Flux: A Language for Programming High-Performance Servers

Brendan Burns Kevin Grimaldi

Alexander Kostadinov

Emery D. Berger

Department of Computer Science
University of Massachusetts Amherst
Ambherst, MA 01003

{bburns, kgrimald,akostadi,emery,mcorner

Abstract

}@cs.umass.edu

for “flow”). A Flux program describes two things: (1)

the flow of data from client requests through nodes, typ-
Programming high-performance server applications iSca|ly off-the-shelf C or C++ functions, and (2) mutual
challenging: it is both complicated and error-prone toexclusion requirements for these nodes, expressed as
write the concurrent code required to deliver high perfor-high-levelatomicity constraints Flux requires no other
mance and scalability. Server performance bottleneckg pical programming language constructs like variables
are difficult to |dent|fy and correct. Fina”y, it is difficult or |00p3 — a Flux program executes inside an |mp||c|t

to predict server performance prior to deployment.

infinite loop. The Flux compiler combines the C/C++

This paper presents Flux, a language that dramaticall¢omponents into a high performance server using just
simplifies the construction of scalable high-performancethe flow connectivity and atomicity constraints.

server applications. Flux lets programmers compose off-

the-shelf, sequential C or C++ functions into concurrent 1UX Captures a programming pattern common to

servers. Flux programs are type-checked and guara

rerver applications: concurrent executions, each based

teed to be deadlock-free. We have built a number ofon @ client request from the network and a subsequent

servers in Flux, including a web server with PHP sup-
port, an image-rendering server, a BitTorrent peer, an

a game server. These Flux servers match or exceed .

the performance of their counterparts written entirely
in C. By tracking hot paths through a running server,
Flux simplifies the identification of performance bottle-
necks. The Flux compiler also automatically generates
discrete event simulators that accurately predict actual
server performance under load and with different hard-
ware resources.

1 Introduction

Server applications need to provide high performance
while handling large numbers of simultaneous requests.
However, programming servers remains a daunting task.
Concurrency is required for high performance but in-
troduces errors like race conditions and deadlock that
are difficult to debug. The mingling of server logic
with low-level systems programming complicates de-
velopment and makes it difficult to understand and de-
bug server applications. Consequently, the resulting im-
plementations are often either lacking in performance,
buggy or both. Atthe same time, the interleaving of mul-
tiple threads of server logic makes it difficult to identify
performance bottlenecks or predict server performance
prior to deployment.

This paper introduce&lux, a domain-specific lan-

guage that addresses these problems in a declarative, e

flow-oriented language (Flux stems from the Latin word

response. This focus enables numerous advantages over
gonventional server programming:

Ease of use. Flux is a declarative, implicitly-
parallel coordination language that eliminates
the error-prone management of concurrency via
threads or locks. A typical Flux server requires just
tens of lines of code to combine off-the-shelf com-
ponents written in sequential C or C++ into a server
application.

Reuse. By design, Flux directly supports the in-
corporation of unmodified existing code. There is
no “Flux API” that a component must adhere to; as
long as components follow the standard UNIX con-
ventions, they can be incorporated unchanged. For
example, we were able to add PHP support to our
web server just by implementing a required PHP
interface layer.

Runtime independence.Because Flux is not tied

to any particular runtime model, it is possible to
deploy Flux programs on a wide variety of run-
time systems. Section 3 describes three runtimes
we have implemented: thread-based, thread pool,
and event-driven.

Correctness. Flux programs are type-checked to
ensure their compositions make sense. The atom-
icity constraints eliminate deadlock by enforcing a
canonical ordering for lock acquisitions.
Performance prediction. The Flux compiler op-
tionally outputs a discrete event simulator. As we

Mark D. Corner

source Listen = Image; N

Image = ReadRequest — CheckCache @ >

— Handler) :
— Write — Complete; w ; ¢
Handler [, _, hit] =;

Handler [, _, 1=

ReadInFromDisk '

— Compress
— StorelnCache;

Figure 1: An example Flux program and a dynamic view of its execution.

show in Section 5, this simulator accurately pre-control to the server running the Flux program. A sin-
dicts actual server performance. gle Flux program represents an unbounded number of
e Bottleneck analysis. Flux servers include light- separate concurrent flows: each request executes along a
weight instrumentation that identifies the most- separate flow through the Flux program, and eventually
frequently executed or most expensive paths in eoutputs results back to the client.
running Flux application. Notice that Flux programs are acyclic. The only loops
Our experience with Flux has been positive. We haveeXPosed in Flux are the implicit infinite loops in which
implemented a wide range of server applications in Flux:Source nodes execute, and the round-trips between the
aweb server with PHP Support' a BitTorrent peer, an imFlUX server and its clients. The lack of CyCIeS in Flux
age server, and a multi-player online game server. Thallows it to enforce deadlock-free concurrency control.
longest of these consists of fewer than 100 lines of codeWhile theoretically limiting expressiveness, we have
with the majority of the code devoted to type signatures.found cycles to be unnecessary for implementing in Flux
In every case, the performance of these Flux serverfe wide range of servers described in Section 4.
matches or exceeds that of their hand-written counter- The Flux language consists of a minimal set of fea-
parts. tures, includingconcrete nodeghat correspond to the
The remainder of this paper is organized as follows.C or C++ code implementing the server logahstract
Section 2 presents the semantics and syntax of the FluRodes that represent a flow through multiple nodes,
language. Section 3 describes the Flux compiler andredicate typesthat implement conditional data flow,
runtime Systems_ Section 4 presents our experimenerror handlers that deal with exceptiona| ConditionS,
tal methodology and compares the performance of Flux@ndatomicity constraints that control simultaneous ac-
servers to their hand-written counterparts. Section $€ss to shared state.
demonstrates the use of path profiling and discrete-event
simulation. Section 6 reports our experience using FluZ-1 ~ Concrete Nodes

to build several servers. Section 7 presents related workpne first step in designing a Flux program is describing
and Section 8 concludes with a discussion of plannedhe concrete nodethat correspond to C and C++ func-

future work. tions. Flux requires type signatures for each node. The
. name of each node is followed by the input arguments in
2 Language Description parentheses, followed by an arrow and the output argu-

To introduce Flux, we develop a sample application thatments. Functions implementing concrete nodes require
exercises most of Flux's features. This sample appli€ither one or two arguments. If the node is a source
cation is an image server that receives HTTP requestgode, then it requires only one argument: a pointer to a
for images that are stored in the PPM format and comstruct that the function fills in with its outputs. Simi-
presses them into JPEGs, using calls to an off-the-shelfrly, if the node is a sink node (without output), then its
JPEG library. Recently-compressed images are storedrgument is a pointer tostruct that holds the func-

in a cache managed with a least-frequently used (LFUJion’s inputs. Most concrete nodes have two arguments:
replacement policy. first input, then output.

