
Working Sets, Cache Sizes, and Node Granularity Issues
for Large-scale Multiprocessors

Edward Rothberg Jaswinder Pal Smgh and Anoop Gupta

Intel Supercomputer Systems Division
14924 N.W. Greenbrier Parkway

Beaverton, OR 97006

Abstract

The distribution of resources among processors, memory and
caches is a crucial question faced by designers of large-scale
parallel machines. If a machine is to solve problems with a
certain data set size, should it be built with a large number of
processors each with a small amount of memory, or a smaller
number of processors each with a large amount of memory?
How much cache memory should be provided per processor for
cost-effectiveness? And how do these decisions change as larger
problems are NII on larger machines?

In this paper, we explore the above questions based on the
characteristics of five important classes of large-scale paral-
lel scientific applications. We 6rst show that all the applica-
tions have a hierarchy of well-defined per-processor working
sets, whose size, performance impact and scaling Characteristics
can help determine how large different levels of a multipro-
cessor’s cache hierarchy should be. Then, we use these work-
ing sets together with certain other important characteristics of
the applications-such as communication to computation ratios,
concurrency, and load balancing behavior-to reflect upon the
broader question of the granularity of processing nodes in high-
performance multiprocessors.

We find that very small caches whose sizes do not increase
with the problem or machine size are adequate for all but two of
the application classes. Even in the two exceptions, the working
sets scale quite slowly with problem size, and the cache sizes
needed for problems that will be run in the foreseeable future
are small. We also find that relatively fine-grained machines,
with large numbers of processors and quite small amounts of
memory per processor, are appropriate for all the applications.

1 Introduction

As larger multiprocessors are built, determining the appro-
priate distribution of resources among processors, cache and
main memory becomes increasingly challenging for a designer.
Small-scale, bus-based, shared-memory multiprocessors usually
provide relatively large per-processor caches (several hundred
Kbytes to a few Mbytes) and tens of Mbytes of physical mem-
ory per processor. These decisions make sense for small-scale
machines. For example, with a small number of processors, the
memory per processor must be large in order for the machine to
have enough total memory to perform interesting computations.
And large caches make sense for several reasons: (i) multipro-
gramming and the need to accommodate several applications

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

simultaneously, (ii) the use of a shared bus interconnect and the
need to reduce traffic on it, and (iii) the fact that there are only a
few caches and a large amount of main memory, so that caches
cost only a small fraction of the machine.

On large-scale parallel machines, many of these reasons for
large caches and main memories per processor no longer neces-
sarily hold. The desirable amounts of main memory and cache
per processor are therefore not obvious. These desirable ratios
are also very difficult to determine owing to the wide range of
issues involved, including application characteristics, machine
usage patterns, hardware cost and performance estimates, and
even determining the appropriate metrics to optimize.

In this paper, we focus on one crucial input into the above de-
sign decisions: the characteristics of applications that = likely
to run on high-performance multiprocessors. By studying rele-
vant application characteristics such as memory usage, working
set sizes, communication to computation ratios, concurrency and
load balancing, and by examining how these characteristics scale
to larger problems and machine sizes, we reflect upon the ap-
propriate amounts of memory and cache per processor for five
important classes of scientific applications. These classes are:
direct equation solvers, iterative equation solvers, spectral trans-
form methods (represented here by a Fast Fourier Transform),
hierarchical N-body methods, and volume visualization (volume
rendering) methods.

We divide our treatment of every application into two parts.
First, we examine the working sets of the applications, which
help in determining how large the levels in the machine’s cache
hierarchy should be to keep performance losses due to capacity
misses low. We find that all the applications have a well-defined
hierarchy ofworking sets. such that a cache that is large enough
to hold a given working set can yield dramatic performance
benefits over a cache that is slightly smaller than that working
set. We also find that the working sets of all the applications are
bimodally distributed, consisting of a few small working sets
and one large one that usually comprises a processor’s entire
partition of the data set. In most cases, the working set that
is critical to good performance is one of the smaller ones. In
three of the applications (direct solvers, iterative solvers, and
the FIT), this important working set-and hence the cache size
needed for good performance-is very small and does not scale
with problem or machine size. Even in the other two applications
(N-body and volume rendering), the working set is quite small
and scales very slowly with problem size, so that small caches
will suffice for the foreseeable future. There is one application
(the iterative solver) in which a large working set also has an
important performance impact; however, accommodating this

0884-7495/93 $3.00 8 1993 IEEE
14

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

working set requires the cache to be essentially as large as the
local data set per processor, which is not a realistic design point
for the near future.

In the second part of our treatment of an application, we use
the information about working set sizes as well as other rele-
vant application characteristics to reflect upon desirable grain
sizes for machines. The grain sizc (or granularity) of a machine
can be loosely defined as the amount of main memory and cache
per processor on the machine. Using several approximations and
simplifying assumptions, we find that all but one of our applica-
tions can effectively use large numbers of processors with small
amounts of main memory and cache each. The argument for
fine-grained machines from an applications perspective is fur-
ther strengthened when time constraints are incorporated in the
scaling model. However, there are reasons why one might not
want to actually build machines with small amounts of memory
per processor in the near term. and we discuss some of these.

The paper is organized as follows. In the next section, we
describe the methodology and framework we use to study the
applications. Sections 3 through 7 discuss the individual appli-
cations. In Section 8, we discuss our results and some caveats
to the argument for fine-grained machines. Finally, Section 9
summarizes the main conclusions of the paper.

2 Methodology and Framework

In this section, we describe the common framework we use to
present the results for each application. Sections 2.1 through 2.3
exactly mirror the structure of the computation description,
working set size and grain size discussions in each individual
application section, and also describe the methodology we use
to obtain our results. Section 2.4 states some additional simpli-
fying assumptions that we make.

2.1 Description of Computation
Our discussion of each application begins with a description
of the most important steps of the computation. To make our
investigations concrete, we also describe a prototypical problem.
Our prototypical problem for every application is one whose
data set is 1 Gbyte and is distributed at 1 Mbyte per node on a
1024 node machine. This is intended to represent a fine-grained
machine configuration.

2.2 Working Set Hierarchy
The second subsection for each application identifies the impor-
tant application working sets. To determine the sizes of these
working sets, we simulate a cache-coherent, shared-adkss-
space multiprocessor architecture, with each processor having
a single level of cache and an equal fraction of the total main
memory. For a given problem size and number of processors, we
simulate different cache sizes and look for knees in the resulting
performance (or miss rate) versus cache size curve.
To exclude the effects of conflict misses, which are influenced

by a host of low-level artifacts, we use fully associative caches
with an LRU replacement policy. To the extent that conflict
misses are important, working set sizes measured this way are
aggressive estimates of desirable cache size, and real caches-
with low degrees of associativity-will need to be somewhat
larger. For the first three applications we consider, the differ-
ence between a cache with limited associativity and a fully asso-
ciative cache is not significant, since the cache conflict problem

are in reality expected to proceed over many time-steps or it-
erations. Thus, what we measure are misses due to inherent
conmwnicatwn and finite cache capacity.

The first thrtc applications we consider are well-understood
and highly pdictable computational kemels. In these cases
(direct solvers, iterative solvers, and the FFl'), we determine the
working set sizes analytically, and use simulation to confirm our
estimates for some examples. Since these applications are highly
floating-point intensive, the metric we use to describe cache miss
rates is number of doubleword read misses per double-precision
floating-point operation. The other two applications, Barnes-Hut
and volume rendering, are full-scale applications that are not as
regular, analytically describable, or floating point dominated. In
these cases, we use simulation to look for knees in the read
miss rate (read misses divided by number of read references)
rather than misses per FLOP. We focus on read misses since
these are likely to have a much greater impact on performance
than write misses, the latencies of which can be easily hidden
in these programs.

