
0018-9162/98/$10.00 © 1998 IEEE June 1998 33

Virtual
Memory:
Issues of
Implementation
The authors introduce basic virtual-memory technologies and then compare

memory-management designs in three commercial microarchitectures. They

show the diversity of virtual-memory support and, by implication, how this

diversity can complicate and compromise system operations.

V
irtual memory was developed to auto-
mate the movement of program code
and data between main memory and
secondary storage to give the appear-
ance of a single large store.1 This tech-

nique greatly simplified the programmer’s job,
particularly when program code and data exceeded
the main memory’s size. The basic technology proved
readily adaptable to modern multiprogramming envi-
ronments, which, in addition to a “virtual” single-
level memory, also require support for large address
spaces, process protection, address-space organiza-
tion, and the execution of processes only partially
residing in memory.2 Consequently, virtual memory
has become widely used, and most modern proces-
sors have hardware to support it.

Unfortunately, there has not been much agreement
on the form that this support should take. The result
of this lack of agreement is that hardware mechanisms
are often completely incompatible. No serious attempts
have been made to create a common memory-man-
agement support or a standard interface. Thus, design-
ers and porters of system-level software have two
somewhat unattractive choices: They can write soft-
ware to fit many different architectures, which can
compromise performance and reliability; or they can
insert layers of software to emulate a particular hard-
ware interface, which essentially forces one hardware
design to look like another. Inserting this hardware
abstraction layer3,4 hides hardware particulars from
the higher levels of software but can also compromise
performance and compatibility; the higher levels of
software often make unwitting assumptions about

Co
m

pu
tin

g
Pr

ac
tic

es

Bruce Jacob
University of
Maryland

Trevor Mudge
University of
Michigan

those hardware particulars, creating inconsistencies
between expected and actual behavior.5

Here we present the software mechanisms of vir-
tual memory from a hardware perspective and then
describe several hardware examples and how they sup-
port virtual-memory software (see the architecture
sidebars beginning on page 39 for hardware exam-
ples). Our focus is on the mechanisms and structures
popular in today’s OSs and microprocessors, which
are geared toward demand-paged virtual memory.
However, this focus in no way impedes our goal: to
show the diversity of virtual-memory support and, by
implication, how this diversity complicates the design
and porting of OSs. Our companion article in the
forthcoming July/August issue of IEEE Micro
describes contemporary hardware support for mem-
ory management in more detail.6

BASIC CONCEPTS
In a well-designed virtual-memory system, the main

memory holds only the most often used portions of a
process’s address space; other portions are stored on
disk and retrieved as needed. This creates the illusion of
a single-level store with the access time of random-
access main memory rather than that of a disk. The OS
and hardware support the illusion by translating vir-
tual addresses to physical ones on the fly. This transla-
tion occurs at the granularity of pages, with support
from hardware found in the memory-management unit.

As Figure 1 shows, the virtual-memory space is
divided into uniform virtual pages, each of which is
identified by a virtual page number. The physical mem-
ory is divided into uniform page frames, each identified

.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

34 Computer

by a page frame number. The page frames are so named
because they frame, or hold, a page’s data. At its sim-
plest, then, virtual memory is a mapping of virtual page
numbers to page frame numbers. The mapping is a
function: a given virtual page can have only one phys-
ical location. However, the inverse mapping—from
page frame numbers to virtual page numbers—is not
necessarily a function, and thus it is possible to have
several virtual pages mapped to the same page frame.
In Figure 1, for example, the OS has mapped two vir-
tual pages (0x00002 and 0xFFFFC) to page frame 12.
This type of mapping arrangement, called virtual-
address aliasing, lets processes or threads share mem-
ory and supports different “views” of data with
different protections or behaviors. In the latter case, for
example, references to a location using one virtual
address could cause a prefetch or nonfaulting data load,
while references to the same location through a differ-
ent virtual address could cause a normal load.

An OS pages when it moves pages in and out of
memory. If space is needed and a particular page has
not been used recently, it is paged out (stored to disk)
and the space is freed up for more active pages. Pages
that have been migrated to disk are paged in
(returned to memory) when they are needed again. If
an item can be paged, it implies that the item resides
in virtual space: it is accessed using virtual addresses,
and space is allocated for its mapping information.
The OS allocates physical memory for the item itself
only when the item is paged in. A virtual page is con-
sidered mapped when the OS has information on its
location (in memory or on disk). An unmapped page

is either not yet allocated or has been deallocated
and its mapping information has been discarded.
Finally, to wire down a region of virtual memory is
to reserve space for it in physical memory and not
allow it to be paged to disk, thereby blocking the
space for any other use.

Page table entries
Mapping information is organized into page tables,

which are collections of page table entries (PTEs). Each
PTE typically maintains information for one page at a
time. At the minimum, a PTE indicates whether its vir-
tual page is in memory, on disk, or unallocated. Over
time, virtual memory evolved to handle additional
functions including address-space protection and page-
level protection, so a typical PTE now contains addi-
tional information such as whether the page holds
executable code, whether it can be modified, and, if so,
by whom. Most OSs today, including Windows NT,
Linux, and other variations of Unix, support address-
space and page-level protection in this way.

From a PTE, the OS must be able to determine

• the ID of the page’s owner (the address-space
identifier, sometimes called an access key);

• the virtual page number;
• the page’s location in memory (page frame num-

ber) or location on disk (for example, an offset
into a swap file);

• a valid bit, which indicates whether the PTE con-
tains a valid translation;

• a reference bit, which indicates whether the page
was recently accessed;

• a modify bit, which indicates whether the page
was recently written; and

• page-protection bits, such as read-write, read-
only, and so on.