Figure 1 presents an abbreviated listing of the image Figure 2 starts with the signatures for three of the
server code with a schematic view of its dynamic exe-concrete nodes in the image servéReadRequest
cution (see Figure 2 for a more detailed listing). Theparses clientinpuCompress compresses images, and
Listen node (a “source node”) executes in an infinite Write outputs the compressed image to the client.
loop, handling client requests and transferring data and While most concrete nodes both receive input data

/I concrete node signatures
Listen ()
=> (int socket);

ReadRequest (int socket)
=> (int socket, bool close,
image_tag *request);

CheckCache (int socket, bool close,

image_tag *request)
=> (int socket, bool close,
image_tag *request);

/I omitted for space:
1! ReadIlnFromDisk, StorelnCache

Compress (int socket, bool close,
image_tag *request,
__u8 =*rgb_data)
=> (int socket, bool close,
image_tag *request);

Write (int socket, bool close,
image_tag *request)

=> (int socket, bool close,
image_tag *request);

Complete (int socket, bool close,
image_tag *request) => ();

/I source node
source Listen => Image;

/I abstract node
Image = ReadRequest -> CheckCache
-> Handler -> Write -> Complete;

/I predicate type & dispatch
typedef hit TestinCache;

Handler:[, _, hit] = ;

Handler:[, _,] =
ReadInFromDisk -> Compress
-> StorelnCache;

/I error handler

handle error ReadInFromDisk => FourOhFor;

/I atomicity constraints

atomic CheckCache:{cache};
atomic StorelnCache:{cache},
atomic Complete:{cache};

Figure 2: An image compression server, written in Flux|

and produce outpusourcenodes only produce output to

initiate a data flow. The statement below indicates that

Listen isasource node, which Flux executes inside an
infinite loop. Whenevetisten receives a connection,
it transfers control to themage node.

/I source node
source Listen => Image;

2.2 Abstract Nodes

In Flux, concrete nodes can be composed to fatm
stract nodes These abstract nodes represent a flow of
data from concrete nodes to concrete nodes or other ab-
stract nodes. Arrows connect nodes, and Flux checks
to ensure that these connections make sense. The out-
put type of the node on the left side of the arrow must
match the input type of the node on the right side. For
example, the abstract nodimage in the image server
corresponds to a flow from client input that checks the
cache for the requested image, handles the result, writes
the output, and completes.

/I abstract node
Image = ReadRequest -> CheckCache
-> Handler -> Write -> Complete;

2.3 Predicate Types

A client request for an image may result in either a cache
hit or a cache miss. These need to be handled differ-
ently. Instead of exposing control flow directly, Flux lets
programmers use theredicate typeof a node’s output

to direct the flow of data to the appropriate subsequent
node. A predicate type is an arbitrary Boolean function
supplied by the Flux programmer that is applied to the
node’s output.

Using predicate types, a Flux programmer can express
multiple possible paths for data through the server. Pred-
icate type dispatch is processed in order of the tests in
the Flux program. Théypedef statement binds the
typehit to the Boolean functioifestinCache . The
nodeHandler below checks to see if its first argument
is of typehit ; in other words, it applies the function
TestinCache to the third argument. The underscores
are wildcards that match any typdandler does noth-
ing for a hit, but if there is a miss in the cache, the image
server fetches the PPM file, compresses it, and stores it
in the cache.

/I predicate type & dispatch
typedef hit TestinCache;

‘Handler:[_, _, hit] = ;

Handler:[, _,] =
ReadInFromDisk -> Compress
-> StorelnCache;

2.4 Error Handling nodes. In this way, programmers can specify that mul-

Any server must handle errors. Flux expects nodes tdiPlé nodes must be executed atomically. For exam-
follow the standard UNIX convention of returning error Pl€, the nodeHandler could also be annotated with
codes. Whenever a node returns a non-zero value, FIL&N atomicity constraint, which would span the execu-
checks if an error handler has been declared for the noddon of the patiReadinFromDisk ~ — Compress —
If none exists, the current data flow is simply terminated.StorelnCache . This freedom to apply atomicity con-

In the image server, if the function that reads an im-Straints presents some complications for deadlock-free
age from disk discovers that the image does not exist, it°Ck assignment, which we discuss in Section 3.1.1.
returns an error. We handle this error by directing the2_5_1 Scoped Constraints

flow to a nodeg-ourOhFour that outputs a 404 page:
While flows generally represent independent clients, in

IIerrorhandler some server applications, multiple flows may constitute

handle error ReadInFromDisk => FourOhFour;

a singlesessionFor example, a file transfer to one client
o) may take the form of multiple simultaneous flows. In
2.5 Atomicity Constraints this case, the state of the session (such as the status of

All flows through the image server access a single shareffansferred chunks) only needs to be protected from con-
image cache. Access to this shared resource must H&!l'rent access in that session.
controlled to ensure that two different data flows do not !N addition to program-wide constraintshat apply
interfere with each other’s operation. across the entire server (the default), Flux suppoets

The Flux programmer specifies suatomicity con- session constraintshat apply only to particular ses-
straints in Flux rather than inside the component im- Sions. Using session-scoped atomicity constraints in-
plementation. The programmer specifies atomicity conréases concurrency by eliminating contention across
straints by using arbitrary symbolic names. These conSessions. Sessions are implemented as hash functions on
straints can be thought of as locks, although this is nothe output of each source node. The Flux programmer
necessarily how they are implemented. A node only rundmplements a session id function that takes thg source
when it has “acquired” all of the constraints. This acqui-"0de’s output as its parameter and returns a unique ses-
sition follows a two-phase locking protocol: the node ac-Sion identifier, and then addsession) to a con-
quires (“locks”) all of the constraints in order, executes Straint name to indicate that it applies only per-session.
the node, and then releases them in reverse order. . .