Scaling: Having determined the working set sizes for the pro-
totypical problem, we then look at how these sizes scale with
various application parameters and numbers of processors. We
assume for this discussion that machines are made larger by
adding processors, each processor bringing with it an amount of
cache and memory equal to the cache and memory per proces-
sor on the original machine. We first examine how the working
sets scale with individual parameters, and then look at how they
scale under certain accepted models of scaling problems to run
on larger machines. The two scaling models we consider are
memory-constrained (MC) and timeconstrained (TC) scaling.
Given a larger machine, the MC scaling model assumes that a
user will scale the problem to fill the available main memory on
the machine, regardless of the effect this has on execution time.
The TC scaling model, on the other hand, assumes that the user
will increase the problem size so that the new problem takes as
much time to solve on the new machine as the old problem took
on the old machine. For more information about these scaling
models, see [9].

2.3 Grain Size
Having understood the working sets, we then examine other
application characteristics that affect the desirable granularity of
processing nodes. In particular, we study the implications of
interprocessor communication costs, load balance, and problem
concurrency for node granularity. We begin by looking at the
impact of these issues for the prototypical problem, and then we
study how this changes with the problem and machine size.

Communication Costs: To determine the relative cost of inter-
processor communication for each application, we first calculate
a computation to communication ratio for the prototypical prob-
lem. To provide some feeling for what ratios we would consider
sustainable, let us consider relevant parameters on existing and
likely future parallel machines. One example is the Intel Paragon
machine. Each node in this machine will have four 50-MFLOPS
processors. yielding 200 MFLOPS per node. The machine uses
a 2-D mesh interconnect with 200-Mbyte-per-second channels.
Let us first consider nearest-neighbor communication. In this
case, the bandwidth in the Paragon is limited by that of the node-
to-router link, which is 200 Mbytes/sec peak. The sustainable
ratio, in FLOPS per double-word, is therefore = 8. For

can easily be avoided-We comment on the use of direct-mapped
caches for the other two applications in their respective sections.
Finally, to exclude cold-stuN misses where appropriate, we omit
the first few time-steps or iterations in those applications that

more random communication, sustainable communication vol-
ume is determined by the bisection width of the network. For a
32x32 (1024) node Paragon, the number of network links across
a bisector is 64. Assuming that half of all random messages
cross this bisector, each processor can generate only 64/512,

15

1-

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

or one-eighth as much traffic as in the nearest-neighbor case,
yielding a sustainable ratio of 64 FLOPdword. Similarly, the
sustainable ratios on the Thinking Machines CM-5 are about 50
FLOPS per word for nearest-neighbor communication and about
100 for general communication (assuming l28MFLOPS vector
nodes, 2OMbytelsec nearest-neighbor communication bandwidth
and 5Mbyteisec general bandwidth).

As technology progresses, we should see both faster floating
point processors and faster communication chips. For this paper,
we simply assume that computation to communication ratios of
1-15 FLOPdword are extremely difficult to sustain, 15-75 are
sustainable but not easy, and above 15 are quite easy to sus-
tain. (Of come, all the analytical and experimental data we
provide remain valid even if the reader makes different assump-
tions about sustainability than we do.)

Load Balance and Concurrency: Two other potential sources
of difficulty in obtaining high parallel performance are load im-
balances and deficiencies in available problem concurrency. We
comment on the expected impact of these for the prototypical
problem.

Desirable Grain S k We then attempt to determine what
would constitute a desirable processor grain size for the proto-
typical problem. Our goal is not to make fine distinctions in
grain size, but rather only very coarse ones. That is, we are. not
trying to determine whether the appropriate grain size is 1 Mbyte
or 2 Mbyte of main memory per processor, but rather whether
it is on the order of 1 Mbyte, 10 Mbytes or 100 Mbytes. To
estimate a desirable grain size, we examine the expected par-
allel performance-based on communication cost, load balance,
and concurrency considerations-for two variations of the pro-
totypical problem with very different granularities. The first is
a 1 Gbyte problem on 64 processors, resulting in 16 Mbytes of
data per processor. The second is the same problem on 16 thou-
sand processors, resulting in 64 Kbytes of data per processor.

Scaling: Finally, we consider how this desirable grain size
changes as the problem is scaled.

2.4 Other Assumptions

We make a few additional simplifying assumptions in our anal-
ysis. We assume that the processor is based on commodity
processor technology and thus is a given; its performance does
not change when the number of processors is changed. We also
assume that since the machine supports a shared address space,
it is optimized for small data exchanges between processors and
thus provides inexpensive interprocessor synchronization. Fi-
nally, we ignore the impact of contention in various parts of
the machine as well as that of locality in the network topology,
with the exception of our coarse notion of local versus random
communication patterns discussed earlier in this subsection.

3 Direct Methods for Solving Linear Systems
The first application we consider is the LU factorization of large,
dense matrices. This important and 'widely used computation
factors a matrix -4 into the form A = LU, where L is lower-
triangular and U is upper-triangular. The most common source
of large dense LU problems is radar cross-section problems,
where people currently solve problems that require several hours
on today's largest parallel machines.

While we specifically examine dense LU factorization in this
section, our analysis actually applies to a wider set of appli-
cations. Applications with very similar structure. include dense

U

QR factorization, dense Cholesky factorization, dense eigen-
value methods. and in many respects sparse Cholesky factoriza-
tion.

3.1 Description of Computation
Dense LU factorization can be performed extremely efficiently
if the dense n x n matrix -4 is divided into an N x N array
of B x B blocks, (n = NB) [ll]. The following pseudo-code,
expressed in terms of these blocks, shows the most important
steps in the computation.

1. f o r K = O t o N do
2 . f a c t o r block - k ~
3 . compute va lues f o r a l l b locks

4 . f o r J = K + l t o N do
5 . f o r I = K + 1 t o N do
6 . -&J + . ~ I J - AIKAKJ

i n column K and row K

The dominant computation here is Step 6, which is simply a
dense matrix multiplication.

The parallel computation corresponding to a single K itera-
tion in the above pseudo-code is shown symbolically in Figure 1.
Two details have been shown to be crucial for reducing interpro-

L
Figure 1: Dense block LU factorization.

cessor communication volumes and thus obtaining high perfor-
mance. First, the blocks of the matrix are assigned to processors
using a 2-D scatter decomposition [2]. That is, the processors
are thought of as a P x Q grid, and block (I. J) in the matrix
is assigned to processor (I mod P. J mod Q). A simple 3 x 3
processor example is shown in Figure 1. Second, the matrix
multiplication in Step 6 above is performed by the processor
that owns block -41.5. Within one K iteration, a processor thus
uses blocks in the appropriate rows of column K (those blocks
owned by a processor in the same row of the processor grid)
and the appropriate columns of row K to update blocks it owns.
The shaded blocks in Figure. 1 are the blocks that processor P1
uses in one K iteration.

Three factors must be traded off in choosing an appropriate
block size B . Larger blocks lead to lower cache miss rates.
However, larger blocks also increase the fraction of the compu-
tation performed in the less parallel portion of the computation
(Steps 2 and 3 in the earlier pseudo-code), and can also cause
load balancing problems. Relatively small block sizes (B = 8
or B = 16) can be shown to sbike a good balance between these
factors.

3.2 Working Set Hierarchy
Our prototypical 1 Gbyte data set on 1024 processors corre-
sponds to a roughly 10. OOO x 10. OOO LU factorization problem.

16

*

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

Since people are currently solving 50, 000 x 50, 000 dense sys-
tems arising from radar cross-section applications on 128 pro-
cessor machines, our choice of a smaller problem on a larger
machine is actually somewhat aggressive.

The stn~cture of LU factorization is sufficiently simple that
we can derive working set sizes analytically. Figure 2 shows
analytical cache miss rates for an n = 10,000 matrix, using
block sizes of B = 4, 16, and 64, and P = 1024 processors.
The graph shows double-word cache misses as a fraction of
doubleprecision floating-point operations. The important levels

B.4
8 e 0.8

1
f OA

0 2

0.0
d 128 ZS 512 1K ZK 4K (U(16K 32K 64K 12(IK2561(512KlU

Cache site (bytes)
Figure 2 Miss rates for LU factorization, n = 10,000, PE =
1024.

of the working set hierarchy are as follows. The level 1 working
set (1evlWS) consists of two columns of a block, and is roughly
260 bytes for B = 16. Once two columns fit, one column can
be reused, roughly halving the overall miss rate. The sccond
working set (leV2WS) consists of an entire B x B block, and is
roughly 2200 bytes for B = 16. When this working set fits in
the cache, the miss rate drops to roughly 1/B. The other block
sizes (B = 4 and B = 64) naturally lead to different level 1 and
level 2 working sets sizes and miss rates.