The OS uses the reference and modify bits to imple-
ment an approximation to a least-recently-used page
replacement policy. The OS periodically clears the ref-
erence bits of all mapped pages to measure page
usage. The modify bit indicates whether a replaced
page must be written back to disk, or can simply be
discarded. Many OS texts offer detailed information
on page replacement policies.7

For efficiency reasons, all of the information an OS
needs is rarely stored explicitly in each PTE. Careful
organization of the page table may allow some items
to be implicit. Actual implementations do not need
both the virtual page number and the page frame
number; one or the other can often be deduced from
the PTE’s location in the table. The address-space
identifier is unnecessary if every process has its own
page table, or if there is another mechanism besides
address-space identifiers that differentiates the virtual

0xFFFFF
0xFFFFE
0xFFFFD
0xFFFFC
0xFFFFB

0x0000A
0x00009
0x00008
0x00007
0x00006
0x00005
0x00004
0x00003
0x00002
0x00001
0x00000

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Physical memory Virtual space

One page

Virtual
page

numbers

Page
frame

numbers

Figure 1. Virtual memory stores only the most often used portions of an address space
in main memory and retrieves other portions from a disk as needed. The virtual-memory
space is divided into pages identified by virtual page numbers, shown on the far left,
which are mapped to page frames, shown on the right.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

June 1998 35

addresses generated by unrelated processes. One such
example is paged segmentation, in which virtual
addresses are translated to physical addresses in two
steps: the first is at a segment granularity, the second
is at a page granularity. Other items like disk-block
information are often placed in secondary tables. The
net result is that a PTE can often be made to fit within
a 32-bit word.

Translation lookaside buffers
To speed translation, most hardware systems pro-

vide a cache for PTEs called a translation lookaside
buffer (TLB). The TLB takes as input a virtual page
number, possibly extended by an address-space identi-
fier, and returns the corresponding page frame number
and protection information. The address-space identi-
fier, if used, extends the virtual address to distinguish it
from similar virtual addresses produced by other
processes. For a load or store to complete successfully,
the TLB must contain the PTE mapping that virtual
location. If it does not, a TLB miss occurs and the sys-
tem must search the page table for the appropriate entry
and place it into the TLB.

Because the acting agent may vary over the range
of different system implementations, when we discuss
general mechanisms here we will use system to indicate
either a hardware mechanism or a software mecha-
nism (usually the OS). For example, in some imple-
mentations the OS searches the page table after a TLB
miss; in others, a hardware state machine conducts
the search.

If the system fails to find the mapping in the page
table, or if it finds the mapping but the mapping indi-
cates that the desired page is on disk, a page fault
occurs. A page fault interrupts the OS, which must then
do one of three things: retrieve the page from disk and
place it into memory, create a new page if the page does
not yet exist (as when a process allocates a new stack
frame in virgin territory), or—if the access is to illegal
space—send the process an error signal.

Here we refer to the virtual address causing a TLB
miss as the faulting address, though this is not meant
to imply that all TLB misses result in page faults. There
is a form of inclusion between the TLB and main mem-
ory: if a page is in memory, its mapping may or may
not be in the TLB, but if a page’s mapping is in the
TLB, the page must be in physical memory.

PAGE TABLE ORGANIZATION
A generation ago, when address spaces were much

smaller, a single-level table—called a direct table 8—
mapped an entire address space and was small enough
to be maintained entirely in hardware. As address
spaces grew larger, the table size grew to the point that
system designers were forced to move it into memory.
They preserved the illusion of a large table held in

hardware by caching portions of this page table in a
hardware TLB and by automatically refilling the TLB
from the page table on a TLB miss.

The search of the page table, called page table walk-
ing, is therefore a large part of handling a TLB miss.
Accordingly, today’s designers take great care to con-
struct page table organizations that minimize the per-
formance overhead of table walking. Searching the
table can be simplified if PTEs are organized contigu-
ously so that a virtual page number or a page frame
number can be used as an offset to find the appropri-
ate PTE. This leads to two primary types of page table
organization: the forward-mapped or hierarchical page
table, indexed by the virtual page number; and the
inverse-mapped or inverted page table, indexed by the
page frame number.

Hierarchical page tables
Figure 2 shows the classical hierarchical page table,

which is based on the idea that a large data array can
be mapped by a smaller array, which can in turn be
mapped by an even smaller array. For example, if we
assume 32-bit addresses, byte addressing, and 4-Kbyte
pages, the 4-Gbyte address space is composed of
1,048,576 (220) pages. If each of these pages is mapped
by a 4-byte PTE, we can organize the 220 PTEs into a
4-Mbyte linear structure composed of 1,024 (210)
pages, which can be mapped by 1,024 PTEs.
Organized into a linear array, the 1,024 PTEs occupy
4 Kbytes. Since 4 Kbytes is a fairly small amount of
memory, most OSs wire down this root-level table in
memory while the process is running. As Figure 2
shows, the user page table maps the user space and
the root page table maps the user page table. The two
levels of the hierarchical table are often called the
Level-1 and Level-2 tables, which is a useful naming
convention when mapping larger spaces that require
more than two levels. For example, the DEC Alpha
supports a four-tiered hierarchical page table com-
posed of Level-0, Level-1, Level-2, and Level-3 tables.
The limiting case of a hierarchical page table is a sin-
gle-level table, which, as we mentioned above, is the
precursor to the hierarchical table.