Atomicity constraints can be specified as eithesad- 2.5.2 Discussion
ersor writers. Using these constraints allows multiple Specifying atomicity constraints in Flux rather than
readers to execute a node at the same time, supponglacing locking operations inside implementation code
ing greater efficiency when most nodes read shared dafaas a number of advantages, beyond the fact that it al-
rather than update it. Reader constraints have a questid@ws the use of libraries whose source code is unavail-
mark appended to them (“?”). Although constraints areable.
considered writers by default, a programmer can append Safety. The Flux compiler imposes a canonical order-
an exclamation point (“1") for added documentation. ing on atomicity constraints (see Section 3.1.1). Com-

In the image server, the image compression cach&ined with the fact that Flux flows are acyclic, this or-
can be updated by three nodesheckCache , which dering prevents cycles from appearing in its lock graph.
increments a reference count to the cached itemPrograms that use Flux-level atomicity constraints ex-
StorelnCache , which writes a new item into the clusively (i.e., that do not themselves contain locking
cache, evicting the least-frequently used item with a zer@perations) are thus guaranteed to not deadlock.
reference count, andomplete , which decrements the Efficiency. Exposing atomicity constraints also en-
cached image’s reference count. Only one instance ofbles the Flux compiler to generate more efficient code
each node may safely execute at a time; since all of therfor particular environments. For example, while a multi-
modify the cache, we label them with the same writerthreaded runtime require locks, a single-threaded event-

constraint ¢ache). driven runtime does not. The Flux compiler generates
— : locks or other mutual exclusion operations only when
/I atomicity constraints
.)] needed.
atomic CheckCache:{cache}; lari lecti inall - .
atomic ~ StorelnCache:{cache}: Granularity se ecuo_n. I_:ma Y, atom|C|ty constramts_
atomic Complete:{cache}: let programmers easily find the appropriate granularity

of locking — they can apply fine-grained constraints to
Note that programmers can apply atomicity con-individual concrete nodes or coarse-grained constraints
straints not only to concrete nodes but also to abstradib abstract nodes that comprise many concrete nodes.

However, even when deadlock-freedom is guaranteeduntimes, described below. In addition to the runtime-
grain selection can be difficult: too coarse a grain resultspecific intermediate code, the Flux compiler generates
in contention, while too fine a grain can impose exces-a Makefile and stubs for all of the functions that provide
sive locking overhead. As we describe in Section 5.1the server logic. These stubs ensure that the program-
Flux can generate a discrete event simulator for the Fluxner uses the appropriate signatures for these methods.
program. This simulator can let a developer measure th&/hen appropriate, the code generator outputs locks cor-
effect of different granularity decisions and identify the responding to the atomicity constraints.

appropriate locking granularity before actual server de- o
ployment. 3.1.1 Avoiding Deadlock

. . The Flux compiler generates locks in a canonical order.
3 Compiler and Runtime Systems Our current implementation sorts them alphabetically by
A Flux program is transformed into a working server by name. In other words, a node that lyas as its atom-

a multi-stage process. The compiler first reads in thdcity constraints actually first acquires theny.

Flux source and constructs a representation of the pro- When applied only to concrete nodes, this approach
gram graph. It then processes the internal representatiogtraightforwardly combines with Flux’s acyclic graphs
to type-check the program. Once the code has been verio eliminate deadlock. However, when abstract nodes
fied, the runtime code generator processes the graph arflso require constraints, the constraints may become
outputs C code thatimplements the server’s data flow fohested and preventing deadlock becomes more compli-
a specific runtime. Finally, this code is linked with the cated. Nesting could itself cause deadlock by acquiring

implementation of the server logic into an operationalconstraints in non-canonical order. Consider the follow-
server. We first describe the compilation process in deing Flux program fragment:

tail. We then describe the three runtime systems that
Flux currently supports. A = B;

C = D;
3.1 The Flux Compiler _
The Flux compiler is a three-pass compiler implementeazgm:g gj g’i
in Java, and uses the JLex lexer [5] in conjunction with 0. . {y}’.
the CUP LALR parser generator [3]. atomic D: {x}:

The first pass parses the Flux program text and builds

a graph-based internal representation. During this pass, |n this example, a flow passing througtfwhich then

the compiler links nodes referenced in the program'sinyokesB) locksx and thery. However, a flow through

an edge corresponding to each conditional flow. graph.

The second pass decorates edges with types, CONnectsty prevent deadlock, the Flux compiler detects such
error handlers to their respective nodes, and verifies thadiyations and moves up the atomicity constraints in the
the program is correct. First, each node mentioned inyrogram, forcing earlier lock acquisition. For each ab-
a data flow is labelled with its input and output types. sract node with atomicity constraints, the Flux compiler
Each predicate type used by a conditional node is assqsomputes a constraint list comprising the atomicity con-
ciated with its user-supplied predicate function. Finally, straints the node transitively requires, in execution or-
the error handlers and atomicity constraints are attacheger This list can easily be computed via a depth-first
to each node. If any of the referenced nodes or prediyayersal of the relevant part of the program graph. If
cate types are undefined, the compiler signals an errog constraint list is out of order, then the first constraint
and exits. Otherwise, the program graph is completely,cquired in a non-canonical order is added to the par-
instantiated. The final step of program graph construcep of the node that requires the constraint. This process
tion checks that the output types of each node match thgspeats until no out-of-order constraint lists remain.
inputs of the nodes that th_ey are connepted to. If all type For the above example, Flux will discover that node
tests pass, then the compiler has a valid program graphe has an out-of-order sequengg k). It then adds con-