Clearly, the cache sizes required to hold the lev2WS are much
smaller than the caches p p l e are building on parallel machines
today, even for relatively large block sizes (B =16 or 32). The
resulting miss rates are small enough to yield high performance.
Almost all the misses would be serviced from a processor’s local
memory, provided the matrix blocks are placed in the local mem-
ories of their owner processors. Also, the misses are predictable
enough to be easily prefctched.

The next working set (lev3WS) includes all blocks in
row/column K that affect blocks owned by a particular proces-
sor (e.g.. the shaded blocks in row/column K of Figure 1). The
size of lev3WS is 2NB2/@ = 2 n B / O (roughly 80 Kbytes
for B = 16). If the lev3WS fits in cache, then the miss rate is
further reduced by a factor of 2 to 1/2B. However, the miss
rate is small enough even before the lev3WS is rcached. so that
the kv3WS is of only minor importance to performance.

The final working set (lev4WS) is the set of all blocks be-
longing to a processor. If the cache accommodates the lev4WS
(of size n2/p), the miss rate is equal to the communication miss
rate.

Scalig: When considering problem or machine size scaling,
we note that the most important working set, the lev2WS. de-
pends only on the block size B. It is independent of R and P.
In other words, a small amount of cache is sufficient for any
problem or machine size.

33 Grainsize
Communication costa: LU factorization of m n x n matrix
performs roughly 2n3/3 floating-point operations. Every block

in the matrix is communicated to a row or column of pro-
ct8sors. yielding an overall communication volume of n 2 0 .
The computation to communication ratio is thus 2n/(3@),
and depends only the grain size (nZ/P) . For our prototypi-
cal problem, with its 1 Mbyte grain size, this yields a ratio of
roughly 200 floating-point operations per floating-point word of
communication-a relatively low bandwidth requirement. Also,
most of thcsc interprocessor communication costs can be hidden
from the processors (using software prefetching, for example).

h d Balance and Concurrency: Another important issue
that affects parallel performance is the load balance and avail-
able concurrency of the computation. For our 10.000 by 10.000
prototypical dense LU example with B = 16. each of the 1024
processors is assigned roughly 380 blocks from the matrix. This
is a large enough number of blocks for dense LU factorization
that load balancing and concurrency issues do not detract sig-
nificantly from achieved parallel performance either.

Desirable Grain Size: Clearly, a 1024-processor machine with
1 Mbyte of data per processor would produce good processor uti-
lization. Let us consider whether the grain size can reasonably
be reduced to solve the same 1 Gbyte problem. Consider solv-
ing the problem on a 16K processor machine with 64 Kbytes
of memory per processor. The computation to communication
ratio would decrease by a factor of four to 50 operations per
communicated datum, more difficult but still quite possible to
sustain. The larger effect comes from load imbalance. With
B = 16, each processor would now be assigned 25 blocks, which
would reduce processor performance somewhat. This load bal-
ance problem could be improved by reducing the block size, but
at a cost of increased cache miss rates. In either case, the higher
computation to communication ratio, combined with the perfor-
mance loss due to either poorer load balance or higher cache miss
rates, would reduce per-processor performance. Thus. while a
1 Mbyte grain size is easy to sustain for a 1 Gbyte problem, a
64 Kbyte grain size is not so easy.

Scaling: Let us now see how the desirable grain size changes
as larger problems are run. Keeping the grain size fixed at
1 Mbyte per processor allows us to factor a 20,000 by 20,000
matrix on 4096 processors. Compared with the prototypical
problem, this problem would require the same amount of cache
memory, would produce the same computation to communica-
tion ratio, and would generate a very similar computational load
balance (since each processor still handles 380 blocks (B = 16)).
We therefore conclude that the desirable grain size is indepen-
dent of the problem size.

Keeping the grain size fixed while increasing the number of
processors results in memory-constrained (MC) scaling. Since
the amount of computation (which scales as n3) grows much
faster than the data set size (which scales as nZ). the parallel
execution time grows quite quickly under MC scaling, which
may therefore be an unacceptable scaling model for this appli-
cation. If, on the other hand, a timeconstrained scaling model
were used, the per-processor data set would shrink with inmas-
ing P (of course, the performance of the individual processo~~
would decrease as well). Constraints on execution time thereforc
provide another argument for finer-grained processing nodes on
large-scale machines.

3.4 Summary
To summarize, we have found that dense LU factorization places
very modest demands on a parallel machine. A small cache
is sufficient to reduce the cache miss rate to nearly negligible
levels, even for large problems on large machines. Similarly,

17

1 I I

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

a small amount of per-processor memory (1 Mbyte or less) is
sufficient to yield good performance, regardless of n and P.

4 Iterative Methods for Solving Linear Sys-
tems

The next class of computations we consider are iterative methods
for solving linear systems of quations (or for finding eigenval-
ues of large sparse matrices). Iterative methods, which begin
with a guess at the solution and iteratively attempt to improve
this guess, are finding increasing use in solving large systems
of equations in parallel. At the heart of these iterative meth-
ods is a sparse matrix-vector multiply, typically accompanied by
some combination of vector additions and dot products. While
we specifically consider the conjugate gradient (CG) method
for solving sparse linear systems of quations here, the results
should be similar for a range of other iterative methods.

4.1 Description of Computation
Each iteration of the CG method performs a single sparse matrix-
vector multiply, 3 vector additions, and 2 dot products. The
matrix-vector multiply is the dominant computation. This oper-
ation is most easily described by considering the sparse matrix
-4 as a graph G = (V, E), with a vertex U E V correspond-
ing to each rowlcolumn in A and a weighted edge i, j E E
corresponding to each non-zero Ai j . The sparse matrix-vector
multiply b c Az is performed by associating an z value with
each vertex in the graph, and iterating over all vertices. For
every vertex i, the value of bi is computed by summing the
products of the weights of the edges (i . j) incident to i with the
z values at the adjacent j vertices.

The CG computation is parallelized by partitioning the ver-
tices in the graph representation of the matrix among processors.
Consider the case where the graph representation of the sparse
matrix is a simple 2-D grid (Figure 3). The example grid is par-
titioned among 4 processors in the figure. At each CG iteration,

Po PI

Figure 3: A 2-D grid partitioned among 4 processors.

a processor iterates over the points assigned to it, computing
new values for b at its vertices. Interprocessor communication
is necessary when a processor handles a vertex that is adjacent
to a vertex belonging to another processor (the vertices on the
boundaries between processor partitions in Figure 3). since the
value at the other end of that edge was presumably changed in
the previous iteration.

Our prototypical 1 Gbyte problem on 1024 processors cor-
responds to a roughly 4OOO x 4OOO 2-D grid. An important
trend in problem domains that use iterative methods is toward
3 dimensional problems. In this case, the prototypical problem
corresponds to a 225 x 225 x 225 3-D regular grid.

4.2 Working Set Hierarchy
A processor sweeps through the entire set of nodes assigned to
it in every iteration, touching the data corresponding to every
edge incident to these nodes. Thus, unless this entire data set
fits in the cache, the computation provides few opportunities to
reuse data.

The working set hierarchies for our 2-D and 3-D grid exam-
ples on 1024 processors are shown in Figure 4. For the 2-D
problem, the levlWS consists of the z values from three adja-
cent sub-rows of points assigned to a processor. This levlWS is
quite small, consisting of roughly 5 Kbytes of data in the proto-
typical 2-D problem. While the impact of this 5 Kbyte working
set on miss rate is significant, the miss rate remains high even
after this working set fits in the cache. The lev2WS consists

0.20

0.00
5fi 1K 2K 4K 8K 16K 3% 64K 128K 256K 51% 1M

Cache size (bytes)
Figure 4: M i s s rates for CG, 4OOO x 4OOO grid, P = 1024.

of the entire set of data owned by a processor. At this point,
the miss rate drops to the communication miss rate. However,
it is generally unreasonable to expect this set of entries to fit in
cache.

