that focus on improving the 

performance of individual software components of Web servers 
and language runtimes. For the ultimate performance gains, in-
kernel Web servers [21][10] have been proposed to avoid 
expensive passing of data and control between kernel and user 
space. Robert et al. [10] uses SPECweb96 to measure the serving 
of static files with user-level Web servers and kernel-level Web 

servers, and shows that the fastest user-mode server measured 
(Zeus) is 3.6 times slower than the fastest kernel-mode server 
(AFPA).  

Nahum et al. [1] evaluates the performance advantages of the 
sendfile system call. However as already mentioned, this 
technique only focuses on optimization when serving static 
HTML files. Our proposed approach uses sendfile, but it goes 
beyond the system call to consider what is required to support a 
programming language by extending the FastCGI protocol.  

An approach known as Faster FastCGI [8] extends FastCGI 
protocol to send static files via the sendfile system call. This 
approach is available in the Lighttpd 1.5 beta HTTP server. In this 
approach, a PHP processor writes an execution result to a file 
assigned to shared memory (/dev/shm), and passes the file name 
as an HTTP header (X-Sendfile) in the FastCGI protocol. Thus, 
the FastCGI module (mod_php) of the HTTP server transmits 
each message with a sendfile system call. As described in Section 
4.3.4, we also implemented and measured this method as “P9 
Level 1”, with the experimental results shown in Figure 16, and 
demonstrated that our method is more effective.  

Generally zero copying is well known technique, and various 
layers from hardware to software apply this technique to reduce 
memory copying overhead. For instance, Ishikawa et  al [26] 
proposes a zero copy approach to MPI (Message Passing 
Interface) communication layer. However, no attempts have done 
to apply this technique to Web application servers with multiple 
cooperative software components. 

Keromytis et al. [24] propose an approach for enabling the 
sendfile system call in an SSL configuration by transferring data 
directly from disk to a cryptographic accelerator card, and then 
directly from the crypto card to the network card using OCF 
(OpenBSD Cryptographic Framework) kernel API.  We could 
leverage their work to make our proposed method effective when 
SSL communication is required such as in the SPECweb Banking 
scenario.  

Another paper from our team [32] describes a different approach 
for improving web server throughput by offloading template 
processing to the client side and only sending variable portions to 
the client. Meanwhile, the proposed approach in this paper   takes 
a more traditional approach in that messages returned from the 
Web server to the web client have completely the same HTML 
content.  

7. Conclusions and Future Directions 
In this paper, we proposed a novel approach that improves Web 
application performance by optimizing communications between 
a Web server and a programming language runtime.  

Our experiments show that our technique outperforms our original 
PHP runtime by 126% with micro-benchmarks and by 44% with 
SPECweb2005. The profiling data demonstrates that performance 
gains are proportional to the reduced use of the memcpy operation, 
which approximately equals the size of the generated HTML data. 
Without our proposed optimization technique, our PHP runtime 
with Just-in-Time compilation still outperforms the interpreter-
based Zend engine (with APC enabled), but only by 28%. This 
data also shows that the effect of our proposed technique is 
similar to that of Just-in-Time compilation if memory copying is 
the major bottleneck.  

Future work includes enhancements of the proposed approach. 
For example, to widen the uses of this optimization, we could 
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generate files at compile time when string constants are known 
and the lengths of the strings are long. Another area to explore is 
the enhancement of kernel support for dynamic Web applications 
such as an SSL-enabled sendfile system call [24] to deal with the 
case seen in the SPECweb2005 banking scenario.   
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