_ The third pass generates the intermediate code thagaintx to nodeC. The algorithm then terminates with
implements the data flow of the server. Flux supportsi,q following set of constraints:

generating code for arbitrary runtime systems. The com-

piler defines an object-oriented interface for code generatomic A: {x};

ation. New runtimes can easily be plugged into the Fluxatomic B: {y};

compiler by implementing this code generator interfacgatomic C: {x,y};
The current Flux compiler supports several differentatomic D: {x};

Flux locks are reentrant, so multiple lock acquisitionsthe event-based runtime receives a signal that the call
do not present any problems. However, reader and writehas completed, the event is reactivated and re-queued
locks require special treatment. After computing all con-for completion. Because the mainstream Linux kernel
straint lists, the compiler performs a second pass to findloes not currently support callback-driven asynchronous
any instances when a lock is acquired at least once asl&O, the current Flux event-based runtime uses a separate
reader and a writer. If it finds such a case, Flux changeshread to simulate callbacks for asynchronous /O using
the first acquisition of the lock to a writer if it is not one theselect function. A programmer is thus free to use
already. Reacquiring a constraint as a reader while possynchronous 1/O primitives without interfering with the
sessing it as a writer is allowed because it does not causeperation of the event-based runtime.
the flow to give up the writer lock. .

Because early lock acquisition can reduce concur-g"z'3 Other Languages and Runtimes
rency, whenever the Flux compiler discovers and re-Each of these runtimes was implemented in the C us-
solves potential deadlocks as described above, it geneing POSIX threads and locks. Flux can also generate

ates a warning message. code for different programming languages. We have
) also implemented a prototype that targets Java, using
3.2 Runtime Systems both SEDA [25] and a custom runtime implementation,

The current Flux compiler supports three different run-though we do not evaluate the Java systems here.
time systems: one thread per connection, a thread-pool In addition to these runtimes, we have implemented

system, and an event-driven runtime. a code generator that transforms a Flux program graph
) into code for the discrete event simulator CSIM [18].
3.2.1 Thread-based Runtimes This simulator can predict the performance of the server

In the thread-based runtimes, each request handled Bynder varying conditions, even prior to the implementa-
the server is dispatched to a thread function that handleon of the core server logic. Section 5.1 describes this
all possible paths through the server’s data flows. In théorocess in greater detail.
one-to-one thread server, a thread is created for every))
different data flow. In the thread-pool runtime, a fixed # Experimental Evaluation
number of threads are allocated to service data flows. Ifo demonstrate its effectiveness for building high-
all threads are occupied when a new data flow is creategherformance server applications, we implemented a
the data flow is queued and handled in first-in first-outnumber of servers in Flux. We summarize these in Ta-
order. ble 1. We chose these servers specifically to span the
. . space of possible server applications. Most server appli-
3.2.2 Event-driven Runtime cations can be broadly classified into one of the follow-
Event-driven systems can provide robust performancéng categories, based on how they interact with clients:
with lower space overhead than thread-based sysrequest-response client/server, “heartbeat” client/server
tems [25]. In the event-driven runtime, every input to and peer-to-peer.
a functional node is treated as an event. Each event We implemented a server in Flux for each of these cat-
is placed into a queue and handled in turn by a singleegories and compared its performance under load with
thread. Additionally, each source node (a node with ncexisting hand-tuned server applications written in con-
input) is repeatedly added to the queue to originate eaclientional programming languages. The Flux servers
new data flow. The transformation of input to output by arely on single-threaded C and C++ code that we either
node generates a new event corresponding to the outpbbrrowed from existing implementations or wrote our-
data propagated to the subsequent node. selves. The most significant inclusions of existing code
The implementation of the event-based runtime iswere in the web server, which uses the PHP interpreter,
complicated by the fact that node implementations mayand in the image server, which relies on calls to the
perform blocking function calls. If blocking function libjpeg library to compress JPEG images.
calls likeread andwrite were allowed to run unmod-
ified, the operation of the entire server would block until 4.1 Methodology
the function returned. We evaluate all server applications by measuring their
Instead, the event-based runtime intercepts all calls téhroughput and latency in response to realistic work-
blocking functions using a handler that is pre-loaded vialoads.
the LD_.PRELOADenvironment variable. This handler All testing was performed with a server and client ma-
captures the state of the node at the blocking call anathine, both running Linux version 2.4.20. The server
moves to the next event in the queue. The formerly-machine was a Pentium 4 (2.4Ghz, 1GB RAM), con-
blocking call is then executed asynchronously. Whennected via gigabit Ethernet on a dedicated switched

Server Style Description Lines of Flux code | Lines of C/C++ code

Web server | request-responsg a basic HTTP/1.1 server with PHP 36 386 (+ PHP)

Image servel request-responsgimage compression server 23 551 (+libjpeg)

BitTorrent peer-to-peer a file-sharing server 84 878

Game server| heartbeat multiplayer game of “Tag” 54 257
client-server

Table 1: Servers implemented using Flux, described in Section 4.

network to the client machine, a Xeon-based machineserver generated by Flux has significantly worse perfor-
(2.4Ghz, 1GB RAM). All server and client applications mance due to the overhead of creating and destroying
were compiled using GCC version 3.2.2. During testing,threads.

both machines were running in multi-user mode with The results for the event-based server highlight one
only standard services running. All results are for a rundrawback of running on a system without true asyn-

of two minutes, ignoring the first twenty seconds to al- chronous 1/0. With small numbers of clients, the event-

low the cache to warm up. based server suffers from increased latency that initially
) decreases and then follows the behavior of the other
4.2 Request-Response: Web Server servers. This hiccup is an artifact of the interaction

Request-response based client/server applications aRetween the webservers implementation and the event-
among the most common examp'es of network Serverﬁriven runtime, which must simulate asynchronous 1/0.
This style of server includes most major Internet proto- The first node in the webserver uses #iaéect func-

cols including FTP, SMTP, POP, IMAP and HTTP. As tion with a timeout to wait for network activity. In the
an example of this application class, we implemented @bsence of other network activity, this node will block
web server in Flux. The Flux web server implementsfor a relatively long period of time. Because the event-
the HTTP/1.1 protocol and can serve both static and dybased runtime only reactivates nodes that make blocking
namic PHP web pages. I/O calls after the completion of the currently-operating