For the 3-D grid computation, the working sets are quite sim-
ilar. The major difference is in the levlWS, which now consists
of 2-D cross-sections from the 3-D region assigned to each pro-
cessor, and thus represents a larger data set than the 1-D sub-
rows from the 2-D grid. In the prototypical problem, the levlWS
grows from 5K to 18K. Note that these numbers are still smaller
than the first-level caches found in nearly all modern processors.

Scaling: If we expect the per-processor data set to be larger
than the processor cache, then the only working set that can
fit in the cache is the levlWS. Since each processor receives
an n j f l x n j f l portion of the n x n 2-D grid, the size of
the 1evlWS is proportional to n /e. The size of this working
set therefore remains quite moderate. A problem that requires
16 Mbytes of storage per processor, for example, would have
levlWS sizes of 18 Kbytes and 90 Kbytes for 2-D and 3-D grids,
respectively. Furthermore, the size of levlWS can actually be
kept constant through the use of blocking techniques.

The fact that fitting the lev2WS (a processor's entire partition
of the grid) in the cache has a substantial impact on the perfor-
mance of CG brings up an interesting design issue. Particularly
under time-constrained scaling, the data set per processor may
not be very large on large-scale machines, so that it may make
sense to build larger caches and fit the lev2WS in the cache.
This amounts to fitting the entire data set in cache memory, so
that there is no need for DRAM memory. While this may be
an interesting design point for very large-scale machines, we
restrict ourselves here to a more conservative model where the
per-processor data set is much larger than the cache.

4.3 Grain Size
Communication Costs: The total amount of computation in
one CG iteration on an n x n 2-D grid is roughly 10n2 oper-
ations. Each processor owns a n j f l x n / f l grid of points.
The 4n/@ points along the perimeter must be communicated
to neighboring processors in every iteration. The computation

18

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

to communication ratio is thus 5n/(2*), and once again de-
pends only on the grain s k . For the l Mbyte grain size of our
prototypical problem, the ratio would be roughly 300 PLOPS per
word. This high ratio, combined with the fact that the commu-
nication latencies can be easily hidden due to the very regular
structure of the computation, make a 1 Mbyte pa processor grain
size quite appropriate for CG on 2-D grid problems.
For a 3-D grid pmblem, each processor would own a 3-D

subgrid that is n / p on a side. The processor would have to
communicate the value.s on the 6 2-D faces of its subgrid to other
processors. The computation to communication ratio would be
7n/(3*), yielding a ratio of roughly 50 for the prototypical
problem. This ratio is not as easily sustained as the ratio for
2-D problems, but it is still feasible.

Load Balance and Concurrency: The regularity of a grid
computation makes load balancing quite simple. The only limi-
tation on concurrency is the global sum that accompanies the two
dot product operations. Given our assumptions about the costs
of interprocessor communication and processor synchronization,
the cost of the fully parallel portion should dwarf the cost of the
less parallel global sum in the prototypical problem. Thus. the
problem exposes sufficient concurrency for 1024 processors.

We should note that many important problems (e.g., unstruc-
tured problems that model complex physical structures) will not
be nearly as regular as the 2-D and 3-D grids considered here.
This reduced regularity will require more sophisticated strategies
for partitioning the problem among a set of processors. This will
have three important effects. First, the computational load bal-
ance among the processors will certainly not be as good. Second,
the computation to communication ratio for problems with the
same data set size will most likely be significantly higher. Fi-
nally, the partitioning step itself will represent a computational
overhead whose cost increases with the number of processors.
This partitioning step will generally possess limited paralleliim,
so the presence of more processors would not necessarily reduce
its cost.

We conclude from the above discussion that a 1024 processor
machine with 1 Mbyte of memory per processor would be quite
appropriate for regular 2-D problems. The appropriate grain size
for irregular problems or 3-D problems may be somewhat larger.

Desirable Grain Size: Let us see if we can use a 16K-
processor machine with only 16 Kbytes or memory each to solve
a 1 Gbyte problem. The computation to communication ratios
increase to roughly 75 and 20 for 2-D and 3-D grids, respec-
tively. Thus, the desirable grain size is somewhere between
1 Mbyte an 16 Kbytes for the prototypical CG problem as well.

Scaling: Now consider how the appropriate grain size would
change with a scaled problem. The important thing to note here
is that the computation to communication ratio for both 2-D and
3-D grid problems depends only on the volume of data on one
processor, and is independent of the number of processors. Thus,
if a grain size of 1 Mbyte per processor produces sustainable
communication volumes on P processors, then it would also
produce sustainable volumes on 2 P processors, given a problem
that is twice as large. The one other issue that might be relevant
when considering scaling is the cost of the global sum operation
in the dot products. While this cost clearly increases with P, the
rate of increase (O(1og P)) is sufficiently slow that, under our
machine model, this cost would not be a significant performance
drain for practical P.
4.4 Summary
We therefore conclude that the conjugate gradient method re-
quires a somewhat larger grain size than dense LU factorization.

The desirable grain is still quite small, however. A 1 Mbyte per
processor data set size appears reasonable.

5 Transform Methods (FFT)
The next computation we consider is the 1D complex fast Fourier
transform (FFT). Our analysis in this section also applies to the
complex 2D and 3D FlT. These computations form the compu-
tational core of a wide variety of applications from the fields of
image and signal processing as well as climate modeling.

5.1 Description of Computation
The structure of the FlT computation is captured by the familiar
butterfly network. For an N = 2M point FFT, the computation
proceeds in M stages, where in stage s. pairs of data points at a
distance of 2" interact with each other to produce the points at
stage 8 + 1.

In a straightforward parallel implementation, each processor
handles a contiguous set of points. During the first logN -
logP stages of the butterfly, processors work locally with no
interprocessor communication. In each of the remaining log P
stages, all N points are exchanged between processors.

Unfortunately, the simple, so-called radix-2 FFT computation
described above makes very poor use of the memory system. It
sweeps through all N points in one stage of the butterfly before
moving on the next stage, thus making little use of the processor
cache. In the last logP stages of the butterfly, the processors
perform only a single computation step on each communicated
point, thus producing a very low computation to communication
ratio. Both the cache usage and the computation to communica-
tion ratio can be improved dramatically by increasing the rudix
of the computation (see [l] and [12]). Increasing the radix is
equivalent to 'unrolling' the butterfly, performing multiple but-
terfly stages in a single pass through the data. A radix-8 FFT,
for example, would combine three butterfly stages into a single
stage, where each step in this new stage performs operations on
8 points simultaneously. A radix-r FFT would combine logr
butterfly stages into a single stage, operating on r points simul-
taneously.

An efficient parallel FFT is therefore structured as follows.
To minimize interprocessor communication, the overall compu-
tation is performed with as large a radix as possible. This tums
out to be radix-D. where D is the number of points assigned to
each processor (i.e., D = N/P). Thus, the logN stages of the
butterfly are grouped into sets of log D stages. At each radix-D
stage, a processor receives D points from other processors, per-
forms logD stages of the butterfly on these points, and sends
the resulting D data points to the processors that use them in
the next stage.

To make good use of the processor cache, the radix-D stages
are further subdivided into smaller intemal groups. For example,
a processor might perform the log D stages in the radix-D com-
putation three-at-a-time, essentially performing a radix-8 com-
putation within the radix-D computation. We call this smaller
radix the intemal radix. This further sub-division produces a
smaller processor working set than would be present if all log D
stages were performed in a single sweep. We use this more
efficient parallel FFT in the results we present below.

5.2 Working Set Hierarchy
The prototypical 1 Gbyte problem corresponds to a 64 million
point complex FFT on 1024 processors, yielding 64K points per
processor.

Working set hierarchies for radix-2, radix-8, and radix-32 FFT
computations on this data set are shown in Figure 5 .