There are two access methods for the hierarchical
page table: top down or bottom up. A top-down tra-

4-Kbyte root
 page table

4-Mbyte user
 page table

4-Gbyte user
 address space

One page
One PTE page

Figure 2. A two-level hierarchical page table. Typically, the root page table is wired
down in the physical memory while the process is running, and the user page table is
paged in and out of main memory.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

36 Computer

4-Mbyte virtually addressed user page table is the same
as the virtual page number of the page it maps. On a
TLB miss, the virtual address for this user PTE is used
to load the PTE from the user page table. If this load
is successful, the system inserts the user PTE into the
TLB. If this load instead causes another TLB miss, the
system must search the 4-Kbyte root page table for the
appropriate root PTE. The top 10 bits of the faulting
virtual address index this root PTE in the root table.
Once the root PTE is in the TLB, a retry of the virtual
reference to the user PTE will succeed. The following
pseudocode briefly illustrates these steps:

load user data /* load misses TLB*/

/* invokes TLB-miss handler: */
construct virtual address for user PTE
load user PTE /* load misses TLB*/

/* invoke root TLB-miss handler: */
construct physical address for

root PTE
load root PTE /* cannot cause

* TLB miss,because it uses
* a physical address */

put root PTE into TLB
jump to faulting instruction

/* return to user TLB-miss handler: */
load user PTE /* this time, load
succeeds */

put user PTE into TLB
jump to faulting instruction

/* return to user mode */
load user data /* this time, load

succeeds */

Figure 4 shows the bottom-up method. In step 1,
the top 20 bits of a faulting virtual address are con-
catenated with the virtual offset of the user page table.
The bottom two bits of the address are zero, because
a PTE is four bytes long. The virtual page number of
the faulting address is equal to the PTE index in the
user page table. Therefore this virtual address points
to the appropriate user PTE. If a load using this
address succeeds, the user PTE is placed into the TLB
and can translate the faulting virtual address.

The user PTE load can, however, cause a TLB miss of
its own. In step 2, the system generates a second address
when the user PTE load fails. The mapping PTE for this
load is an entry in the root page table, and the index is
the top 10 bits of the faulting address’s virtual page num-
ber, just as in the top-down method. These 10 bits are
concatenated with the root page table’s base address to
form a physical address for the appropriate root PTE.

4-Kbyte
physical page

(contains 4,096
bytes)

4-Kbyte PTE page
(contains 1,024 PTEs)

Root page table
(contains 1,024 PTEs)

Base physical
address (stored
in a register)

Base
physical
address

Base
physical
address

Index

10 bits 10 bits 12 bits

Faulting virtual address

Index

Index

PTE

Figure 3. The top-down access method splits the virtual address into three fields: the top
10 bits identify a PTE in the root page table that maps the PTE page; the middle 10 bits
identify within that PTE page the single PTE that maps the data page; and the bottom 12
bits identify a byte within the 4-Kbyte data page.

versal uses physical addresses to reference the PTEs in
the table; a bottom-up traversal uses virtual addresses.

Top-down traversal
Figure 3 shows the steps in the top-down hierar-

chical page table access. First, the top 10 bits index
the 1,024-entry root page table, whose base address
is typically stored in a hardware register. The refer-
enced PTE gives the physical address of a 4-Kbyte PTE
page or indicates that the PTE page is on disk or unal-
located. Assuming the page is in memory, the next 10
bits of the virtual address index this PTE page. The
selected PTE gives the page frame number of the 4-
Kbyte virtual page referenced by the faulting virtual
address. The bottom 12 bits of the virtual address
index the physical data page to access the desired byte.

If at any point in the algorithm a PTE indicates that
the desired page (which could be a PTE page) is paged out
or does not yet exist, the hardware raises a page-fault
exception. The OS must then retrieve the page from disk
(or create a new page or signal the process) and place its
mapping into the page table and possibly the TLB.

Many of the early hierarchical page tables were tra-
versed this way, so the term forward-mapped page
table is often used to mean a hierarchical page table
accessed top down. Due to its simplicity, this algorithm
is often used in hardware table-walking schemes, such
as the one in Intel’s IA-32 architecture.

Bottom-up traversal
The top-down access method requires as many mem-

ory references as there are table levels. A bottom-up tra-
versal lowers this overhead and typically accesses
memory only once to translate a virtual address. It
resorts to a top-down traversal if the initial attempt fails.

In the bottom-up method, the top 20 bits of the vir-
tual address are offset into the 4-Mbyte user page table,
which is continuous in virtual space and can be aligned
on a 4-Mbyte boundary to simplify the pointer arith-
metic. As shown in Figure 2, the index of a PTE in the

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

Unlike a virtual address, using this physical address can-
not cause another TLB miss. The system loads the root
PTE and inserts it into the TLB to map the page con-
taining the user PTE. When the root PTE is loaded into
the TLB, the root-table handler ends and the user PTE
load is retried. Once this user PTE is loaded into the
TLB, the user-table handler ends, and the faulting user-
level load or store is retried. Usually, however, the first
PTE lookup—the user PTE lookup—succeeds and then
a TLB miss requires only one memory reference to trans-
late the faulting user address.

Architectures that use the bottom-up approach
include MIPS and Alpha.

Inverted page tables
Figure 5 shows the classical inverted page table,

which offers several advantages over the hierarchical
table. Instead of one entry for every virtual page
belonging to a process, the inverted page table has one
entry for every page frame in main memory. The index
of the PTE in the inverted table is equal to the page
frame number of the page it maps. Thus, rather than
scaling with the size of the virtual space, it scales with
the size of physical memory. This is a distinct advan-
tage over the hierarchical table when a designer is deal-
ing with 64-bit address spaces. Because there are rarely
unused entries wasting space, it is compact in size,
making it a good candidate for hardware-managed
mechanisms that need the table to be wired down in
memory. Finally, depending on the implementation,
inverted page tables can also have fewer memory ref-
erences to service a TLB miss; however, they have a
longer worst-case access time than hierarchical page
tables because there is no fixed maximum number of
memory references required to find a PTE.

The page table’s structure is called inverted because
it indexes PTEs by page frame numbers rather than
virtual page numbers. However, the system typically
searches the page table to find the page frame num-
ber for a given virtual page number, so the page frame
number is not usually available. Therefore the inverted
table also uses a hashed index based on the virtual
page number. Since different virtual page numbers
might produce identical hash values, a collision-chain
mechanism is used to let these mappings exist in the
table simultaneously. In the classical inverted table,
the collision chain resides within the table itself. When
a collision occurs, the system chooses a different slot
in the table and adds the new entry to the end of the
chain. It is thus possible to chase a long list of point-
ers while servicing a single TLB miss.