We implemented a benchmark to load test the Fluxnode, in the absence of other network activity, the call
webserver that is similar to SPECweb99 [21]. Thel0 select imposes a minimum latency on all block-
benchmark simulates a number of clients requesting filed'd I/O- As the number of clients increases, there is suf-
from the server. Each simulated client sends five reficient network activity thaselect —never reaches its
quests over a single HTTP/1.1 TCP connection usingtime‘?Ut and frozen nodes are reactivated at the appropri-
keep-alives. When one file is retrieved, the next file@t€ time. In the absence of true asynchronous 1/O, the
is immediately requested. After the five files are re-Only solution to this problem would be to decrease the
trieved, the client disconnects and reconnects over a nefjmeout call toselect , which would increase the CPU
TCP connection. The files requested by each simulatelS29€ of an otherwise idle server.
client follow the static portion of the SPECweb bench- . D
mark and each file is selected using the Zipf distriby-4-3 Peer-to-Peer: BitTorrent
tion. The working set for this benchmark is approxi- Peer-to-peer applications act as both a server and a
mately 32MB, which fits into RAM, so this benchmark client. Unlike a request-response server, they both re-
primarily stresses CPU performance. ceive and initiate requests.

We compare the performance of the Flux webserver We implemented a BitTorrent server in Flux as a rep-
against the latest versions of thkeotwebserver distrib- resentative peer-to-peer application. BitTorrent uses a
uted with Capriccio [24] and thdaboobwebserver dis- scatter-gather protocol for file sharing. BitTorrent peers
tributed with the SEDA runtime system [25]. Figure 3 exchange pieces of a shared file until all participants
presents the throughput and latency for a range of sihave a complete copy. Network load is balanced by ran-
multaneous clients. These graphs represent the averagemly requesting different pieces of the file from differ-
of five different runs for each number of clients. ent peers.

The results show that the Flux web server provides To facilitate benchmarking, we changed the behavior
comparable performance to the fastest websekrei), of both of the BitTorrent peers we test here (the Flux ver-
regardless of whether the event-based or thread-baseibn and CTorrent). First, all client peers amechoked
runtime is used. All three of these servers (knot, flux-by default. Choking is an internal BitTorrent state that
threadpool and flux-event-based) significantly outper-blocks certain clients from downloading data. This pro-
form Habooh the event-based server distributed with tocol restriction prevents real-world servers from being
SEDA. As expected, the & one-thread, one-client overwhelmed by too many client requests. We also allow

700 100
g — e o . il -
= 600 H========———= 90 - Capriccio Py
3 —— Capriccio 80 - -SEDA
S 500 1 -+--SEDA — @ 70 | —=—Flux, Event —
= —=—Flux, Event £ —+—Flux, Thread Pool -
+ 400 - ——Flux, Thread Pool ——— = 6o —e—Flux, Pure Threaded -
g_ —e—Flux, Pure Threaded 3‘ 50 ux, Fure Threade -
< 1 s -
o 3°° @ 40 1 0
S w ~
O 200 A 8 301 ~ ———4
= 20 ~ « ——
F 100 A 4 /A///
10 >
° o
) 50 100 150 200 o 50 100 150 200

Simultaneous Clients

Simultaneous Clients

Figure 3: Comparison of Flux web servers with other high-performance implementations (see Section 4.2).

800 T —— -
o - R 35
700 1 ——Ctorrent A
0 6 - o= Ctorrent 30 77 —=—Flux, Event
g boo ——Flux, Event -]
-En] —— Fqu: Thread Pool & 25 +— —* Flux, Thread Pool
bt 500 —eFlux, Pure Threaded | é 20 —e— Flux, Pure Threaded
=]
Q. 400 - Z
< a:) 15
? 300 - £
e - 10
£ 200 -
(=
100 - 5
o (o] T T T T
o 50 100 150 200 o 50 100 150 200

Simultaneous Clients

Simultaneous Clients

Figure 4. Comparison of Flux BitTorrent servers with CTorrent (see Section 4.3).

an unlimited number of unchoked client peers to operatenetwork utilization (thus saturating the network), and
simultaneously, while the real BitTorrent server only un- both the CTorrent and Flux implementations achieve this
chokes clients who upload content. goal. However, prior to saturating the network, all of the
We are unaware Of any existing BitTorrent bench_ Flux servers perfOI’m Sl|ght|y worse than the CTorrent
marks, so we developed our own. Our BitTorrent bench-server. We are investigating the cause of this small per-
mark mimics the traffic encountered by a busy BitTor- formance gap.
rent peer and stresses server performance. It simulate
a series of clients continuously sending requests for ranéﬁ4 Heartbeat
domly distributed pieces of a 54MB test file to a Bit- Server

Torrent peer with a complete copy of the file. When aynlike request-response client/server applications and
peer finishes downloading a piece of the file, it imme-most peer-to-peer applications, certain server applica-
diately requests another random piece of the file fromjons are subject to deadlines. An example of such a
those still missing. Once a client has obtained the entirgeryer is an online multi-player game. In these applica-
ﬁle, it disconnects. This benchmark does not Simulatqior]s’ the server maintains the shared state of the game
the “scatter-gather” nature of the BitTorrent protocol; in- ang distributes this state to all of the players at “heart-
stead, all requests go to a single peer. Using single peefseat” intervals. There are two important conditions that
has the effect of maximizing load, since obtaining datamyst be met by this communication: the state possessed
from a different source would lessen the load on the peepy a| clients must be the same at each instant in time,
being tested. and the inter-arrival time between states can not be too

Figure 4 compares the latency, throughput in comple-great. If either of these conditions is violated, the game
tions per second and network throughput to CTorrentwill be unplayable or susceptible to cheating. These re-
an implementation of the BitTorrent protocol written in quirements place an important delay-sensitive constraint
C. The goal of any BitTorrent system is to maximize on the server’s performance.