19

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

kv2WS

The first and mast important working set (levlWS) contains
the set of data items needed to perform a single step of a stage
swcep. If the intemal radix is 2, thc levlWS simply consists of
the two data points that an at distance 2' from each other. Ihc
miss rate is 0.6 misses per op when the levlWS with radix 2 fits
in the cache. For intemal radices of 8 and 32, levlWS consists
of the relevant 8 or 32 data points, and brings the miss rates to
roughly 0.25 and 0.15 misses per operation. respectively. These
misses can be easily prefetched. Thus, a small cache is sufficient
to significantly reduce the miss rate for parallel FFT.

The only other working set in a parallel FFT (lev2WS) is
simply the entire data set assigned to a processor.

Scaling: The s h e of the important, level 1 working set de-
pends only on the internal radii. The choice of intemal radix
is independent of the problem size and the machine size, and a
small radii suffices to keep the capacity miss rate small. Con-
squently, a small cache (a few Kbytes) is sufficient for any
probkm size or machine size. The kv2WS depends on -4' and
P. but is not expected to fit in a cache.

5.3 Grainsize
Communication costs: The computation to communication
ratio is most easily estimated by considering the operations that
a processor performs in a single stage of the radix-D computa-
tion (D = N / P) . Within a single stage, a processor performs
5DlogD operations, and then communicates all 2 0 double-
words computed in that stage to other processors. Thus, the
overall computation to communication ratio f log D = f log g,
and depends only the grain size $.

Tbis ratio is unfortunately inexact due to quantization effects.
Consider our prototypical problem, with 1024 processors and
64K points per processor. The resulting radik64K FFT p u p s
the buttertly into sets of log64K or 16 stages. The difficulty is
that the whole problem only requires log 64M = 26 stages. The
second stage would therefore perform only 10 stages of com-
putation for one communication stage, less than the 16 stages
assumed by the model.

The actual computation to communication ratio can be deter-
mined by noting that the whole computation performs 5-4' log N
operations, and it communicates the 2N words of data twice
between processors. For our prototypical problem, N = 64M.
yielding a ratio of 33. While this ratio would be sustainable if
the communications were between neighbor processors, unfortu-
nately it can be shown that communication in the FFT exhibits
little locality for mast processor interconnection topologies. The
exception is a hypercube topology, which is becoming less and
less common in large-scale parallel machines. The ratio of 33
operations per word would thus be difficult to sustain.

Laid Balance and Concurrency: A very simple distribution
of the FIT computation is quite adequate for load balancing.
Furtbemre, there is more than enough available concumncy to
keep a very large number of plocesmrs busy (ignoring processor
stalls due to communication).

Desirable Grain Size: We have seen that a 1 Mbyte data set
per processor produces a computation to communication ratio
that is difficult to sustain. A finer-grain machine would clearly
exacerbate the problem. Let us therefore examine how this ratio
would change if the same problem were solved on a coarser-grain
machine. On a machine with one-sixteenth as many pmctssors
(P = 64). we find that the computation to communication ratio
surprisingly docs not change. This is an aitifact of the quantiza-
tion of levels discussed earlier: there are still two communication
stages in the computation.

Let us now consider just how m e the machine grain must
be to produce a sustainable computation to communication ratio.
If wc even use the optimistic expression for computation to com-
munication ratio of log $ derived earlier, a ratio of R requires
the number of data points per processor to be N / P = 2iR. The
exponential growth rate of per-processor memory r e q u i d to im-
prove computation to communication ratios has been previously
noted in [4]. The consequences of this growth rate are quite se-
vere. Increasing the computation to communication ratio f"
33 to a more easily sustained ratio of 60, for example, would
require the per-pmssor data set to be increased to roughly
270 Mbytes. A ratio of 100, which may be required by some
machines for good performance, would require approximately
18 Terabytes of data per processor. It is clearly unrealistic to
try to significantly increase the computation to communication
ratio by increasing the node grain size.

Scaling: Since the main factor limiting performance, the com-
putation to communication ratio, depends only on grain size. the
"desirable" grain size is essentially independent of the problem
size or number of processors. MC scaling therefore produces
comparable processor utilization on larger machines.

5.4 Summary
The FIT is a difficult computation for large scale parallel ma-
chines. While the FFT is easily blocked for a cache to provide
high per-processor performance, the communication volume in-
henmt in the computation is sufficiently high that communica-
tion costs will certainly dominate the execution time. While one
might conclude that the solution to this high communication
volume is to increase the processor grain size, unfortunately the
grain size increase that would be required to significantly reduce
communication volumes is unrealistically large.

6 Hierarchicai N-Body Methods
The classical N-body problem is to simulate the evolution of a
system of bodies (e.g. stars in a galaxy) under the forces exerted
on each body by the whole system. Typical domains of appli-
cation include astrophysics, electrostatics and plasma physics,
among others. As in many other computational domains, hierar-
chical solution methods have recently attracted a lot of attention
for N-body problems, since they construct efficient algorithms
by taking advantage of fundamental insights into the nature of
physical processes. The two most prominent hierarchical N-
body methods are the Barnes-Hut and Fast Multipole methods.
We shall use a three-dimensional galactic Barnes-Hut simulation
as our example in this paper [lo].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

6.1 Description of Computation
The computation in N-body problems proceeds over a number
of time-steps. Every time-step computes the forccs experienced
by all bodies, and uses these forces to update the positions and
velocities of the bodies. The forcecomputation is by far the
most time-consuming phase in a time-step, and we focus on it
io our analysis (although our measurements include the whole
application).

The main data structure used by the Barnes-Hut method is an
octree which represents the computational domain. The root of
the octree is a cubical space that contains all particles in the sys-
tem. Intemal cells of this tree represent recursively subdivided
space cells, and the leaves repsent individual bodies. The tree
is traversed once per body to compute the net force acting on
that body. The forct-calculation starts at the root of the tree and
conducts the following test recursively for every cell it visits. If
the center of mass of the cell is far enough away from the body,
the entire subtree under that cell is approximated by a single par-
ticle at the center of mass. Otherwise, the cell must be "opened"
and each of its subcells visited. A cell is detennined to be far
enough away if the relationship 4 < B is satisfied, where 1 is the
length of a side of the cell, d is the distance of the body from the
center of mass of the cell, and B is a userdefined accuracy pa-
rameter (e is usually between 0.5 and 1.2). In this way, a body
traverses deeper down those parts of the tree which represent
space that is physically close to it, and groups distant bodies at
a hierarchy of length scales. For large problems, higher order
moments than the center of mass (for example, quadrupole mo-
ments) are used to increase force-computation accuracy without
making 0 too fine. We assume the use of quadrupole moments
in our discussion.

6.2 Working Set Hierarchy
There are threc important levels of the working set hierarchy
in these methods. These are shown in Figurc 6 for a small
problem simulating 1024 particles on 4 processors. We start
with a smaller problem in this application than the prototypical
problem used for other applications because the working sets
here are measured through simulation rather than analysis, and
because it is impossible to simulate the prototypical problem
on our multiprocessor simulator. The small problem, however,
exposes all the important characteristics and constant factors,
and the scaling trends that we discuss below have been verified
by simulating some larger problems and machines.

w2ws
! lw3WS

Cache size (bytes)
Figure 6 Working Sets for the Barnes-Hut Application: n=1024,
theta=l.O, p=4, quadpole moments.

The levlWS in this application is the amount of temporary
storage used to compute an interaction between a particle and
another particldcell. It is only about 0.7 Kbytes in size. Having
a cache large enough to hold the levlWS reduces the miss rate
from 100% with no cache to about 2096 in most cases we have
simulated. While this is a large reduction, the miss rate is still

not low enough for effective performance since most of these
misses are to nonlocal data. and are not predictable enough to
be easily prefetched.