Collision chains in hash tables are well researched; to
keep the average chain length short, a designer can
increase the range of hash values produced and thus
the size of the hash table. However, if the inverted page
table’s size were changed, the page frame number could

no longer be deduced from the PTE’s location within
the table. It would then be necessary to explicitly
include the page frame number in the PTE, thereby
increasing the size of every PTE. Note that in classical
inverted-table implementations, the PTE is already large
compared to that of the hierarchical table, as each entry
contains a pointer to the next PTE in the collision chain.

As a trade-off to keep the table small, the designers
of early systems increased the number of memory
accesses per lookup: they added a level of indirection,
the hash anchor table (HAT). The hash anchor table
is indexed by the hash value and points to the chain
head in the inverted table corresponding to each value.
Doubling the size of the hash anchor table reduces the

June 1998 37

Step
2

Step
1

Faulting virtual address

Virtual address of PTE in user page table

Physical address of PTE in root page table

Virtual page number (20 bits) Page offset (12 bits)

Base of user page table Virtual page number (20 bits) 00
(2 bits)

00
(2 bits)

Base address of the root page table Top 10 bits of virtual
page number (10 bits)

Figure 4. The bottom-up method for accessing the hierarchical page table typically accesses
memory only once to translate a virtual address. It resorts to a top-down traversal if the ini-
tial attempt fails.

Mapped
physical
memory

Virtual page number

Hash
function

Index into the
hash anchor

table

Inverted
page table

Hash
anchor tablePTE

Figure 5. The inverted page table contains one PTE for every page frame in memory,
making it densely packed compared to the hierarchical page table. It is indexed by a
hash of the virtual page number.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

38 Computer

average collision-chain length by half, without hav-
ing to change the size of the inverted page table. Since
the entries in the hash anchor table are smaller than the
entries in the inverted table, it is more memory effi-
cient to increase the size of the hash anchor table to
reduce the average collision-chain length.

The inverted table has a simple access method that
is often used in hardware-walked page table designs,
such as the PowerPC. Figure 6 shows the inverted page
table’s lookup algorithm, which either the OS or hard-
ware can perform. In step 1, the faulting virtual page
number is hashed, indexing the hash anchor table. The
corresponding anchor-table entry is loaded and points
to the chain head for that hash value. In step 2, the
indicated PTE is loaded, and its virtual page number
is compared with the faulting virtual page number. If
the two match, the algorithm terminates. The map-
ping, composed of the virtual page number and the
page frame number (the PTE’s index in the inverted
page table), is placed into the TLB (step 3a).
Otherwise, the PTE references the next entry in the
chain (step 3b), or indicates that it is the last in the
chain. If there is a next entry, it is loaded and com-
pared. If the last entry fails to match, the algorithm
terminates and causes a page fault.

As described in the next section, variations of the
inverted table are used in the PA-RISC and PowerPC
architectures (as well as in some Sparc-based OSs,
notably Solaris).

DETAILS (AND THEIR DEVILS)
When a designer implements a virtual-memory sys-

tem on real-world hardware, subtle problems surface.
The choice between hierarchical and inverted page
tables is not an obvious one: there are many trade-offs
between performance and memory usage. Implemen-
tations of shared memory width vary widely in perfor-

mance, especially with different hardware support. For
example, shared memory with virtual caches requires
more consistency management than shared memory
with physical caches,5 and shared memory’s interactions
with different page table organizations can yield signif-
icant variations in TLB performance. The address-space
protection scheme is also heavily dependent on hard-
ware support and has great impact on the shared-mem-
ory implementation. Also, the TLB can be managed by
the OS or managed in hardware, presenting a trade-off
between flexibility and performance. Virtual memory is
a complex system that integrates several disparate hard-
ware and software mechanisms. It is not surprising that
the interactions are often subtle and nonintuitive.

Up, down, or inverted?
The first hierarchical tables were accessed top-

down. The most common complaint against this
design is that it provides inefficient support for large
or sparse address spaces. The top-down access vari-
ant wastes time because it requires more than two tiers
to cover a large address space, and each tier requires
a memory reference during table-walking. The bot-
tom-up variant, which first appeared commercially on
the MIPS processor, is more efficient; although it also
may require more than two tiers to map a large
address space, the bottommost tier is probed first,
using an easily constructed virtual address. Because
the user PTEs needed to map the user address space
are likely to be in the cache, it often requires just a sin-
gle memory reference to cover a TLB miss.

Both access variants can waste memory, because
space in the table is allocated by the OS an entire page
at a time. A process address space with a single page
in it will require one full PTE page at the level of the
user page table. If the process adds to its address space
virtual pages that are contiguous with the first page,

Faulting virtual address

Physical address of
hash anchor table entry Hash anchor table entry

Physical address of page table entry Page table entry

Loaded into TLB

Step 3a

Step 3b

Step 1

Step 2

Virtual page number Page offset

Hash

Base address of
hash anchor table

Hash anchor
table index

Inverted page
table index Flags

Base address of
inverted page table index

Inverted page
table index

Virtual page number

Index of next PTE Flags/protection

Virtual page number

Inverted page
table index Flags/protection

00
(2 bits)

Figure 6. The lookup
algorithm for the
inverted page table.
If the page is mapped
and in main memory,
the mapping will be
found before the
algorithm terminates
without having to
access the disk.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

they might also be mapped by the existing PTE page.
The reason is that the PTEs that map the new pages
will be contiguous with the first PTE and will likely
fit within the first PTE page. If instead the process adds
to its address space another page that is distant from
the first page, its mapping PTE will also be distant
from the first PTE and is thus unlikely to lie within the
first PTE page. A second PTE page will be added to
the user page table, doubling the amount of memory
required to map the address space. Clearly, if the
address space is very sparsely populated—composed
of many individual virtual pages spaced far apart—
most entries in a given PTE page will be unused, but
will consume memory nonetheless. Thus, the organi-
zation can degrade to using as many PTE pages as
there are mapped virtual pages.