Client-Server: Game

We have implemented an online multi-player game ofvoid Image (){
Tag in Flux. The Flux game server enforces the rules rw_write_lock(lock);
of Tag. Players can not move beyond the boundaries pf processor->reserve();
the game world. When a player is tagged by the player hold(exponential(CMP_TIME_CPU_IMAGE));
who is “it”, that player becomes the new “it’ and is tele-| ~ Processor->release();
ported to a new random location on the board. All com- DNEV;.“tetﬁznlr?grt(lol\(l:lg()j;e
munication between clients and server occurs over UDP ,
. ReadRequest();
at 10Hz, a rate comparable to other real-world online
games. While simple, this game has all of the impor=
tant characteristics of servers for first person shooter or
real-time strategy games. Figure 5: Compiler-generated discrete-event simulation
Benchmarking the gameserver is significantly differ- code for a Flux node.
ent than load-testing either the webserver or BitTorrent
peer. Throughput is not a consideration since only smalmodels the performance of the server. The implementa-
pieces of data are transmitted. The primary concern ision language for the simulator is CSim [18], a C-based,
the latency of the server as the number of clients in-process-oriented simulator.
creases. The server must receive every player's move, In the simulator, CPUs are modeled as resources that
compute the new game state, and broadcast it within @ach Flux node acquires for a given amount of time.
fixed window of time. The simulator can either use observed parameters from a
To load-test the game server, we measured the effe¢uinning system (per-node execution times, source node
of increasing the number of players. The performancenter-arrival times, and observed branching probabili-
of the gameserver is largely based upon the length ofies), or the Flux programmer can supply estimates for
time it takes the server to update the game state given ththese parameters. The simulator can model an arbi-
moves received from all of the players, and this compu+rary number of processors by increasing the number
tation time is identical across the servers. The latency obf nodes that may simultaneously acquire the CPU re-
the gameserver is largely a product of the rate of gam&ource. When a node uses a given atomicity constraint,
turns, which stays constant at 10Hz. We found no appreit treats it as a lock and acquires it for the duration of the
ciable differences between a traditional implementatiomode’s execution. While the simulator accurately mod-
of the gameserver and the various Flux versions. Thesels both reader and writer constraints, it conservatively
results show that Flux is capable of producing a servetreats session-level constraints as globals.
with sufficient performance for multi-player online gam- The code in Figure 5 is a simplified version of the

=

—

Ing. CSim code that Flux generates. Here, the nivdage
has a writer lock associated with it. Once CSim sched-
5 Performance ules this node onto a CPU, it models its execution time

In addition to its programming language support for using an exponential distribution based on the observed
writing server applications, Flux provides support for CPU time collected from a profiling run. Finally, this
predicting and measuring the performance of server aprode unlocks its reader-writer lock and executes the next
plications. The Flux system can generdigcrete-event ~ node in the flow.

simulators that predict server performance for synthetic It is important to note that this simulation does not
workloads and on different hardware. It can also per-model disk or network resources. While this is a realis-
form path profiling to identify server performance bot- tic assumption for CPU-bound servers (such as dynamic

tlenecks on a deployed system. web-servers), other servers may require more complete
. modeling.
5.1 Performance Prediction To demonstrate that the generated simulations accu-

Predicting the performance of a server prior to deploy-rately predict actual performance, we tested the image
ment is important but often difficult. For example, per- server described in Section 2. To simulate load on the
formance bottlenecks due to contention may not appeamnachine, we made requests at increasingly small inter-
during testing because the load placed on the system irrival times. The image server had 5 images, and our
insufficient. In addition, system testing on a small-scaleload tester randomly requests one of eight sizes (be-
system may not reveal problems that arise when the sysween 1/8th scale and full-size) of a randomly-chosen
tem is deployed on an enterprise-scale multiprocessor. image. When configured to run with “clients”, the

In addition to generating executable server code, thdoad tester issues requests at a rate of one avergec-
Flux code generator can automatically transform a Fluxonds. The image server is CPU-bound, with each image
program directly into a discrete-event simulator thattaking on average 0.5 seconds to compress.

We first measured the performance of this server on ™7 "
a 16-processor SunFire 6800, but with only a single 160 {——Actual, 16 cpus

- T -Predicted, 8 CPUs

CPU enabled. We then used the observed node runtime | | o-acwal, s ceus P S
: : - O -Predicted, 4 CPU A .
and branching probabilities to parameterize the gener- . | o ncmacrs el
ated CSIM simulator. We compare the predicted and ac-< O Predicted, 2 CPUs /
a ctual, 2 H /-

tual performance of the server by making more proces- § 100 - a -predicted, 1 cru
sors available to the system. As Figure 6 shows, the2 g | Aty
predicted results (dotted lines) and actual results (solid§
lines) match closely, demonstrating the effectiveness of

the simulator at predicting performance. 40

20 A N N N Ny N N

5.2 Path Profiling A

The Flux compiler optionally instruments generated ° 50 100 150 200 250
. . . - . Simultaneous Clients
servers to simplify the identification of performance bot-

tienecks. This profiling information takes the form of rigyre 6: Predicted performance of the image server (de-
hot paths”, the most frequent or most time-consumingyjyeq from a single-processor run) versus observed per-

paths in the server. Flux identifies these hot paths Ustormance for varying numbers of processors and load.
ing the Ball-Larus path profiling algorithm [4]. Because

Flux graphs are acyclic, the Ball-Larus algorithm iden-

tifies each unique path through the server’s data-flonpath). Since this path accounts for 13% of BitTorrent’s

graph. execution time, it is a reasonable candidate for optimiza-
Hot paths not only aid understanding of server per-tion efforts.

formance characteristics but also identify places where

pptimizqtion would be mqst effective. Becausg profiling 6 Developer Experience

information can be obtained from an operating server

and is linked directly to paths in the program graph, aj, this section, we examine the experience of program-
performance analyst can easily understand the perforyers implementing Flux applications. In particular, we

mance characteristics of deployed servers. focus on the implementation of the Flux BitTorrent peer.