The lev2WS is the most important working set in the ap-
plication. It comprises the amount of from the tree needed to
compute the force on a single particle. These data include par-
ticle positions as well as cell positions and moments. If the
partitioning of particles among processors is done appmpriately,
most of these data will be reused in computing the forces on
successive particles. Caches large enough to hold this working
set take the miss rate quite close to the inherent communication
miss rate obtained with infinite caches (0.2% for this pmblem).
For this small problem, the size of the lev2WS is 20 Kbytes.

Beyond the lev2WS. the miss rate decays much more slowly
until the cache size reaches the lev3WS. The size of the lev3WS
is roughly the maximum of (i) the amount of data in a proces-
sors partition and (ii) the amount of data that a processor needs
to compute the forces on all the particles in its partition. Thus.
the lev3WS size decreases with increasing number of processors
and increases with increasing force computation accuracy (de-
creafing e). HOwever, since the lev3WS marks the culmination
of a slow decrease in miss rate, and since the capacity miss rate
is already very small after the lev2WS is reached, the lev3WS is
not important to performance and we do not consider it further.

Scaling: A realistic problem that people run today is one with
64K particles and B=l.O. When run for 512 time-steps, this
problem taka about three days on a single processor of an SGI
4D/240. We use this problem, running on 64 processors, as the
starting point for our discussion of scaling. The levlWS and
lev2WS sizes for this problem are 0.7 Kbytes and 32 Kbytes.
respectively.

The total data set size increases linearly with the number of
particles. and is about 230 bytes per particle when quadrupole
moments are used. It is independent of 0 and essentially inde-
pendent of the number of processors.

The levlWS stays at 0.7 Kbytes independent of the number
of particles, the number of processors, and B. It changes slightly
only with the order of moments used, and hence with the nature
of an individual interactions.

The size of the important lev2WS is proportional to the num-
ber of interactions computed per particle, which is of order
& log n [3]. The lev2WS therefore scales very slowly with
the number of particles n. more quickly with the accuracy pa-
rameter 8, and is independent of the number of processors p.
The constant of proportionality in the above size expression is
about 6 Kbytes. How the lev2WS scales with larger problems
therefore depends on how n and B are scaled, as we examine
below.

Under memoryconstrained (MC) scaling, n would increase
linearly with p. If no other parameters are scaled, the size of
the lev2WS grows very slowly, going from 32 Kbytes with 64K
particles to 40 Kbytes with a million particles (about the largest
number of particles that people run on the largest parallel ma-
chines today) and to only 60 Kbytes with a billion particles
(inconceivable today). Scaling only n, however, is naive. In
practice, all of n, B and the time-step resolution At are likely
to be scaled simultaneously, in order to scale their conhibutions
to the overall simulation e m r at the same rate [9]. This leads
to the following rule: If n is scaled by a factor of s, At must
be scaled by a factor of and 8 by a factor of k when
quadrupole moments are used. A caveat is that B is likely to be
decreased at this rate only up to a certain extent (Bd .5 or so),
at which point higher order moments such as octopole moments
would be used to increase force computation accuracy without

21

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

reducing 8 much.
The lev2WS grows faster with MC scaling under this realistic

parameter scaling rule, since 8-the dominant contributor to the
working set size-is also scaled. Even under this model, a bil-
lion particle problem (k0.6, &pole moments) would have a
lev2WS of under 300 Kbytes. However, MC scaling of this soxt
causes the execution time to grow rapidly, so that MC scaliig is
in fact unrealistic in practice for this application.

Timeconstrained scaling, while asymptotically limited in the
amount the problem can be scaled, is more realistic in practice.
In this case, the contributions of changing At and 8 to the execu-
tion time don't allow n to scale linearly with p. In fact, n scales
slower than 6, where k is the factor by which p is scaled. 8
therefore scales more like *. The result is that both the data
set size and the lev2WS (proportional to & log n) still increase
in size, but much more slowly than under memoryconstrained
scaling. For example, starting from our 64K particle problem on
64 processors (kl.0). a 1K processor machine under TC scal-
ing would run 256K particles (04 .84) rather than the 1 million
(k0.71) under MC scaling. The lev2WS size in this case is only
25 Kbytes. A million processor machine would run not a bil-
lion particles but rather only about 32 million (M.6. octopole
moments), and the lev2WS size would be about 140 Kbytes.

The bottom line is that although the important working set for
this application is not trivial for large problems, it is still well
under 100 Kbytes for the largest problems people can run today,
and is likely to stay reasonably small even for problems whose
solution is beyond the realm of possibilities today.

6.3 Grainsize
Communication Cos& Modeling the amount of communica-
tion in the Barnes-Hut method accurately is very difficult. Using
some curve fitting from (71 and some of our own, we find that
the communication per processor required to compute forces in
a time-step scales as $$kq4/3p. and that the communica-

tion to computation ratio is therefore @$$e. Every unit
of computation (a particle-particle or particle-cell interaction) is
equivalent to about 80 instructions when quadrupole moments
m used, and every unit of communication in the above expres-
sion is 3 double words of data.

Our prototypical problem for grain size discussions, which
uses 1 Mbyte of main memory per processor on a 1024 proces-
sor machine (1 Gbyte total), solves a problem with about 4.5
million particles (a very large but feasible computation by to-
day's standards). Let us assume that 8 = 1.0. Every processor
is responsible for about 4500 particles. and the communication
to computation ratio is very small, less than 1 double word per
10,OOO processor busy cycles. Since the access patterns of this
application are not predictable, communication latencies might
not be hidden as effectively as in the regular computations we
have discussed so far. However, the communication to compu-
tation ratio is very small, and communication does not become
a bottleneck until the number of particles per processor becomes
very small.

Load Balance and Concurrency: The concmncy in the ap-
plication scales as the number of particles n, and load imbalance
is also not a significant factor until the number of particles per
processor (n /p) becomes very small. Given that n is typically
large (4.5 million in the prototypical problem), this also means
that very large numbers of processors can be used effectively.

Desirable Grain Size: The impoxtant per-processor growth
rates for this application in terms of n, 8, At and p are as fol-

lows. The data set size scales as %, the computation as &*.
the working set as log n, the concurrency as n, the communi-
cation as $ 3 0 g 4 / 3 p , and the communication to computation

Clearly, we would get very good speedups on our 1 Gbyte
problem on a coarser-grained machine than 1 Mbyte per pm-
cessor, such as the 64-processor machine with 16 Mbytes of
memory per processor. However, solving a 1 Gbyte problem on
64 processors would take a very long time. Let us see what hap-
pens when we go to the finer-grained machine instead, solving
the same 1 Gbyte problem with 16K proassors and 64 Kbytes
of memory per processor. Every processor now has about 280
particles. The communication to computation ratio increases to
about 1 double word per 1OOO instructions, but is clearly very
small still. However, particularly given the large number of
processors, load balancing may become a problem at this point.
The result is that the grain size can probably be pushed to a few
h u n d d kilobytes per processor for a 1 Gbyte problem without
compromising parallel performance much.

Scaling: Finally, let us see how the desirable grain size scales
with problem size. A memoryconstrained scaling model, in
which the processor grain size remains constant, provides high
processor utilization for this application. The number of parti-
cles per processor remains the same, so load balancing is not
affected, and the communication to computation ratio either in-
creases extremely slowly (if the accuracy is not scaled as well)
or stays constant (if accuracy is scaled) [8]. The cache size
needed per processor grows, but is still relatively small, as we
have seen. However, such memory-constrained scaling to keep
the grain size constant causes the execution time to increase
very rapidly. If the goal is to run a problem in the same amount
of time, n does not grow nearly as quickly as p. The grain
size needed therefore decreases, as does the efficiency of a node
(since both communication and synchronization increase relative
to computation, and the load balance gets worse).

6.4 Summary
Our results show that fine-grained machines, with well under
1 Mbyte of memory and a couple of hundred kilobytes of cache,
can be very effective for this application. A couple of issues,
however, may inhibit going to a very fine grain. First, for large
problems, the amount of fully associative cache needed will be
as large as or larger than the local memory per node. The use of
realistic-set-associative or direct-mapped-caches would fur-
ther increase the required cache size, resulting in an expen-
sive design point that may not be appropriate for other kinds
of computations. Preliminary results with direct-mapped caches
for small problems show that the knees in the miss rate versus
cache size curves are not as well-defined as with fully associa-
tive caches, and that the direct-mapped cache size required to
hold the important working set is about three times as large as
the corresponding fully associative cache size. Set-associative
caches and data restructuring might d u c e this factor of three.
While we have not simulated large problems with direct-mapped
caches, there is little reason to believe that the factor increase
in required cache size will be much different as the problem
scales.