The inverted table was developed in part to address
the hierarchical table’s potential space problems. No
matter how sparsely populated the virtual address
space, the inverted page table wastes no memory as
the OS allocates space in the table one PTE at a time.
Because table size is proportional to the number of
physical pages available in the system, a large virtual
address does not affect the number of table entries.

However, the inverted organization does have a few
drawbacks. First, the table only contains entries for vir-
tual pages actively occupying physical memory. An alter-
nate structure is thus required to maintain information
for pages on disk in case they are needed again. The
organization of this backup page table could potentially
negate the space-saving benefit the inverted organiza-
tion offers. Second, because the inverted table contains
only one entry for each page frame in the system, it can-
not simultaneously hold mappings for different virtual
pages mapped to the same physical location. For exam-
ple, suppose that two processes, A and B, share a page.
If we map virtual page 1 in process A’s address space
and virtual page 2 in process B’s address space to the
same page frame, both mappings cannot reside in the
table at the same time. If the processes use memory for
communication, the OS could potentially service two
page faults for every message exchange.

Like the bottom-up table, inverted tables can be
accessed quickly. With a large hash anchor table, each
lookup averages just over two memory references. To
improve access time further, many of today’s inverted
page tables—such as in the PowerPC and PA-RISC—
eliminate the hash anchor table and hash the inverted
table directly. This technique has mixed results. It
reduces the minimum number of memory references
by one, but it increases the page table’s size, requiring
the PTE to contain both the virtual page number and
the page frame number. This scheme lifts the restric-
tion that the table contain only as many entries as
there are page frames in physical memory and allows
a designer or the OS to increase the number of table

entries to decrease the average collision-chain length.
This solves the earlier problem of not allowing multi-
ple mappings to the same page frame to coexist in the
page table simultaneously.

Shared memory
Shared memory is often implemented through vir-

tual memory to increase the efficiency of memory
usage and decrease execution time. Shared memory
lets multiple processes reference the same physical
code and data through (potentially) different virtual
addresses. When multiple instances of a program run,

June 1998 39

64-bit virtual address

32-Kbyte
2-way set-associative

instruction cache
or data cache

Region (Sign-
extended)

32-bit virtual
page number

12-bit
page offset

8-entry
instruction TLB;
64-paired-entry,
fully associative

main TLB

28-bit page frame number

Tag: page frame number

Tag
compare
(cache

hit/miss)

8-bit
address space

identifier

Cache data

Cache index

Figure A. The MIPS R10000 architecture is a simple software-based memory-management
architecture that supports a bottom-up hierarchical page table in hardware. The TLB is
accessed in parallel with the virtual cache. The earliest MIPS designs had physically
indexed caches, and, if larger than the page size, the cache was accessed in series with
the TLB.

MIPS Architecture
MIPS defines a very simple mem-

ory-management architecture in
which the OS handles TLB misses
entirely in software. The OS walks
the page table, fills the TLB, and
can implement virtually any TLB
replacement policy. Figure A shows
the MIPS architecture R10000.

The hardware supports a bottom-
up hierarchical page table through
the TLB context register, which
holds a virtual address partitioned
into a software-loaded segment and
a hardware-loaded segment. The
software-loaded segment comprises
the topmost bits and holds the base
virtual address of a user page table.
The hardware-loaded segment com-
prises the bottommost bits and holds
the virtual page number of a faulting
address. The hardware-loaded seg-
ment is filled whenever a user-level
reference misses the TLB, and it

indexes a single PTE within the lin-
ear user page table (this corresponds
to the action shown in step 1 of
Figure 4). On a TLB miss, the con-
text register contains a virtual address
for the very PTE that maps the fault-
ing address. A TLB miss handler can
simply perform a load using this
address to obtain the mapping PTE.

MIPS uses address-space identi-
fiers to provide address-space pro-
tection. To access a page, the
address-space identifier of the cur-
rently active process must match
the address-space identifier in the
page’s TLB entry. Periodic cache
and TLB flushes are unavoidable,
as there are only 64 unique context
identifiers in the R2000/R3000
and 256 in the R10000. Many sys-
tems have more active processes
than this, requiring sharing of
address-space identifiers and peri-
odic remapping.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

40 Computer

sharing the program code and libraries reduces phys-
ical memory requirements. When processes commu-
nicate, shared memory can avoid the data copying of
traditional message-passing mechanisms.

There are several implementation possibilities for
shared memory. One of the most common is virtual
address aliasing, or simply aliasing. In this scheme, each
mapping to the same physical page requires its own log-
ical PTE. Maintaining multiple PTEs makes it possible
for different processes to use different virtual addresses
for the same physical data, for different processes to
map the same physical data with different protections,
or for different virtual references to the same physical
data to cause different behaviors. For example, two
processes can map the same data at different locations
within their address spaces. One can map the data read-
only while the other maps the data read-write. Accesses
through the first virtual address can cause nonfaulting
loads, while accesses through the second virtual address
can cause normal (faulting) loads and stores.

The primary disadvantage of aliasing is the increased
overhead of managing multiple mappings to the same
physical page. Every time the OS changes a page’s loca-
tion, for example, it must update every single PTE that
maps the page. The multiple mappings also compete

for space in the TLB as if every process had its own
copy of the shared page. In addition, using several dif-
ferent virtual addresses for the same physical data can
lead to confusion as pointers in the shared region may
point to other items in that region. For example, a
linked list in the shared region causes problems because
each process uses different pointer values to reference
data within the region, and so each process interprets
the pointers in the linked list differently.