The overhead of path profiling is low enough that hot The Flux BitT ¢ impl ted by t
path information can be maintained even in a production € rux Bitiorrentpeerwas impiemented by two un-
ergraduate students in less than one week. The students

server. Profiling adds just one arithmetic operation ancg . . .
g J P egan with no knowledge of the technical details of the

two high-resolution timer calls to each node. A perfor- T t protocol or the Flux | The desi f
mance analyst can obtain path profiles from a runnin itiorrent protocol orhe Flux language. the design o
he Flux program for the BitTorrent peer was entirely

Flux server by connecting to a dedicated socket. o . .
To demonstrate the use of path profiling, we Compiledthe|r original work. The implementation of the func-
' tional nodes in BitTorrent is loosely derived from the

a version of the BitTorrent peer with profiling enable_:d. CTorrent source code. The program graph for the Bit
For the experiments, we used a patched version of I"nuxl'orrent server is shown in Figure 7 at the end of this

that supports per-thread time gathering. The BitTorrent
! . document.
peer was load-tested with the same tester as in the per- -]
formance experiments. For profiling, we used loads of The students had a generally positive reaction to pro-
25, 50, and 100 clients. All profiling information was gramming in Flux. Primarily, they felt that organizing
automatically generated from a running Flux server. the application into a Flux program graph prior to im-
In BitTorrent, the most time-consuming path identi- Plementation helped modularize their application design

fied by Flux was, unsurprisingly, the file transfer path @nd debug server data flow prior to programming. They
(Listen — GetClients — SelectSockets —» aiso found that the exposure of atomicity constraints at

CheckSockets — Message — ReadMessage — the Flux language level allowed for easy identification
HandleMessage — Request — MessageDone of the appropriate locations for mutual exclusion. Flux’s

0.295 ms). However, the second most expensive pat'Hnmunit_y to.deadlock and.the simplicity_ofthe atomicity
was the path that finds no outstanding chunk request§onstraints [ncreased their confidence in the correctness
(Listen — GetClients — SelectSockets — of the resulting server.

CheckSockets — ERROR, 0.016ms). While this path Though this is only anecdotal evidence, this ex-
is relatively cheap compared to the file transfer path, itperience suggests that programmers can quickly gain
also turns out to be the most frequently executed patlenough expertise in Flux to build reasonably complex
(780,510 times, compared to 313,994 for the file transfesserver applications.

7 Related Work not possible in Click and Knit because they permit cyclic

This section discusses related work to Flux in the arProgram graphs. _
eas of coordination and data flow languages, program- Runtime systems Researchers have proposed a wide

ming language constructs, domain-specific Ianguageé’,ariety of runtime systems for high-concurrency appli-
and runtime systems. cations, including SEDA [25], Hood [1, 6], Capric-

Coordination and data flow languages.Flux is an €0 [24], Fibers [2], cohort scheduling [15], and liba-
example of acoordination languagél1] that combines ~ SYN¢/mp [26], whose per-callbadiolors could be used
existing code into a larger program in a data flow setlo implement Flux's atomicity constraints. Users of

ting. There have been numerous data flow language'€S€ runtimes are forced to implement a server using
proposed in the literature, see Johnston et al. for a red Particular API. Once implemented, the server logic is

cent survey [13]. Data flow languages generally opergenerallyinextricab_ly linked to the runtime. I__%y contras_t,
ate at the level of fundamental operations rather tharf!UX Programs are independent of any particular choice
at a functional granularity. One exception is CODE 2, Of runtime system, so advanced runtime systems can be
which permits incorporation of sequential code into alntegrated directly into Flux's code generation pass.

dynamic flow graph, but restricts shared state to a spe;

ci};I node type%?,%]. Data flow languages also typicall?y8 Future Work

prohibit global state. For example, languages that sup¥e plan to build on this work in several directions. First,

portstreamingapplications like Streamlt [22] express all we are actively porting Flux to other architectures, espe-

data dependencies in the data flow graph. Flux departsially multicore systems. We are also planning to extend

from these languages by supporting safe access to glob&lux to operate on clusters. Because concurrency con-

state via atomicity constraints. Most importantly, thesestraints identify nodes that share state, we plan to use

languages focus on extracting parallelism from individ-these constraints to guide the placement of nodes across

ual programs, while Flux describes parallelism acrossa cluster to minimize communication.

multiple clients or event streams. To gain more experience with Flux, we are adding
Programming language constructs. Flux shares further functionality to the web server. In particular,

certain linguistic concepts with previous and currentwe plan to build an Apache compatibility layer so we

work in other programming languages. Flux’s predicatecan easily incorporate Apache modules. We also plan to

matching syntax is deliberately based on the patternenhance the simulator framework to support per-session

matching syntax used by functional languages like ML,constraints.

Miranda, and Haskell [12, 19, 23]. The PADS data The entire Flux system is available for download at

description language also allows programmers to spediux.cs.umass.edu via the Flux-based BitTorrent

ify predicate types, although these must be written inand web servers described in this paper.

PADS itself rather than in an external language like

C [9]. Flanagan and Freund present a type inferenc® Acknowledgments

system that computes “atomicity co’nstraints” for Javarhe authors thank Gene Novark for helping to design the
programs that correspond to Lipton’s theory of reduc-gjscrete event simulation generator, and Vitaliy Lvin for

tion [10, 16]; Flux's atomicity constraints operate at aassisting in experimental setup and data gathering.
higher level of abstraction. The Autolocker tool [17], de- +his material is based upon work supported by the

veloped independently and concurrently with this work, \jational Science Foundation under CAREER Awards
automatically assigns locks in a deadlock-free mannegNs-0347339 and CNS-0447877. Any opinions, find-
to manually-annotated C programs. It shares FIux's enj, s and conclusions or recommendations expressed in
forcement of an acyclic locking order and its use of tWo- s material are those of the author(s) and do not neces-

phase lock ach|§|t|on a_n_d release. . sarily reflect the views of the National Science Founda-
Related domain-specific languagesSeveral previ- o,

ous domain-specific languages allow the integration of
off-the-shelf code into data flow graphs, though for dif- References
ferent domains. The Click modular router is a domain-
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe.