The second issue is that although the force-calculation phase
can be parallelized very efficiently on large numbers of pro-
cessors, some other phases-such BS building the octree and
computing the moments of cells-do not yield quite as good
speedups due to larger amounts of synchronization and con-
tention that they encounter. These phases consume a small frac-
tion of the execution time on moderately parallel machines (at

22

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

least up to 512 processors for large problems), but may become
significant for very fine-grained machines with very large num-
bers of processors.

7 Volume Rendering
Our next application is from the field of scientific visualization.
Volume visualization techniques are of key importance in the
analysis and understanding of multidimensional sampled data.
This application, which renders volumes using optimized ray
tracing techniques, uses a parallel version of the fastest known
sequential algorithm for volume rendering [a].
7.1 Description of Computation
The volume to be rendered is represented by a cube of voxels
(or volume elements). The outermost loop of the computation
is over a series of frames or images. Successive frames corre-
spond to changing angles between the viewer and the volume
being rendered. For each frame, rays are cast from the viewing
position into the volume data through every pixel in the image
plane corresponding to that frame. The voxel data are resampled
at evenly spaced locations along each ray by trilinearly interpo-
lating the values of surrounding voxels. Rays are not reflected at
all, but pass straight through the volume unless they encounter
too much opacity and are terminated early. Finally, ray sam-
ples are composited to produce an image or frame. The goal of
the application is to render individual frames in real time (30
framedsecond), so that an interactive user can view the volume
from arbitrarily changing positions efficiently.

7.2 Working Set Hierarchy
There are three important levels of the working set hierarchy
in this application. Data reuse is afforded across sample points
along a ray (IevlWS), across successive rays (lev2WS), and per-
haps across successive frames (lev3WS). These working sets are
shown in Figure 7 for a 256x256~113 voxel data set of a human
head. While smaller than our prototypical 1 Gbyte problem (the
data set is about 30 Mbytes) for reasons of simulation feasibd-
ity, this data set is a very realistic real-time challenge for today's
parallel machines.

An octree
data structure is used to find the first interesting (non-transparent)
voxel in a ray's path efficiently, as well as to determine whether
the neighboring voxels around a sample point are interesting.
The levlWS consists of the voxel and octrce data that are reused
m s s neighboring sample points along a ray. This working set
is very small: about 0.4 Kbytes. A cache that accommodates it
reduces the read miss rate to about 1556, which is still too large
to be acceptable, particularly since the misses are potentially to
nonlocal data and the access pattems are not regular enough to
be easily prefetched.

The lev2WS is the most important working set. It measures
the fraction of the data used in computing a ray that is typically
reused by the next ray. This reuse owes itself to the partitioning
scheme, which assigns every processor a contiguous rectangular
subblock of pixels in the image plane. Successive rays cast
by a processor therefore pass through adjacent pixels and tend
to reference many of the same voxels in the volume. The
lev2WS is about 16 Kbytes for this data set, and a cache that
accommodates this working set reduces the read miss rate to
about 2%.

After the lev2WS is reached, the miss rate diminishes more
slowly until the lev3WS is reached. The size of the lev3WS
depends on how quickly the angle between the viewing position
and the data set is changed between successive frames. If the
change is gradual, as in our simulations, a given processor refer-
ences many of the same voxels in successive frames; otherwise,

The voxel data in this application are read-only.

the overlap may be negligible. Thus, the lev3WS size can vary
from the voxels referenced by a processor in one frame to almost
the entire voxel data set. For our data set and simulations, the
lev3WS is about 700 Kbytes, and a cache that accommodates
it brings the miss rate down to the communication miss rate of
0.1%. The lev3WS is therefore large, but is not very important
to performance and we do not consider it further.

lev3WS
\

3 m[lev2WS
I
I = 10

e* ~ ~

0 " " ' ." ._ .
120 250 112 1K 2K 4K 6K 16K 32K #K 1ZRK 25(IK S l X

Cache size (bytes)
Figure 7: Working Sets for the Volume Rendering Application:
256x256~113 head, p=4.

Scaling: With n voxels along a single dimension, the data set
for the volume rendering application is roughly 4n3 bytes. The
two important parameters that might be scaled in this application
are n and the number of processors p. The levlWS size is
independent of either of these. The lev2WS is also independent
of p, but grows proportionally to n, corresponding to the number
of voxels sampled along a ray. The size of the lev2WS is roughly
(4OOO + 110*n) bytes. Note that n here is only the cube root of
the data set size.

Since the execution time grows at the same rate as the data
set size (3) . time-constrained scaling is essentially the same as
memory-constrained for this application. Thus. the important
working set grows as only the cube root of the number of pro-
cessors under either scaling model, with a very small constant
factor of only 110 bytes. Even for a very large, 1024~1024~1024
problem, far from renderable in real time on even the largest ma-
chines today, the lev2WS is only 116 Kbytes large. For a while,
also, the push in using larger machines is going to be to ren-
der relatively small data sets in real time, rather than to render
bigger data sets. Finally, as data sets get larger, the octne will
probably be used to skip transparent voxels along a ray even
after the first nonempty voxel is found, which may reduce the
size of the lev2WS. Thus, the important working set of this ap-
plication is likely to remain relatively small (under 100 Kbytes
or so) for a while to come.

7.3 Grain Size
Communication Costs: The most important and heavily ref-
erenced data structure, the voxel data set, is accessed in a read-
only fashion. Thus, if the entire voxel data set were replicated
in the local memory of every processing node, there would be
essentially no communication during rendering (except the small
amount of communication generated by the ray-stealing per-
formed to ensure load balancing toward the end of the rendering
phase [6]). However, such replication would imply either un-
reasonable amounts of local memory per processor or that large
data sets cannot be run. In our s h d address space implemen-
tation, the data set is not replicated at all in main memory but
only to some extent in the caches. Because of this, communi-
cation is generated when accessing voxel data, since voxel data
get replaced in the caches.

If the cache provided is significantly smaller than the lev3WS,
as is very likely, we can assume that almost all of the voxel data

23

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

that a processor accesses during a frame are not in its cache at
the beginning of that frame. Since the viewing angle changes,
the most reasonable data distribution acmss local memories is
an interleaved or random one to minimize contention. Thus.
the first accesses to voxel data in a frame have no more than
a random chance of being satisfied in local memory, and are
likely to generate communication. Two bytes of data are read
per voxel, so that the total volume of communication in a frame
is somewhat larger than 2n3 bytes (since processors overlap to
some extent in the voxels they eccess). Since a frame involves
more than 300713 instructions, the computation to communica-
tion ratio is very large, close to 600 instructions per word of
communicated data, independent of n or p (see the limitations
of this analysis below). If caches yield reuse across frames, the
computation to communication ratio will be even larger.

Our prototypical problem amounts to a 6OOx6OOx600 voxel
problem on a 1024-processor machine, with every processor be-
ing respoosible for about loo0 rays. Since the computation to
communication ratio is independent of n or p, it is 600 instruc-
tions per word in this case as well.

Load Balance and Concurrency: After a processor has pro-
cessed its statically assigned rays, it steals rays f" other pro-
cessors if it is idle. Stealing introduces additional synchroniza-
tion and communication, and is the main source of performance
loss if the number of rays stolen by a processor is large compared
to the number initially assigned to it. In the prototypical prob-
lem, every processor is assigned lo00 rays, so that the amount
of stealing is not significant.

Desirable Grain Size: The important per-processor growth
rates for this application in terms of n and p are as follows.
The data set size scales as $, the computation as $, the im-
portant working set as n, the communication as 5, and the
communication to computation ratio stays roughly fixed. The
concurrency in the application is equal to the number of rays,
which grows as n2: There is one ray per pixel, and there are n2
pixels in the 2 d image plane projected f" the data set.