A variation on aliasing is to share portions of page
tables whenever data is shared. This minimizes the
duplication of PTEs. For example, using a top-down
hierarchical page table, two processes could share a
4-Mbyte region in each of their address spaces by
duplicating a single PTE at the root level of their page
tables. Being identical, the two root-level PTEs would
map the same physical PTE page, so the two user-level
tables would share a page that maps the shared 4-
Mbyte region. Note that there is nothing preventing
the OS from duplicating the PTEs at different offsets
within the root tables, or at multiple offsets within a
single root table; this would allow two processes or
even a single process to map a physical region at sev-
eral different virtual addresses. Compared to the nor-
mal aliasing mechanism, this variation reduces the

PowerPC Architecture
Figure B shows the PowerPC 604, which maps an

application’s “effective” addresses onto a global flat vir-
tual address space much larger than each per-applica-
tion address space. Segments are 256-Mbyte contiguous
regions of virtual space, and 16 segments make up an
application’s 4-Gbyte address space. The top 4 bits of
the 32-bit effective address select a segment identifier
from a set of 16 hardware segment registers. The seg-
ment identifier is concatenated with the bottom 28 bits
of the effective address to form an extended virtual
address that indexes the caches and is mapped by the
TLBs and page table.

The PowerPC defines a hashed page table for the OS:
a variation on the inverted page table that acts as an
eight-way set-associative software cache for PTEs. Its
design does not guarantee it will hold all mappings, so
it is merely a cache and, like the classical inverted table,
requires a backup page table. On TLB misses, hard-
ware walks the hashed page table; software can only
insert PTEs into the TLB indirectly by placing them
into the page table and retrying the load, which causes
a hardware walk of the table.

The architecture does not provide explicit address-
space identifiers; address-space protection is supported
through the segment registers, which can only be modi-
fied by the OS. If two processes have the same segment
identifier in one of their segment registers, they share that
virtual segment. The OS enforces protection by control-
ling the degree to which segment identifiers are over-
lapped. The segment identifiers are 24 bits wide and can
uniquely identify over a million processes. If shared mem-
ory is implemented through the segment registers, the
OS will rarely need to remap identifiers.

Segment # 16-bit segment
offset

12-bit page
offset

32-bit effective address

16-bit segment
offset

24-bit segment
identifier

12-bit page
offset

Segment registers
(16 identifiers × 24 bits)

52-bit virtual address

40-bit virtual page number

128-entry 2-way
instruction TLB;

128-entry 2-way data TLB

Split level-one
cache: instruction

and data,each
16-Kbyte, 4-way

set-associative

20-bit page frame
number

Tag: 20-bit page
frame number

Cache data

Tag
compare
(cache

hit/miss)

Figure B. The PowerPC 604 uses a hardware-managed TLB and a variant on the
inverted page table—an eight-way software cache for PTEs. The cache index is the
same size as the page offset, effectively making the caches physically indexed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

overhead of managing PTEs and reduces the impact of
multiple PTEs on the TLB. The disadvantage of the
scheme is that it can require sharing at large granu-
larities—in this case, 4 Mbytes—and suggests that all
mappings to the same physical region should have the
same protection, though the latter can be overcome
with a little ingenuity, especially if the hardware trans-
lation mechanism is segmented and supports protec-
tion at the segment level.

Another alternative to aliasing is to have all
processes share a global virtual address space. This
space is often called a “flat” address space because it
is not divided into disjunct per-process spaces by
address-space identifiers. Typically, these single
address-space OSs map the entire space of all processes
with a single page table, which considerably reduces
the management overhead. For machines with 64-bit
address spaces, this is an attractive choice, as it offers
very low overhead and is as flexible as other schemes.

Unix-based OSs tend to implement shared memory
through aliasing; PA-RISC systems use a global
address space.

Address-space identifiers versus segmentation
If the OS is to provide address-space protection,

user-level applications should not have direct access
to the code or data of the OS or other applications.
Virtual-memory support often ensures this protection.
Two common hardware assists for providing address-
space protection are address-space identifiers and
paged segmentation.

Address-space identifiers, found in MIPS, Alpha,
and Sparc architectures, extend virtual addresses and
distinguish them from those generated by different
processes. The OS places a process’s address-space
identifier in a protected register, and every virtual
address the process generates is concatenated with the
address-space identifier. The address-space identifier
and the virtual page number together make up an
extended virtual page number translated by the TLB.
In this sense, a 32-bit architecture with 8-bit address-
space identifiers has a 40-bit virtual address space.
This space is segregated by the address-space identifier:
multiple processes can coexist, each thinking it owns
the full extent of a 32-bit address space, provided there
are enough address-space identifiers to go around.
Each process is unable to produce addresses that
mimic those of other processes, because to do so it
must control the contents of the protected register
holding the address-space identifier.

In paged segmentation (as implemented in the
PowerPC, PA-RISC, and x86 architectures), vir-
tual–physical translation occurs in two steps. In the
first step, user addresses are mapped onto a global
address space at the granularity of segments, which are
typically (but not necessarily) larger than pages. In the

June 1998 41

+

48-bit logical address

32-bit linear address

16-bit segment
selector

32-bit segment
offset

Local and global
descriptor tables

64-entry 4-way
instruction TLB
64-entry 4-way

data TLB

8-Kbyte 2-way
set-associative

data cache

Page frame
number

Tag: page frame
number

Tag
compare
(cache

hit/miss)

Cache data

8-Kbyte 4-way
set-associative

instruction cache

20-bit virtual
page number

12-bit page
offset

Figure C. The x86 is a segmented architecture that uses a hardware-managed TLB with a
hierarchical table walked top-down. The instruction-cache index is smaller than the
page offset, and, like the PowerPC, the data cache index is the same size as the page
offset. This effectively makes the caches physically indexed.

x86 Architecture
Figure C shows the Pentium Pro,

another segmented architecture with
no explicit address-space identifiers.
Its segmentation mechanism is much
more general than the PowerPC’s, but
it can require extra memory references
while executing instructions to load
segment-mapping information. For
performance reasons, the x86’s seg-
mentation mechanism often goes
unused by today’s OSs, which instead
flush the TLBs on context switch to
guarantee protection. The per-process
hierarchical page tables are hardware-
defined and hardware-walked. The
OS provides to the hardware a phys-
ical address for the root page table in
one of a set of control registers, CR3.
Hardware uses this address to walk
the two-tiered table in a top-down
fashion on every TLB miss. If each
process has its own page table, the
TLBs are guaranteed to contain only
entries belonging to the current
process—that is, those from the cur-
rent page table—provided that on
context switch the TLBs are flushed
and the value in CR3 is changed.