specific language for building network routers out of ex- The data locality of K i IBPAA 00:

isting C components [14]. Knit is a domain-specific lan- N a;q ocaflt);lo Wc?;th stea Inlg. "

guage for building operating systems, with rich support Proceedings o t_ e twe annua ACM symposium
on Parallel algorithms and architecturepages 1—

for integrating code implementing COM interfaces [20]. 12 New York. NY. USA. 2000. ACM P
In addition to its linguistic and tool support for pro- » New YOrK, Y, ' ' ress.

gramming server applications, Flux ensures deadlock-[2] A. Adya, J. Howell, M. Theimer, W. J. Bolosky,
freedom by enforcing a canonical lock ordering; this is and J. R. Douceur. Cooperative task management

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

without manual stack managementRAroceedings
of the General Track: 2002 USENIX Annual Tech-
nical Conferencepages 289-302, Berkeley, CA,
USA, 2002. USENIX Association.

A. W. Appel, F. Flannery, and S. E. Hud-
son. CUP parser generator for Java.
http://www.cs.princeton.edu/
~appel/modern/java/CUP/

T. Ball and J. R. Larus. Optimally profiling and
tracing programsACM Transactions on Program-
ming Languages and Systenis®(4):1319-1360,
July 1994.

E. Berk and C. S. Ananian. JlLex:
ical analyzer generator for Java. http:
[iwww.cs.princeton.edu/ ~appel/
modern/java/JLex/

R. D. Blumofe and D. Papadopoulos. The per-
formance of work stealing in multiprogrammed
environments (extended abstract). BGMET-

RICS '98/PERFORMANCE '98: Proceedings of [18]

the 1998 ACM SIGMETRICS joint international
conference on Measurement and modeling of com;
puter systemspages 266-267, New York, NY,
USA, 1998. ACM Press.

J. C. Browne, M. Azam, and S. Sobeck. CODE:
A unified approach to parallel programmin&EE
Software 6(4):10-18, 1989.

J. C. Browne, E. D. Berger, and A. Dube. Com-
positional development of performance models
in POEMS. The International Journal of High
Performance Computing Application4(4):283—
291, Winter 2000.

K. Fisher and R. Gruber. PADS: a domain-specific [22]

language for processing ad hoc data. RhDI
'05: Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming Language Design and
Implementation pages 295-304, New York, NY,
USA, 2005. ACM Press.

C. Flanagan, S. N. Freund, and M. Lifshin. Type
inference for atomicity. ITLDI '05: Proceedings

of the 2005 ACM SIGPLAN international work-
shop on Types in languages design and implemen;,
tation, pages 47-58, New York, NY, USA, 2005.
ACM Press.

D. Gelernter and N. Carriero. Coordination lan-
guages and their significanceCommun. ACM
35(2):96, 1992.

P. Hudak. Conception, evolution, and application[25]

of functional programming languageACM Com-
put. Sury, 21(3):359-411, 1989.

[14]

[15]

A lex- [16]

[17]

[19]

[20]

[21]

(23]

[24]

[13] W. M. Johnston, J. R. P. Hanna, and R. J. Mil-

lar. Advances in dataflow programming languages.
ACM Comput. Sury36(1):1-34, 2004.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The Click modular routehCM
Transactions on Computer Systeni3(3):263—
297, August 2000.

J. R. Larus and M. Parkes. Using cohort-
scheduling to enhance server performancd2rin
ceedings of the General Track: 2002 USENIX An-
nual Technical Conferen¢cpages 103-114, Berke-
ley, CA, USA, 2002. USENIX Association.

R. J. Lipton. Reduction: a method of proving
properties of parallel programsCommun. ACM
18(12):717-721, 1975.

B. McCloskey, F. Zhou, D. Gay, and E. Brewer.
Autolocker: synchronization inference for atomic
sections. In J. G. Morrisett and S. L. P. Jones, edi-
tors,POPL, pages 346-358. ACM, Jan. 2006.

Mesquite Software. The CSIM Simulatdrttp:
/lIwww.mesquite.com

R. Milner. A proposal for standard ml. LtFP '84:
Proceedings of the 1984 ACM Symposium on LISP
and functional programmingages 184-197, New
York, NY, USA, 1984. ACM Press.

A. Reid, M. Flatt, L. Stoller, J. Lepreau, and
E. Eide. Knit: Component composition for systems
software. InProceedings of the 4th ACM Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI) pages 347-360, Oct. 2000.

Standard Performance Evaluation Corporation.
SPECweb99http://www.spec.org/osg/webQ9/

W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamlt: A language for streaming applications.
In International Conference on Compiler Con-
struction Grenoble, France, Apr. 2002.

D. A. Turner. Miranda: a non-strict functional
language with polymorphic types. IRroc. of a
conference on Functional programming languages
and computer architecturpages 1-16, New York,
NY, USA, 1985. Springer-Verlag New York, Inc.

R. von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. Brewer. Capriccio: scalable threads for in-
ternet services. II8OSP '03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles pages 268-281, New York, NY, USA,
2003. ACM Press.

M. Welsh, D. Culler, and E. Brewer. SEDA: an
architecture for well-conditioned, scalable inter-
net services. INSOSP '01: Proceedings of the

eighteenth ACM symposium on Operating systems
principles pages 230-243, New York, NY, USA,
2001. ACM Press.

[26] N. Zeldovich, A. Yip, F. Dabek, R. Morris,
D. Mazieres, and F. Kaashoek. Multiprocessor sup-
port for event-driven programs. IRroceedings
of the 2003 USENIX Annual Technical Conference
(USENIX '03) San Antonio, Texas, June 2003.

SendKeepAlives

UpdateChokeL ist

PickChoked

4
4
GetTrackerResponse

** bitfield,*,*

@ *,* ,choke,* * *¥request,*,* *,*,uninterested,*,*
* * unchoke,*,*
* * piececomplete Choke *,* interested,* ,*
()

Bitfield

SendHave

SendUninterested

[nter@

SendRequest

MessageDone

Figure 7: The Flux program graph for the example BitTorrent server.