Running the 6OOx6OOx600 voxel data set on a coarser-grained
machine than 1 Mbytes per processor (e.g. 64 processors with
16 Mbytes per processor) is obviously not a problem from the
viewpoint of processor efficiency. However. a 64 processor ma-
chine would clearly not be able to render this data set in real time.
Let us see what happens when we solve the same 6OOx6OOx600
voxel problem on a finer-grained machine. with 16K processors
and 64 Kbytes of memory per processor. The communication
to computation ratio (ignoring task stealing) is still about 600
instructions per word. However, every processor now processes
roughly or 66 rays, likely to be too few for good load
balancing wi out excessive stealing. As in Barnes-Hut, a grain
size of a few hundred kilobytes is therefore likely to be adequate
for good parallel performance on the 1 Gbyte data set.

Scaling: Finally, we examine how the desirable grain size
changes as larger problems are run. If the data set size is in-
creased by a factor of k, keeping the memory per processor or
grain size fixed (and therefore scaling p by a factor of k) will
cause every processor to process a smaller number of rays (de-
creasing by a factor of k113, since the size of a ray grows by
a factor of This is not a problem until the number of
rays per processor becomes very small, in which case increased
synchronization and communication due to task stealing detract
from performance. To maintain the same number of rays per
processor and hence roughly the same processor efficiency, the
amount of memory per processor (the grain size) must increase

by a factor of k113 when the data set size is increased by k (the
working set size per processor also grows as k1I3). That is, the
number of processors increases by a factor of k2I3 rather than k.
However, the execution time grows as k113 as well in this case,
which is not desirable from the viewpoint of real-time rendering.

Fortunately, the number of rays needed per processor to retain
high processor efficiencies is small. And we mentioned earlier
that the data set sizes are not likely to get too much larger in
the near future, since the goal today is still to get moderately
sized data sets rendered in real time. Thus, the memory needed
per processor for this application is small and likely to remain
so for some time to come.

7.4 Summary
Our general conclusion is that fine-grained machines (under
1 Mbyte of memory per processor) are likely to perform very
well on this application.

8 Discussion

We begin our discussion by bringing together the results for
the various applications. Table 1 shows the growth rates for
the most important application characteristics, including data set
sizes, total operations performed on these data, available con-
currency, communication volumes, and the sizes of the most
important working sets. Table 2 then shows the implications of
these data, including the sizes of the important working sets for
our prototypical 1 Gbyte. 1024 processor problem, expressed as
a function of total data size (DS), and the desirable amounts
of per-processor memory. Table 2 also shows growth rates for
both as the problem is scaled. (We note that for the FIT the
'desirable' grain size of 1 Mbyte is not really all that desirable,
but that enormous increases would be required to improve the
situation.)

Our results show that reasonably fine-grained parallel ma-
chines, with memory of l Mbytc per processor or less, can be
effective for the application classes studied here. However, we
now briefly discuss some pragmatic reasons, both hardware. and
software, why coarser-grained machines are likely to continue
being built in the near term.

On the hardware side, one reason is the fact that memory
chips have large capacity but currently provide very n m w in-
terfaces (1-8 bits wide). Thus, building the high-bandwidth
memory systems that are needed by high-performance proces-
sors requires the use of multiple memory chips in parallel, result-
ing in substantial amounts of total memory per node. Another
reason is that the distributed-address-space programming model
that is common in today's large-scale parallel machines severely
limits the ability of a processor to efficiently access memory that
is not local to it. Such a model also makes fine-grained paral-
lel computation less attractive because of the large fixed costs
associated with exchanging data between processors. A final
hardware. reason is the relative costs of processors and mem-
ory. It makes little sense, for example, to place $50 worzh of
memory on a $lo00 node. A machine with 4 times as much
memory would not cost significantly more and would be much
more versatile. Many of these reasons may disappear, however,
due to continually improving technology and integration levels.
Within a decade, we are likely to see chips with more than 100
million transistors each [5] . This will allow processors. caches,
and memory to reside on the same chip. Decisions about how to
partition the transistors on a chip among processor, cache, and
memory will then involve entirely different tradeoffs. The data
presented in this paper show that fine-grain machines should be
seriously considered, since applications can use them effectively.

- -1

24

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

Table 1: Important application growth rates.

Table 2 Summarv of immrtant application parameters (DS is total data set size).

On the software side, reasons for coarser grain nodes include
support for a sophisticated node operating system, support for
multiprogramming, and the flexibility to run applications with
limited parallelism more effectively. However, these capabilities
are not necessarily as important on large-scale machines as they
are on small ones.

In summary. the grain size issue is a complex one. In this
paper, we have taken an applications-oriented view; the other
issues must also be taken into account to reach more defini-
tive conclusions about how to actually build large-scale paral-
lel machines. We are cumntly exploring these other tradeoffs.
Overall, it may turn out that designs that split the cost equally
between processors and memory will be the most competitive,
in that they will be within a small constant factor of the optimal
design for any given application.

9 Concluding Remarks

We have presented an application-driven study of issues relevant
to determining the appropriate distribution of resources among
processors, cache, and main memory for large-scale multipro-
cessors. We 6rst showed that all of the application classes we
studied have a hierarchy of working sets, each of whose size,
performance impact and scaling pmperties we identified. Our
conclusion is that relatively small (in some cases trivially small)
caches suffice for all the applications. One reason for this is the
bimodality in the working sets of applications: The working sets
are either very small, so that small caches suffice, or too large
to be expected to fit in caches. Fortunately, the small working
sets have the most impact on performance.

Next, we examined certain other important characteristics of
the computations-communicatim, computation. data require-
ments, concurrency, and load balancing behavior-to reflect
upon desirable grain sizes for machines to support these com-
putations effectively. We found that relatively fine-grained ma-
chines, with large numbers of processors and small amounts of
cache and memory per processor. are appropriate for all of the
applications.

References

[l] David H. Bailey. FFTs in Extemal or Hierarchical Memo-
ries. Journal of Supercomputing, 423-25, 1990.

[2] GeotTrey Fox et al. Solving Problem on Concurrent Pro-
cessors, Volwne I: General Techniques and Regular Prob-
fem. Prentice Hall, 1988.

[3] Lars Hemquist. Hierarchical N-body methods. Computer
Physics Communications, 48:107-115. 1988.

[4] H.T. Kung. Memory requirements for balanced computer
architectures. In Proceedings of the 13th Ann& Interna-
tional Symposium on Computer Archirectum, 1986.

[5] Gordon Moore. VLSI: Some fundamental challenges. IEEE
Spectrum, pages 30-37, April 1979.

[6] Jason Nieh and Marc Levoy. Volume rendering on scalable
shared-memory MIMD architectures. In Proceedings of the
Boston Workshop on Volume Visualization, October 1992.

[7] John K. Salmon. Parallel Hierarchical N-body Methods.
PhD thesis, California Institute of Technology, December
1990.

[8] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta.
Implications of hierarchical N-body techniques for multi-
processor architecture. Technical Report CSL-TR-92-506,
Stanford University, 1992.

[9] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta.
Scaling parallel programs for multiprocessors: Methodol-
ogy and examples. IEEE Computer, 26(7), July 1993. To
appear. Also Stanford Univeristy Tech. Report no. CSL-

[lo] Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop
Gupta, and John L. Hennessy. Load balancing and data
locality in hierarchical N-body methods. Journal of Pard-
le1 and Distributed Computing. To appear. Prelim. version
available as Stanford Univeristy Tech. Report no. CSL-TR-

[111 R. van de Geijn. Massively parallel LINPACK benchmark
on the Intel Touchstone Delta and iPSCB60 systems. Tech-
nical Report CS-91-28. University of Texas at Austin, Au-

[12] Charles van Loan. Computatwnal Frameworks for the Fast

TR-92-541, 1992.

92-505, Jan. 1992.

gust 1991.

Fourier Transform. SIAM, 1992.

25

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