Like the PowerPC, the x86 uses

segmentation to first map user-level
addresses onto a global linear address
space. Unlike the PowerPC, the seg-
mentation mechanism supports vari-
able-sized segments from 1 byte to 4
Gbytes in size, and the global virtual
space is the same size as an individual
user-level address space (4 Gbytes).
User-level applications generate 32-
bit addresses that are extended by 16-
bit segment selectors. Hardware uses
the 16-bit selector to index one of two
software descriptor tables, producing
a base address for the segment corre-
sponding to the selector. This base
address is added to the 32-bit virtual
address generated by the application
to form a global 32-bit linear address.

For performance, the hardware
caches six of a process’s selectors in
a set of on-chip segment registers
that are referenced by context. One
selector is referenced implicitly by
executing instructions; its corre-
sponding segment holds code.
Another selector maps the stack. The
other four map data segments, and a
programmer can specify which of
the segment registers to reference for
different loads and stores.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

42 Computer

second step, virtual addresses from the global
space are mapped onto physical memory at the
granularity of pages. The top bits of the user’s
virtual address identify the segment; the bottom
bits of the user’s virtual address identify an off-
set within the segment. A process address space
is usually composed of many segments, so the
OS maintains a set of segment identifiers for
each process. Like the hardware scheme for
address-space identifiers, the hardware can pro-
vide registers to hold the process’s segment iden-
tifiers, and if those registers can be modified only
by the OS, the segmentation mechanism also
provides address-space protection.

Segment translation from the process address space
to the global address space is like the hardware scheme
for address-space identifiers: a segment identifier is
combined with the user address to form an extended
global address. Instead of concatenating a segment
identifier with the user address, the top bits of the
user’s address are usually replaced by a segment iden-
tifier found in a hardware register. In some schemes
(PowerPC and PA-RISC), these replaced bits deter-
mine which hardware register to choose from. The
TLB translates the new address—which may be longer
than the original, since the segment identifier may be
longer than the bit field it replaces—just like the
extended virtual address in the address-space identi-
fier scheme. Segmentation is therefore analogous to
having multiple address-space identifiers per process—
one for each segment in the user address space. The
advantage to this is that sharing at the segment level
is as simple as duplicating segment identifiers between
two processes. If two processes share a segment iden-
tifier, they share a segment; if they do not have any
identical segment identifiers, they are completely pro-
tected from each other (provided the segment regis-
ters are protected from user-level access).

Address-space identifiers and segmentation interact
with shared memory differently. Conceptually, shared
memory acts in opposition to address-space protec-
tion schemes: if each page is tagged with a single pro-
tection identifier, and each process is tagged with a
single protection identifier, then the only way that mul-
tiple processes can access the same page is by circum-
venting the protection mechanism. With address-space
identifiers, this is often done by explicitly duplicating
mapping information across page tables (through vir-
tual-address aliasing) or by marking a shared page as
visible to all processes—explicitly turning off protec-
tion for that page. In the latter case, the page’s mapping
must be flushed from the TLB whenever a process runs
that should not access the page. Segments, in contrast,
allow both protection and fine-grained sharing. Two
processes can safely share a segment, and can do so
without making the segment visible to other processes.

TLBs revisited
When a process attempts to load from or store to

a virtual address, the hardware searches the TLB for
the address’s mapping. If the mapping exists in the
TLB, the hardware can translate the reference with-
out using the page table. This translation gives the
page’s protection information, which is often used to
control access to the on-chip instruction and data
caches, as opposed to maintaining protection infor-
mation in the cache for each resident block. If the
mapping does not exist in the TLB, the hardware does
not have immediate access to the protection infor-
mation, and it denies the process access to the cache.
Even if the data is present in the cache, the process is
blocked until the TLB is filled with the correct map-
ping information.

Either the OS or the hardware can refill the TLB
when a TLB miss occurs. With a hardware-managed
TLB, a hardware state machine walks the page table;
there is no interrupt or interaction with the instruc-
tion cache. With a software-managed TLB, the gen-
eral interrupt mechanism invokes a software TLB-miss
handler—a primitive in the OS that is usually 10-100
instructions long. If the handler code is not in the
instruction cache at the time of the TLB miss excep-
tion, it can take much longer to handle the miss than
in the hardware-walked scheme. In addition, the use
of the interrupt mechanism adds to the cost by flush-
ing the pipeline, possibly removing many instructions
from the reorder buffer. This can result in hundreds
of cycles. However, the software-managed TLB design
allows the OS to choose any page table organization,
whereas the hardware-managed scheme defines a page
table organization for the OS. This flexibility in the
software-managed scheme can outweigh its poten-
tially higher per-miss cost.9

Software-managed TLBs are found in MIPS, Sparc,
Alpha, and PA-RISC architectures. PowerPC and x86
architectures use hardware-managed TLBs. The PA-
7200 uses a hybrid approach, implementing the ini-
tial probe of its hashed page table10 in hardware,
and—if this initial probe fails—walking the rest of the
page table in software.

If the hardware provides an address-space protec-
tion mechanism such as address-space identifiers or
segmentation, the TLB does not need to be flushed on
process context switch unless there are globally shared
pages. Flushing is typically required only whenever
the OS reassigns an address-space identifier or seg-
ment identifier to a new process (such as at process
creation), or when there are fewer address-space iden-
tifiers than currently active processes, which necessi-
tates a temporary ID remapping. Flushing is also
required if the protection mechanism goes unused, as
is often the case for the segmentation mechanism pro-
vided by the x86 architecture. Generally, the TLB need

Software-managed
TLBs are found in

MIPS, Sparc, Alpha,
and PA-RISC

architectures.
PowerPC and x86
architectures use

hardware-managed
TLBs.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

.

only be flushed with respect to the address-space iden-
tifier in question. In most cases, only those entries
tagged with that address-space identifier need to be
flushed. However, whereas most instruction sets pro-
vide an instruction to invalidate a single TLB entry
with a specified virtual page number and address-
space identifier, most do not provide an instruction
that invalidates all TLB entries matching an address-
space identifier. As a result, the OS must often invali-
date the entire TLB contents or individually invalidate
each entry that matches the address-space identifier.
Typically, it is cheaper to invalidate all TLB contents
than to maintain a list of entries to be flushed on con-
text switch, as this list will typically be large and
expensive to maintain.

There is wide diversity in how today’s commer-
cial processors support memory management.
However, the specific details of one processor’s

memory-management architecture do not seem to
confer a clear performance advantage over another’s.
Why, then, the incompatible designs? Incompatibility
makes porting applications and OSs more difficult.
Indeed, system developers often use only a small sub-
set of the complete functionality of memory-manage-
ment units to make porting more manageable, which
results in a suboptimal port. Poor performance stems
as much from this fact as from any disadvantage
caused by inadequate hardware support.

The hardware–software mismatch in virtual mem-
ory is unlikely to change soon, particularly given the
industry’s penchant for proprietary designs. Although
a de facto standard exists in the Intel x86 virtual-mem-
ory architecture, competing microarchitectures have
yet to adopt it and are unlikely to do so any time soon.
Because the x86 offers most of the functionality mod-
ern systems require, an emerging architecture may
adopt the x86 standard, either as is or in simplified
form.

With increasing cache sizes (especially the multi-
megabyte high-speed Level-2 caches in today’s work-
stations), it is also possible to eliminate memory-
management hardware altogether.11 If systems used
large, virtually indexed, virtually tagged cache hier-
archies, hardware address translation would be unnec-
essary. Virtual caches require no address translation
when the data is found in the cache, and, if the caches
are large enough, there is rarely a need to go to main
memory. Address translation would be performed
only on the rare cache miss and could therefore afford
to be expensive. Instead of using hardware, the OS
itself could perform virtual-memory functions—
including address translation and protection checks—
resulting in increased flexibility and simplifying the
job of porting system software. ❖

References
1. T. Kilburn et al., “One-Level Storage System,” IRE

Trans., Apr. 1962, pp. 223-235.
2. E. I. Organick, The Multics System: An Examination of

Its Structure, MIT Press, Cambridge, Mass., 1972.
3. R.Rashid et al., “Machine-Independent Virtual Memory Man-

agement for Paged Uniprocessor and Multiprocessor Archi-
tectures,” IEEE Trans. Computers, Aug. 1988, pp. 896-908.

4. H. Custer, Inside Windows NT, Microsoft Press, Red-
mond, Wash., 1993.

5. C. Chao, M. Mackey, and B. Sears, “Mach on a Virtually
Addressed Cache Architecture,” Proc. Mach Workshop,
Usenix Assoc., Berkeley, Calif., Oct. 1990, pp. 31-51.

6. B.L. Jacob and T.N. Mudge, “Virtual Memory in Contempo-
rary Microprocessors,” IEEE Micro, Aug. 1998, to appear.

7. A. Silberschatz and P.B. Galvin, Operating Systems Con-
cepts, 5th ed., Addison-Wesley, Reading, Mass., 1998.

8. H.G. Cragon, Memory Systems and Pipelined Proces-
sors, Jones and Bartlett, Sudbury, Mass., 1996.

9. D. Nagle et al., “Design Trade-Offs for Software-Managed
TLBs,” ACM Trans. Computer Systems, Aug. 1994, pp. 175-205.

10. J. Huck and J. Hays, “Architectural Support for Translation
Table Management in Large Address Space Machines,”
Proc. 20th Int’l Symp. Computer Architecture (ISCA-20),
IEEE CS Press, Los Alamitos, Calif., May 1993, pp. 39-50.

11. B.L. Jacob and T.N. Mudge, “Software-Managed Address
Translation,” Proc. Third Int’l Symp. High Performance
Computer Architecture (HPCA-3), IEEE CS Press, Los
Alamitos, Calif., Feb. 1997, pp. 156-167; http://www.
computer.org/conferen/hpca97/77640156.pdf.

Bruce Jacob is an assistant professor of electrical engi-
neering at the University of Maryland. His research
interests include the design of hardware architectures
for real-time and embedded systems. Jacob received
an AB in mathematics from Harvard and an MS and
a PhD in computer science and engineering from the
University of Michigan, Ann Arbor.

Trevor Mudge is a professor of electrical engineering
and computer science and director of the Advanced
Computer Architecture Laboratory at the University
of Michigan, Ann Arbor. His research interests include
computer architecture, computer-aided design, and
compilers. Mudge received a BSc in cybernetics from
the University of Reading, England, and an MS and a
PhD in computer science from the University of Illi-
nois, Urbana-Champaign.

Contact Jacob at Department of Electrical Engineer-
ing, University of Maryland, College Park, MD
20742; blj@eng.umd.edu; (301) 405-0432. Contact
Mudge at Advanced Computer Architecture Lab,
EECS Department, University of Michigan, 1301 Beal
Avenue, Ann Arbor, MI 48109-2122; tnm@eecs.
umich.edu; (734) 764-0203

June 1998 43

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 10:23 from IEEE Xplore. Restrictions apply.

